• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 34
  • 2
  • 2
  • Tagged with
  • 75
  • 37
  • 29
  • 23
  • 17
  • 15
  • 10
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Der Larvenkopf von Oniscigaster wakefieldi McLachlan, 1873 (Insecta - Ephemeroptera - Onscigastridae) /

Staniczek, Arnold H., January 2001 (has links)
Tübingen, Univ., Diss., 2001.
22

Automatische Identifizierung bei sozialen Insekten Design und Praxistest /

Streit, Sebastian. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2004--Würzburg.
23

Mechanistische Charakterisierung von ungewöhnlichen Desaturasen aus Pflanzen, Hefen und Insekten

Beckmann, Christoph. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2003--Jena.
24

Timing of colony phenology and foraging activity in honey bees / Zeitliche Koordination von Koloniephänologie und Sammelaktivität bei Honigbienen

Nürnberger, Fabian January 2018 (has links) (PDF)
I. Timing is a crucial feature in organisms that live within a variable and changing environment. Complex mechanisms to measure time are wide-spread and were shown to exist in many taxa. These mechanisms are expected to provide fitness benefits by enabling organisms to anticipate environmental changes and adapt accordingly. However, very few studies have addressed the adaptive value of proper timing. The objective of this PhD-project was to investigate mechanisms and fitness consequences of timing decisions concerning colony phenology and foraging activity in the honey bee (Apis mellifera), a social insect species with a high degree of social organization and one of the most important pollinators of wild plants and crops. In chapter II, a study is presented that aimed to identify the consequences of disrupted synchrony between colony phenology and the local environment by manipulating the timing of brood onset after hibernation. In a follow-up experiment, the importance of environmental factors for the timing of brood onset was investigated to assess the potential of climate change to disrupt synchronization of colony phenology (Chapter III). Chapter IV aimed to prove for the first time that honey bees can use interval time-place learning to improve foraging activity in a variable environment. Chapter V investigates the fitness benefits of information exchange between nest mates via waggle dance communication about a resource environment that is heterogeneous in space and time. II. In the study presented in chapter II, the importance of the timing of brood onset after hibernation as critical point in honey bee colony phenology in temperate zones was investigated. Honey bee colonies were overwintered at two climatically different sites. By translocating colonies from each site to the other in late winter, timing of brood onset was manipulated and consequently colony phenology was desynchronized with the local environment. Delaying colony phenology in respect to the local environment decreased the capability of colonies to exploit the abundant spring bloom. Early brood onset, on the other hand, increased the loads of the brood parasite Varroa destructor later in the season with negative impact on colony worker population size. This indicates a timing related trade-off and illustrates the importance of investigating effects of climate change on complex multi-trophic systems. It can be concluded that timing of brood onset in honey bees is an important fitness relevant step for colony phenology that is highly sensitive to climatic conditions in late winter. Further, phenology shifts and mismatches driven by climate change can have severe fitness consequences. III. In chapter III, I assess the importance of the environmental factors ambient temperature and photoperiod as well as elapsed time on the timing of brood onset. Twenty-four hibernating honey bee colonies were placed into environmental chambers and allocated to different combinations of two temperature regimes and three different light regimes. Brood onset was identified non-invasively by tracking comb temperature within the winter cluster. The experiment revealed that ambient temperature plays a major role in the timing of brood onset, but the response of honey bee colonies to temperature increases is modified by photoperiod. Further, the data indicate the involvement of an internal clock. I conclude that the timing of brood onset is complex but probably highly susceptible to climate change and especially spells of warm weather