• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 26
  • 9
  • 7
  • 5
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 95
  • 29
  • 28
  • 22
  • 16
  • 15
  • 15
  • 14
  • 14
  • 14
  • 11
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Avaliação dos mecanismos moleculares envolvidos na expressão de iNOS mediada pelo eixo NAIP5/NLRC4-Caspase-1. / Evaluation of the molecular mechanisms involved in the iNOS expression by NAIP5/NLRC4-Caspase-1 axis.

Carina Buzzo de Lima 07 February 2014 (has links)
O reconhecimento da flagelina é compartilhado pelo receptor transmembrânico TLR5 e citosólico NAIP5/NLRC4. Entretanto, pouco se sabe sobre os mecanismos efetores individuais induzidos a partir do reconhecimento extra e intracelular da flagelina. Aqui, nós demonstramos que macrófagos estimulados com a flagelina citosólica (FLA-BSDot) induziu a expressão de iNOS, enzima responsável pela produção do óxido nítrico (NO). A expressão de iNOS foi dependente do eixo NAIP5/NLRC4/caspase-1 e independente de IL-1β, IL-18 e MyD88, descartando a via de ativação dos TLRs. Ainda, esta via não requer a ativação do fator de transcrição IRF-1, mas envolve a ativação do NF-kB, assim como a clivagem da enzima PARP-1 (poly(ADP-ribose)polymerase-1). Por fim, avaliamos a relevância biológica desta via no controle das infecções por L. pneumophila e S. Typhimurium, dados que definem um mecanismo efetor adicional no controle de patógenos. / Recognition of flagellin is shared by transmembranic TLR5 and cytosolic NAIP5/NLRC4. However, little is known about the individual effector mechanisms induced by extra and intracellular flagellin. Here, we have demonstrated that cytosolic flagellin-stimulated macrophages (FLA-BSDot) induced iNOS expression, an enzyme responsible for the production of nitric oxide (NO). iNOS expression was dependent of the NAIP5/NLRC4/caspase-1 axis and independent of IL-1β, IL-18 and MyD88, discarding TLRs signaling pathway. Still, this pathway do not require the activation of IRF-1 transcriptional factor, but involves NF-kB activation as well as the cleavage of the enzyme, PARP-1 (poly(ADP-ribose)polymerase-1). Finally, we have evaluated the biological relevance of this pathway in the control of the infections by L. pneumophila e S. Typhimurium, which define an additional effector mechanism to the control of pathogens.
12

Coopération entre les isoformes TAp73 et la signalisation TGF-β dans la régulation de l'expression de la NO Synthase inductible / TAp73 Isoforms and TGF-β Signaling Cooperate to Suppress Inducible Nitric Oxide Synthase Expression

Cabrié, Aimeric 18 December 2017 (has links)
Le monoxyde d’azote (NO) est une molécule gazeuse synthétisée par les NO Synthases à partir de L-arginine. NO est une puissante molécule de signalisation dans de nombreux processus physiologiques comme la vasodilatation et la neurotransmission. Il module l’activité de multiples protéines (ex : guanylate cyclase soluble et ribonucléotide réductase) grâce à la nitrosylation de groupements thiol ou de métaux de transition. En tant que radical libre, NO peut réagir avec de nombreuses espèces comme l’oxygène moléculaire, et ainsi former des dérivés réactifs. Grâce à ces propriétés, NO est un acteur majeur de l’immunité innée et de l’inflammation. Les phagocytes produisent de grandes quantités de NO en réponse à des stimuli proinflammatoires, via l’activité NO Synthase inductible (iNOS). En raison des effets délétères des dérivés de NO, l’activité iNOS doit être finement régulée. Le suppresseur de tumeur p53 est capable de réprimer l’expression du gène Nos2 après avoir été lui-même activé en réponse à une accumulation de NO. La protéine p73 est un homologue de p53 encodé par un gène qui génère à la fois des isoformes actives (TAp73) et des isoformes qui sont dépourvues du domaine de transactivation N-terminal et exercent un effet dominant négatif (ΔNp73). Cette étude se focalise sur le rôle des isoformes TAp73 dans la régulation de l’expression de la iNOS. Nous démontrons que les isoformes TAp73 régulent négativement l’expression de la iNOS aux niveaux transcriptionnel et post-traductionnel en potentialisant l’effet répresseur du TGF-β, ce qui résulte en une forte surexpression de la iNOS dans les cellules TAp73-/-. Ces résultats confortent le rôle de la famille p53 comme un réseau essentiel de protéines régulatrices des fonctions du TGF-β. / Nitric oxide (NO) is a gaseous molecule synthesized from L-arginine by Nitric Oxide Synthases. NO acts as a potent signaling molecule in various physiological processes like vasorelaxation and neurotransmission. It modulates the activity of many proteins (e.g. soluble guanylate cyclase and ribonucleotide reductase) through nitrosylation of thiol moieties or transition metal ions. As a free radical, NO can also react with a number of cellular species, notably molecular oxygen, to form reactive oxygen species and reactive nitrogen species. Thanks to these properties, NO appears as a major component of innate immune response and inflammation. Phagocytes produce large amounts of NO in response to proinflammatory through inducible Nitric Oxide Synthase (iNOS) activity. Because of the harmful effects of NO derivatives on cellular components, iNOS activity needs to be tightly regulated. The p53 tumor suppressor has been shown to repress Nos2 after being activated by NO itself. The p73 protein is an homologous encoded by the TP73 gene that generate transcriptionally active TAp73 isoforms and ΔNp73 isoforms that lack the transactivation domain and exert a dominant negative effect. This study focuses on the role of TAp73 isoforms in regulation of iNOS expression. We demonstrate that TAp73 isoforms potentiate the repressive effect of TGF-β on iNOS expression at transcriptional and post-traductional levels, resulting in a substantial iNOS overexpression in TAp73-/- cells. These results emphasize the emerging role of p53 family as a master regulator of TGF-β functions.
13