in winter. IV. In chapter IV, it was examined if honey bees are capable of interval time-place learning and if this ability improves foraging efficiency in a dynamic resource environment. In a field experiment with artificial feeders, foragers were able to learn time intervals and use this ability to anticipate time periods during which feeders were active. Further, interval time-place learning enabled foragers to increase nectar uptake rates. It was concluded that interval time-place learning can help honey bee foragers to adapt to the complex and variable temporal patterns of floral resource environments. V. The study presented in chapter V identified the importance of the honey bee waggle dance communication for the spatiotemporal coordination of honey bee foraging activity in resource environments that can vary from day to day. Consequences of disrupting the instructional component of honey bee dance communication were investigated in eight temperate zone landscapes with different levels of spatiotemporal complexity. While nectar uptake of colonies was not affected, waggle dance communication significantly benefitted pollen harvest irrespective of landscape complexity. I suggest that this is explained by the fact that honey bees prefer to forage pollen in semi-natural habitats, which provide diverse resource species but are sparse and presumably hard to find in intensively managed agricultural landscapes. I conclude that waggle dance communication helps to ensure a sufficient and diverse pollen diet which is crucial for honey bee colony health. VI. In my PhD-project, I could show that honey bee colonies are able to adapt their activities to a seasonally and daily changing environment, which affects resource uptake, colony development, colony health and ultimately colony fitness. Ongoing global change, however, puts timing in honey bee colonies at risk. Climate change has the potential to cause mismatches with the local resource environment. Intensivation of agricultural management with decreased resource diversity and short resource peaks in spring followed by distinctive gaps increases the probability of mismatches. Even the highly efficient foraging system of honey bees might not ensure a sufficiently diverse and healthy diet in such an environment. The global introduction of the parasitic mite V. destructor and the increased exposure to pesticides in intensively managed landscapes further degrades honey bee colony health. This might lead to reduced cognitive capabilities in workers and impact the communication and social organization in colonies, thereby undermining the ability of honey bee colonies to adapt to their environment. / I. Zeitliche Koordination ist äußerst wichtig für Organismen, die in einer variablen und sich wandelnden Umwelt leben. Komplexe Mechanismen, die das Messen von Zeit ermöglichen, sind weit verbreitet und wurden bei vielen Taxa aufgezeigt. Es wird generell angenommen, dass diese Mechanismen Fitnessvorteile verschaffen, indem sie es Organismen ermöglichen, Umweltveränderungen vorherzusehen und sich entsprechen anzupassen. Allerdings gibt es bisher nur sehr wenige Studien zum adaptiven Wert einer guten zeitlichen Koordination. Ziel dieses Dissertations-Projekts war es, Mechanismen der zeitlichen Koordination bei Honigbienen (Apis mellifera) zu erforschen und deren Bedeutung für die Fitness des Honigbienenvolks zu identifizieren. In Kapitel II präsentiere ich meine Studie über die Konsequenzen eines falsch gewählten Zeitpunkts für den Brutbeginn am Ende des Winters und der daraus folgenden gestörten Synchronisation zwischen der Phänologie von Honigbienenvölkern und der lokalen Umwelt. In einem Folgeexperiment wurde die Bedeutung von Umweltfaktoren für das Timing des Brutbeginns untersucht (Kapitel III). Die Studie in Kapitel IV zielt darauf ab, erstmalig den Beweis zu erbringen, dass Honigbienen das „Intervall time-place learning“, d.h. die Fähigkeit, Zeitintervalle zwischen Ereignissen zu lernen und mit deren räumlichen Lage zu assoziieren, beherrschen und, dass diese Fähigkeit beim Sammeln von Ressourcen vorteilhaft ist. Kapitel V untersucht die Fitnessvorteile, die aus dem Austausch von Informationen über ein raumzeitlich heterogenes Ressourcenumfeld zwischen Stockgenossinnen mit Hilfe des Schwänzeltanzes gezogen werden. II. In der Studie, die in Kapitel II präsentiert wird, wurde die Bedeutung des Brutbeginns als entscheidender Punkt für die Phänologie von Honigbienenvölkern in den gemäßigten Breiten untersucht. Honigbienenvölker wurden an zwei klimatisch unterschiedlichen Standorten überwintert. Indem ein Teil der Völker im Spätwinter zwischen den Standorten ausgetauscht wurde, wurde deren Brutbeginn manipuliert und dadurch die Phänologie bezüglich der lokalen Umwelt desynchronisiert. Das verzögern der Phänologie der Völker verminderte deren Fähigkeit die üppige Frühjahrsblüte zu nutzen. Ein früher Brutbeginn andererseits erhöhte die Belastung der Völker durch den Brutparasiten Varroa destructor im Verlauf der Saison, was sich negativ auf die Menge der Arbeiterinnen im Volk auswirkte. Es gibt also entscheidende gegensätzlich wirkende Faktoren, die den optimalen Zeitpunkt des Brutbeginns bestimmen. Die Studie zeigt zudem warum es wichtig ist, die möglichen Folgen des Klimawandels in einem multitrophischen System zu betrachten statt sich auf einfache Interaktionen zu beschränken. Man kann allgemein folgern, dass das Timing des Brutbeginns einen bedeutenden fitnessrelevanten Schritt in der Phänologie von Honigbienenvölkern darstellt, der stark von klimatischen Bedingungen im Spätwinter beeinflusst wird. Verschiebungen und Fehlanpassungen des Brutbeginns, und damit der Phänologie, durch den Klimawandel können ernsthafte negative Konsequenzen für die Fitness von Honigbienenvölkern haben. III. In Kapitel III beleuchte ich die Bedeutung der Umweltfaktoren Umgebungstemperatur und Photoperiode sowie der verstrichenen Zeit auf das Timing des Brutbeginns. Vierundzwanzig überwinternde Honigbienenvölker wurden in Klimakammern untergebracht und auf sechs unterschiedliche Kombinationen von Temperatur- und Lichtregimes verteilt. Der Brutbeginn wurde nicht-invasiv über den Temperaturverlauf auf der Wabe innerhalb der Wintertraube festgestellt. Das Experiment hat gezeigt, dass die Umgebungstemperatur eine entscheidende Rolle beim Timing des Brutbeginns spielt. Allerdings wurde die Reaktion der Völker auf einen Temperaturanstieg vom jeweils vorherrschenden Lichtregime beeinflusst. Zudem deuten die Daten auf die Beteiligung einer inneren Uhr hin. Ich folgere, dass das Timing des Brutbeginns durch ein komplexes System geregelt wird, das wahrscheinlich anfällig für Einflüsse durch den Klimawandel und insbesondere durch Warmwetterphasen im Winter ist. IV. In Kapitel IV meiner Dissertation wird eine Studie präsentiert, die untersucht ob Bienen die Befähigung zum „Intervall time-place learning“ besitzen und ob diese Fähigkeit die Sammeleffizienz in einem dynamischen Ressourcenumfeld verbessert. In einer Feldstudie mit künstlichen Futterquellen zeigten Sammelbienen, dass sie in der Lage waren, Zeitintervalle zu lernen und das Wissen zu nutzen, um die Zeiten vorherzusehen zu denen die Futterquellen aktiv waren. Dieses Lernverhalten ermöglichte es den Sammelbienen, ihre Nektaraufnahmerate zu steigern. Es wurde gefolgert, dass „Intervall time-place learning“ Sammelbienen dabei helfen kann, sich in einem Blühressourcenumfeld mit komplexen und variablen Zeitmustern zurechtzufinden. V. Diese Studie, die in Kapitel V präsentiert wird, untersuchte die Bedeutung der Schwänzeltanzkommunikation der Honigbienen für die raumzeitliche Koordination der Sammelaktivität des Volkes innerhalb eines Ressourcenumfelds, das täglich variieren kann. Die Folgen der Störung der instruktiven Komponenten des Schwänzeltanzes wurden in acht unterschiedlich komplex strukturierten Landschaften innerhalb der gemäßigten Breiten ermessen. Während kein Einfluss auf den Nektarsammelerfolg festgestellt werden konnte, wurde jedoch gezeigt, dass der Pollensammelerfolg, unabhängig von der raumzeitlichen Komplexität der Landschaft, stark von der Schwänzeltanzkommunikation profitiert. Der Grund dafür liegt vermutlich darin, dass Honigbienen vorzugsweise Pollen in halbnatürlichen Habitaten sammeln, die eine hohe Ressourcenvielfalt bieten, aber in intensiv agrarwirtschaftlich genutzten Landschaften eher selten und relativ schwer zu finden sind. Die Studie lässt schließen, dass die Schwänzeltanzkommunikation dabei hilft, eine ausreichende und diverse Pollenernährung zu gewährleisten und damit eine große Rolle für die Gesundheit von Honigbienenvölkern spielt. VI. Ich konnte in meinem Dissertationsprojekt zeigen, dass Honigbienen in der Lage sind ihre Aktivitäten an eine sich jahreszeitlich und täglich verändernde Umwelt anzupassen. Eine gute zeitliche Koordination hat Einfluss auf Sammelerfolg, Volksentwicklung, Gesundheit