Exercise training reverses age-induced inducible nitric oxide synthase upregulation

Song, Wook 17 February 2005 (has links)
The risk of injury, inflammation, and oxidative stress increases in skeletal muscle with aging. It has been postulated that pro-oxidant signaling, including upregulation of inducible nitric oxide synthase (iNOS) contributes to inflammation, pathology, and aging in the brain, liver and heart. Exercise training reduces the risk of injury and inflammation. The purpose of this study was: 1) to identify the mechanisms that upregulate iNOS, pro-oxidant and pro-inflammatory signaling in skeletal muscle, and 2) to identify the mechanisms by which exercise training reduces pro-oxidant signaling. Protein levels and activity of iNOS were measured in 4 groups of male Fischer-344 rats (5 mo and 24 mo, n=10/group), old-control (OC), old-trained (OT), young-control (YC), and young-trained (YT). Exercise training protocol was 60 min at 15 m/min at 15° incline for 5 d/wk for 12 wk. Both iNOS protein expression and activity were significantly higher in OC compared to YC, but exercise training reversed the elevation of iNOS levels lower than OC in tibialis anterior. Surprisingly, NF-κB DNA binding activity was significantly lower in OC than YC, while increased with exercise training in white and red gastrocnemius in both OT and YT. In contrast, protein expression of p65, a regulatory subunit of NF-κB was significantly greater in OC than YC, while exercise training significantly reduced p65 in OT compared to OC from the white gastrocnemius. These data indicate that regulation of NF-κB activity with aging is post-translational and alterations in iNOS expression may result from alternative NF-κB pathways. As decreased NF-κB activity with aging could result in downstream increase in pro-apoptotic signaling, we tested follow-up hypotheses that aging would increase pro-apoptotic regulator Bax and decrease the anti-apoptotic regulator Bcl-2. Bax increased while Bcl-2 decreased in OC in white gastrocnemius when compared to YC. In contrast, exercise training resulted in a dramatic upregulation of Bcl-2 and downregulation of Bax protein expression in OT when compared to OC. These novel results indicate that alterations in pro-inflammatory and pro-apoptotic signaling occur in skeletal muscle during the aging process. Importantly, our findings strongly support the hypothesis that exercise training reverses age-induced changes in pro-inflammatory and pro-apoptotic signaling.
14

Resident macrophages activated by lipopolysaccharide (LPS) suppress muscle tension and initiate inflammatory response in the gastrointestinal muscle layer

Torihashi, Shigeko, Ozaki, Hiroshi, Hori, Masatoshi, Kita, Muneto, Ohota, Sachiyo, Karaki, Hideaki, 鳥橋, 茂子 02 1900 (has links)
No description available.
15

Exercise training reverses age-induced inducible nitric oxide synthase upregulation

Song, Wook 17 February 2005 (has links)
The risk of injury, inflammation, and oxidative stress increases in skeletal muscle with aging. It has been postulated that pro-oxidant signaling, including upregulation of inducible nitric oxide synthase (iNOS) contributes to inflammation, pathology, and aging in the brain, liver and heart. Exercise training reduces the risk of injury and inflammation. The purpose of this study was: 1) to identify the mechanisms that upregulate iNOS, pro-oxidant and pro-inflammatory signaling in skeletal muscle, and 2) to identify the mechanisms by which exercise training reduces pro-oxidant signaling. Protein levels and activity of iNOS were measured in 4 groups of male Fischer-344 rats (5 mo and 24 mo, n=10/group), old-control (OC), old-trained (OT), young-control (YC), and young-trained (YT). Exercise training protocol was 60 min at 15 m/min at 15° incline for 5 d/wk for 12 wk. Both iNOS protein expression and activity were significantly higher in OC compared to YC, but exercise training reversed the elevation of iNOS levels lower than OC in tibialis anterior. Surprisingly, NF-κB DNA binding activity was significantly lower in OC than YC, while increased with exercise training in white and red gastrocnemius in both OT and YT. In contrast, protein expression of p65, a regulatory subunit of NF-κB was significantly greater in OC than YC, while exercise training significantly reduced p65 in OT compared to OC from the white gastrocnemius. These data indicate that regulation of NF-κB activity with aging is post-translational and alterations in iNOS expression may result from alternative NF-κB pathways. As decreased NF-κB activity with aging could result in downstream increase in pro-apoptotic signaling, we tested follow-up hypotheses that aging would increase pro-apoptotic regulator Bax and decrease the anti-apoptotic regulator Bcl-2. Bax increased while Bcl-2 decreased in OC in white gastrocnemius when compared to YC. In contrast, exercise training resulted in a dramatic upregulation of Bcl-2 and downregulation of Bax protein expression in OT when compared to OC. These novel results indicate that alterations in pro-inflammatory and pro-apoptotic signaling occur in skeletal muscle during the aging process. Importantly, our findings strongly support the hypothesis that exercise training reverses age-induced changes in pro-inflammatory and pro-apoptotic signaling.
16