und letztlich auf die Fitness des Volkes. Allerdings gefährdet der voranschreitende globale Wandel die zeitliche Koordination der Honigbienenvölker. Der Klimawandel hat das Potenzial, zeitliche Anpassungen an die lokale Umwelt zu stören. Die Intensivierung der Landwirtschaft und der damit einhergehende Verlust von Pflanzenvielfalt sowie die kurzen Zeiträume von extrem hohem Ressourcenangebot, gefolgt von einer ausgeprägten Blühlücke, erhöht die Wahrscheinlichkeit, dass zeitlich Fehlanpassungen auftreten. In einer derartigen Umwelt könnte selbst das höchst effiziente Ressourcensammelsystem der Honigbienen nicht mehr genügen, um eine ausreichende, vielfältige und gesunde Ernährung zu gewährleisten. Die globale Verbreitung der parasitischen Varroamilbe durch den Menschen und die erhöhte Belastung durch Pestizide verschlechtert zusätzlich den Gesundheitszustand der Honigbienen. Das wiederum kann sich negativ auf das Lernvermögen und des Weiteren auf die Kommunikation und soziale Organisation der Völker auswirken und dadurch deren Fähigkeit, sich an eine veränderliche Umwelt anzupassen unterwandern.
25

Neuronal representation and processing of chemosensory communication signals in the ant brain

Zube, Christina January 2008 (has links) (PDF)
Ants heavily rely on olfaction for communication and orientation and ant societies are characterized by caste- and sex-specific division of labor. Olfaction plays a key role in mediating caste-specific behaviours. I investigated whether caste- and sex-specific differences in odor driven behavior are reflected in specific differences and/or adaptations in the ant olfactory system. In particular, I asked the question whether in the carpenter ant, Camponotus floridanus, the olfactory pathway exhibits structural and/or functional adaptations to processing of pheromonal and general odors. To analyze neuroanatomical specializations, the central olfactory pathway in the brain of large (major) workers, small (minor) workers, virgin queens, and males of the carpenter ant C. floridanus was investigated using fluorescent tracing, immunocytochemistry, confocal microscopy and 3D-analyzes. For physiological analyzes of processing of pheromonal and non-pheromonal odors in the first odor processing neuropil , the antennal lobe (AL), calcium imaging of olfactory projection neurons (PNs) was applied. Although different in total glomerular volumes, the numbers of olfactory glomeruli in the ALs were similar across the female worker caste and in virgin queens. Here the AL contains up to ~460 olfactory glomeruli organized in 7 distinct clusters innervated via 7 antennal sensory tracts. The AL is divided into two hemispheres regarding innervations of glomeruli by PNs with axons leaving via a dual output pathway. This pathway consists of the medial (m) and lateral (l) antenno-cerebral tract (ACT) and connects the AL with the higher integration areas in the mushroom bodies (MB) and the lateral horn (LH). M- and l-ACT PNs differ in their target areas in the MB calyx and the LH. Three additional ACTs (mediolateral - ml) project to the lateral protocerebrum only. Males had ~45% fewer glomeruli compared to females and one of the seven sensory tracts was absent. Despite a substantially smaller number of glomeruli, males possess a dual PN output pathway to the MBs. In contrast to females, however, only a small number of glomeruli were innervated by projection neurons of the m-ACT. Whereas all glomeruli in males were densely innervated by serotonergic processes, glomeruli innervated by sensory tract six lacked serotonergic innervations in the female castes. It appears that differences in general glomerular organization are subtle among the female castes, but sex-specific differences in the number, connectivity and neuromodulatory innervations of glomeruli are substantial and likely to promote differences in olfactory behavior. Calcium imaging experiments to monitor pheromonal and non-pheromonal processing in the ant AL revealed that odor responses were reproducible and comparable across individuals. Calcium responses to both odor groups were very sensitive (10-11 dilution), and patterns from both groups were partly overlapping indicating that processing of both odor classes is not spatially segregated within the AL. Intensity response patterns to the pheromone components tested (trail pheromone: nerolic acid; alarm pheromone: n-undecane), in most cases, remained invariant over a wide range of intensities (7-8 log units), whereas patterns in response to general odors (heptanal, octanol) varied across intensities. Durations of calcium responses to stimulation with the trail pheromone component nerolic acid increased with increasing odor concentration indicating that odor quality is maintained by a stable pattern (concentration invariance) and intensity is mainly encoded in the response durations of calcium activities. For n-undecane and both general odors increasing response dynamics were only monitored in very few cases. In summary, this is the first detailed structure-function analyses within the ant’s central olfactory system. The results contribute to a better understanding of important aspects of odor processing and olfactory adaptations in an insect’s central olfactory system. Furthermore, this study serves as an excellent basis for future anatomical and/or physiological experiments. / Für Ameisen spielt die olfaktorische Kommunikation und Orientierung eine zentrale Rolle hinsichtlich der Organisation des Ameisenstaates. Ob sich kasten- und geschlechtsspezifische Verhaltensunterschiede auf neuronaler Ebene und besonders im olfaktorischen System der Ameise widerspiegeln ist die zentrale Frage meiner Arbeit. Im Speziellen stellte ich die Frage, ob sich in der olfaktorischen Bahn der Rossameise Camponotus floridanus strukturelle oder funktionelle Anpassungen an die Verarbeitung von Pheromonen und generellen Düften aufzeigen lassen. Zur Analyse hinsichtlich neuroanatomischer Spezialisierungen wurde die olfaktorische Bahn im Gehirn von großen und kleinen Arbeiterinnen, Jungköniginnen und Männchen der Rossameise C. floridanus mittels Fluoreszenzmassenfärbungen, Immunzytochemie, konfokaler Laserscanningmikroskopie und 3D-Auswertung untersucht. Um die Verarbeitung von Pheromonen und generellen Düften im primären olfaktorischen Neuropil, dem Antennallobus (AL), auf physiologischer Ebene zu charakterisieren wurden olfaktorische Projektionsneurone mittels Calcium Imaging untersucht. Obwohl sich das glomeruläre Gesamtvolumen der ALs zwischen Arbeiterinnenkasten und Jungköniginnen unterscheidet, lag die Gesamtzahl der Glomeruli im AL in einem ähnlichen Bereich. Der AL besteht in allen drei weiblichen Kasten aus bis zu 460 Glomeruli, die in sieben Clustern angeordnet sind und von sieben sensorischen Eingangstrakten innerviert werden. Der AL unterteilt sich in zwei Hemispheren, deren entsprechende Glomeruli von Projektionsneuronen innverviert werden, die vom AL über die Nervenbahn des “dual output pathway” in höhere Hirnregionen projizieren. Diese Nervenbahn besteht aus dem medialen (m) und lateralen (l) Antennocerebraltrakt (ACT) und verbindet den AL mit höheren Integrationszentren wie den Pilzkörpern (MB) und dem lateralen Horn (LH). M- und l-ACT unterscheiden sich in ihren Zielregionen im MB Calyx und dem LH. Drei weitere ACTs (mediolateral – ml) projizieren ausschließlich ins laterale Protocerebrum. Männchen besitzen ca. 45% weniger Glomeruli im Vergleich zur Weibchenkaste. Ihnen fehlt weiterhin einer der sieben sensorischen Eingangstrakte vollständig. Trotz der wesentlich geringeren Anzahl an Glomeruli, besitzen auch Männchen den “dual output pathway”. Im Gegensatz zu den Weibchen ist allerdings nur eine geringe Anzahl an Glomeruli durch m-ACT Projektionsneurone innerviert. Ein weiterer Unterschied im AL von Männchen und Weibchen findet sich in den Glomeruli des sensorische Trakts Nummer sechs, die bei Weibchen keinerlei serotonerge Innervierung aufweisen während beim Männchen der gesamte AL dichte serotonerge Verzweigungen besitzt. Es zeigt sich somit, dass die kastenspezifischen Unterschiede in der allgmeinen glomerulären Organisation des AL innerhalb der Weibchenkaste nur sehr fein sind. Im Gegensatz dazu sind die geschlechtsspezifischen Unterschiede in Anzahl, Konnektivität und neuromodulatorischer Innervierung von Glomeruli zwischen Weibchen- und Männchen wesentlich ausgeprägter was Unterschiede in olfaktorisch geprägten Verhaltensweisen begünstigen könnte. Die Calcium Imaging Experimente zur Untersuchung der Verarbeitung von Pheromonen und generellen Düften im AL der Ameise zeigten, dass Duftantworten reproduzierbar und zwischen Individuen vergleichbar waren. Die Sensitivität des Calcium Signals lag für beide Duftgruppen in einem sehr niedrigen Bereich (Verdünnung 10-11). Die Antortmuster beider Duftgruppen überlappten zum Teil, was die Annahme zuläßt, dass