Effects of oxidative stress on the expression and function of inducible nitric oxide synthase (iNOS) in cultured vascular smooth muscle cells

Bingi, Praveen Kumar January 2015 (has links)
The role of inducible nitric oxide synthase (iNOS) and/or nitric oxide (NO) in atherosclerosis remains elusive. Several researchers argued whether iNOS and/or NO are pathogenic or cardio protective. The pathogenesis of atherosclerosis is complex and includes mechanisms associated with inducible nitric oxide synthase (iNOS). We have demonstrated that the expression and function of iNOS may be selectively down regulated by pro-oxidants such as antimycin A and diethyl maleate (DEM). To further explore the underlying mechanisms associated with these effects we have investigated whether antimycin A and/or DEM modulated the activation of key cellular signalling molecules associated with the induction of iNOS. Expression of p38 mitogen activated kinase (MAPK) and Akt were induced by exposure to lipopolysaccharide (LPS) and interferon-gamma (IFN-γ). Oxidative stress (OS) was induced using antimycin A, DEM and hydrogen peroxide (H2O2). All three OS inducers caused a significant generation of free radicals whereas only antimycin A and DEM generated superoxide radical (O2-). Also nitrite production and iNOS expression may be down regulated, in part; by pro-oxidants generating O2- but not hydroxyl radicals (OH-). Antimycin A and DEM concentration dependently inhibited the phosphorylation of p38 MAPK and Akt and this was restored when the cells were pre-treated with Atorvastatin whereas H2O2 was without any significant effect. Taken together, the data suggest novel actions for both pro-oxidants and atorvastatin which may have important implications in coronary artery disease where suppression of iNOS may be deleterious and maintaining its expression may be cardio-protective.
17

Preventive and Osteoarthritis Suppressive Effects of Peretinoin

Ahmad, Nashrah 21 October 2020 (has links)
No description available.
18

Aspirin Dose Dependently Inhibits the Interleukin-1β-Stimulated Increase in Inducible Nitric Oxide Synthase, Nitric Oxide, and Prostaglandin E<sub>2</sub> Production in Rat Ovarian Dispersates Cultured in Vitro

Carnovale, David E., Fukuda, Aisaku, Underhill, Derek C., Laffan, John J., Breuel, Kevin F. 18 April 2001 (has links)
Objective: Determine if aspirin inhibits the IL-1β-stimulated expression of inducible nitric oxide synthase (iNOS), nitric oxide (NO), and prostaglandin E2 (PGE2) in rat ovarian dispersates cultured in vitro. Design: Prospective, controlled in vitro study. Setting: Academic research laboratory. Animals: Ovaries collected from immature rats. Intervention(s): Ovaries were collected from immature rats and enzymatically dispersed. Ovarian dispersates were placed into plates containing media alone or media supplemented with IL-1β (100 U/mL) and varying concentrations of aspirin (0, 1, 3, 5 and 10 mM). Ovarian dispersates were cultured in a humidified environment of 5% CO2 in air at 37°C for 24 or 48 hours. Main Outcome Measure(s): Twenty-four- and 48-hour iNOS, nitrite (a stable metabolite of NO), and PGE2 levels were determined from ovarian dispersates cultured in vitro. Result(s): Administration of IL-1β increased nitrite and PGE2 levels over that observed in the control group after culture of ovarian dispersates for 24 and 48 hours. Aspirin dose dependently reduced the IL-1β-stimulated increase in nitrite production from ovarian dispersates after culture for 24 and 48 hours. Aspirin completely (24 hours) or dose dependently (48 hours) prevented the IL-β-stimulated increase in PGE2. Coadministration of IL-1β and aspirin (10 mM) attenuates IL-1β-stimulated iNOS expression after culture for 24 and 48 hours. Conclusion(s): Aspirin significantly inhibits the IL-1β-stimulated expression of iNOS, NO, and PGE2 in ovarian dispersates cultured in vitro.
19

Study of 3'-Untranslated Region of Inducible Nitric Oxide Synthase and Identification of Other Targets of Gait Pathway

Vadlamani, Sirisha 02 December 2008 (has links)
No description available.
20

APOLIPOPROTEIN E MODULATION OF VASCULAR SMOOTH MUSCLE CELL RESPONSE TO INJURY

MOORE, ZACHARY W. Q. January 2005 (has links)
No description available.

Page generated in 0.0383 seconds