die Verarbeitung von Pheromonen und generellen Düften keiner räumlichen Trennung innerhalb des AL unterliegt. Die Intensität der Antwortmuster auf die Pheromonkomponenten (Spurpheromon: Nerolsäure; Alarmpheromon: n-Undecan) blieben in den meisten Fällen über einen weiten Konzentrationsbereich konstant (7-8 log Einheiten). Die Dauer der Calciumantwort nach Stimulation mit Nerolsäure verlängerte sich mit steigender Duftkonzentration. Dies läßt für das Spurpheromon den Schluß zu, dass die Duftqualität in einem konstanten Duftmuster (Konzentrationsinvarianz) repräsentiert und die Duftintensität über die Dauer des Calciumsignals abgebildet wird. Da die Antwortmuster auf generelle Düfte (Heptanal, Octanol) dagegen sehr viel stärker innerhalb des getesteten Konzentrationsbereichs varrieren ließ sich für n-Undecan und die beiden generellen Düfte eine solche Dynamik nur in einigen wenigen Fällen beobachtet. Zusammenfassend ist diese Studie die erste strukturelle und funktionelle Studie des olfaktorischen Systems der Ameise. Die Ergebnisse tragen zu einem besseren Verständnis der neuronalen Adaptationen und Mechanismen hinsichtlich Duftverarbeitung im zentralen Nervensystem von Insekten bei. Außerdem liefert diese Studie eine wichtige Grundlage für zukünftige neuroanatomische und –physiologische Untersuchungen auf dem Gebiet der Neurobiologie der Insekten.
26

Mechanisms and adaptive significance of interspecific associations between tropical ant species / Mechanismen und adaptive Bedeutung interspezifischer Assoziationen zwischen tropischen Ameisenarten

Menzel, Florian January 2009 (has links) (PDF)
Aggression between ants from different colonies or species is ubiquitous. Exceptions to this rule exist in the form of supercolonies (within a species) and interspecific associations (between species). Probably the most intimate interspecific association is the parabiosis, where two ant species live together in a common nest. They keep their brood separate but jointly use trails and often share food resources. Parabioses are restricted to few species pairings and occur in South American and Southeast Asian rainforests. While the South American parabioses have been studied, albeit poorly, almost nothing is known about their Southeast Asian counterparts. My PhD project focuses on Southeast Asian parabioses between the myrmicine Crematogaster modiglianii Emery 1900 and the considerably larger formicine Camponotus rufifemur Emery 1900. The two species frequently nest together in hollow trees in the tropical lowland rainforest of Borneo. The basic question of my PhD project is why these two species live together. I investigated both proximate and ultimate aspects of this question. For comparative purposes, I included studies on a trail-sharing association in the same habitat. On the proximate level, I investigated which mechanisms facilitate tolerance towards hetero-spe¬ci¬fic nestmates. Ants generally discriminate nestmates from non-nestmates via cuticular hydro¬carbons that function as colony recognition cues. I studied the specificity of nestmate recognition within and between the two parabiotic species. Using gas chromatography-mass spectrometry (GC-MS), I analyzed the cuticular substances in both ant species to find potential differences to non-parabiotic species, and to estimate the substance overlap among the two species. A high substance overlap would e.g. suggest that interspecific tolerance is caused by chemical mimicry. Finally, bioassays were conducted to evaluate the function of different cuticular compounds. Interspecific tolerance in the two parabiotic species was species-specific but not colony-specific. Ca. rufifemur tolerated all Cr. modiglianii individuals, even those from foreign colonies, but strongly attacked workers of other Crematogaster species. Cr. modiglianii, in turn, tolerated Ca. rufifemur workers of certain foreign colonies but attacked those of others. Chemical analyses revealed two sympatric, chemically distinct Ca. rufifemur varieties (‘red’ and ‘black’) with almost no hydrocarbon overlap. Cr. modiglianii only tolerated foreign Ca. rufifemur workers if they belonged to the same chemical variety as their own Ca. rufifemur partner. It also attacked other, non-parabiotic Camponotus species. Thus, reciprocal interspecific tolerance was restricted to the species Cr. modiglianii and Ca. rufifemur. Ca. rufifemur frequently tolerated conspecific non-nestmates of the same chemical variety. Minor workers were more often tolerated than majors, possibly because they possess two to three times lower hydrocarbon quantities per body surface than majors. In contrast, Cr. modiglianii nearly always attacked conspecific non-nestmates. Both species possessed hydrocarbons with considerably higher chain lengths than congeneric, non-parabiotic ant species. Long-chain hydrocarbons are less volatile than shorter ones and thus harder to perceive. They may thus considerably facilitate interspecific tolerance. Moreover, up to 98% of the cuticular hydrocarbons in Ca. rufifemur were methylbranched alkenes, which are highly unusual among insect cuticular hydrocarbons. Cr. modiglianii and Ca. rufifemur had almost no hydrocarbons in common, refuting chemical mimicry as a possible cause of interspecific tolerance. The only hydrocarbons common to both species were two methylbranched alkenes, which constituted 89% of the ‘red’ Ca. rufifemur hydrocarbon profile and also occurred in those Cr. modiglianii colonies that lived together with this Ca. rufifemur variety. Cr. modiglianii presumably acquired these two compounds from its red Ca. rufifemur partner. Cr. modiglianii was significantly less aggressive towards foreign Cr. modiglianii workers that were associated with the same Ca. rufifemur variety than to those associated with the respective other one. Hence, this species seemed to use recognition cues acquired from its parabiotic partner. Apart from hydrocarbons, both species possessed a set of hitherto unknown substances on their cuticle. The quantitative composition of the unknown compounds varied between parabiotic nests but was similar among the two species of a nest. They are probably produced in the Dufour glanf of Cr. modiglianii and transferred to their Ca. rufifemur partner. Possible transfer mechanisms include interspecific trophallaxis and ‘mounting behaviour’, where Cr. modiglianii climbed onto Ca. rufifemur workers without being displaced. Although the composition of the unknown compounds greatly varied between nests, they did not function as nestmate recognition cues since both species used hydrocarbons for nestmate recognition. However, the unknown compounds significantly reduced aggression in Ca. rufifemur. The ultimate, i.e. ecological and evolutionary aspects of my PhD research deal with potential costs and benefits that Cr. modiglianii and Ca. rufifemur may derive from the parabiotic association, their interactions with other species, and population genetic analyses. Additional studies on a trail-sharing association between three other ant species deal with two possible mechanisms that may cause or facilitate trail-sharing. Whether parabioses are parasitic, commensalistic, or mutualistic, is largely unknown and depends on the costs and benefits each party derives from the association. I therefore investigated food competition (as one of the most probable costs), differentiation of foraging niches (which can reduce competition), and several potential benefits of the parabiotic way of life. Besides, I studied interactions between the ant species and the hemiepiphyte Poikilospermum cordifolium. The foraging niches of the two species differed regarding foraging range, daily activity pattern, and food preferences. None of the two species aggressively displaced its partner species from baits. Thus, interference competition for food seemed to be low or absent. For both ant species, a number of benefits from the parabiotic lifestyle seem possible. They include interspecific trail-following, joint nest defence, provision of nest space by the partner species, food exchange via trophallaxis, and mutual brood care. If an ant species follows another species’ pheromone trails, it can reach food resources found by the other species. As shown by artificial extract trails, Ca. rufifemur workers indeed followed trails of Cr. modiglianii but not vice versa. Thus, Ca. rufifemur benefited from Cr. modiglianii’s knowledge on food sources (informational parasitism). In turn, Cr. modiglianii seemed to profit from nest defence by Ca. rufifemur. Ca. rufifemur majors are substantially larger than Cr. modiglianii workers. Although Cr. modiglianii often effectively defended the nest as well, it seemed likely that this species derived a benefit from its partner’s defensive abilities. In neotropical parabioses (ant-gardens), mutualistic epiphytes play an important role in providing nest space. The neotropical Camponotus benefits its Crematogaster partner by planting epiphyte seeds, for which Crematogaster is too small. Similarly, the Bornean parabioses often were inhabited by the hemiepiphyte Poikilospermum cordifolium (Barg.-Petr.) Merr (Cecropiaceae). P. cordifolium seedlings, saplings and sometimes larger indivi¬duals abundantly grew at the entrances of parabiotic nests. However, P. cordifolium provides no additional nest space and, apart from nutritive elaiosomes, perianths, and extrafloral nectar probably plays a less important role for the ants than the neotropical epiphytes. In conclusion, the parabiosis is probably beneficial to both species. The main benefits seem to be nest defence (for Cr. modiglianii) and interspecific trail-following (for Ca. rufifemur). However, Ca. rufifemur seems to be more dependent on its partner than vice versa. For both parabiotic species, I analyzed mitochondrial DNA of ants from different regions in Borneo. My data suggest that there are four genetically and chemically distinct, but closely related varieties of Camponotus rufifemur. In contrast, Crematogaster modiglianii showed high genetic differentiation between distant populations but was not differentiated into genetic or chemical varieties. This argues against variety-specific cocladogenesis between Cr. modiglianii and Ca. rufifemur, although a less specific coevolution of the two species is highly likely. In Bornean rainforests, trail-sharing associations of Polyrhachis (Polyrhachis) ypsilon Emery 1887 and Camponotus (Colobopsis) saundersi Emery 1889 are common and often include further species such as Dolichoderus cuspidatus Smith 1857. I investigated a trail-sharing association between these three species and studied two mechanisms that may cause or facilitate these associations: interspecific trail-following, i.e. workers following another species’ pheromone trail, and differential inter¬specific aggression. In trail-following assays, D. cuspidatus regularly followed extract trails of the other two species, thus probably parasitizing on their information on food sources. In contrast, only few P. ypsilon and Ca. saundersi workers followed hetero¬speci¬fic extract trails. Hence, the association between P. ypsilon and Ca. saundersi cannot be ex¬plained by foragers following heterospecific trails. In this case, trail-sharing may originate from few scout ants that do follow heterospecific pheromone trails and then lay their own trails. Interspecific aggression among P. ypsilon, Ca. saundersi and D. cuspidatus was strongly asymmetric, Ca. saundersi being submissive to the other two species. All three species discriminated between heterospecific workers from the same and a distant trail-sharing site. Thus, it seems likely that the species of a given trail-sharing site habituate to one another. Differential tolerance by dominant ant species may be mediated by selective habituation towards submissive species, and thereby influence the assembly of trail-sharing associations. / Aggression zwischen Ameisen verschiedener Kolonien oder Arten ist allgegenwärtig. Ausnahmen von dieser Regel bilden Superkolonien (innerhalb einer Art) sowie inter-spezifische Assoziationen (zwischen Arten). Wohl die engste dieser Assoziationen ist die Parabiose, bei der zwei Ameisenarten in einem gemeinsamen Nest leben. Sie halten ihre Brut getrennt, nutzen jedoch gemeinsam Pfade und oftmals auch Nahrungsressourcen. Parabiosen sind auf Assoziationen einiger weniger Artkombinationen beschränkt und kommen nur in südamerikanischen und südostasiatischen Regenwäldern vor. Während jedoch die südamerikanischen Parabiosen bereits untersucht wurden – wenn auch spärlich –, ist fast nichts über ihre südostasiatischen Pendants bekannt. Der Schwerpunkt meiner Doktorarbeit liegt auf südostasiatischen Parabiosen zwischen der myrmicinen Ameise Crematogaster modiglianii Emery 1900 und der deutlich größeren Formicine Camponotus rufifemur Emery 1900. Die beiden Arten nisten häufig gemeinsam in hohlen Bäumen im tropischen Tieflandregenwald Borneos. Die grundlegende Frage meiner Doktorarbeit ist, warum diese beiden Arten zusammenleben. Ich untersuchte sowohl proximate als auch ultimate Aspekte dieser Frage. Zu Vergleichszwecken führte ich Studien über eine trail sharing-Assoziation im selben Lebensraum durch. Auf proximater Ebene untersuchte ich, welche Mechanismen die Toleranz heterospezifischer Nestgenossinnen fördern. Im allgemeinen können Ameisen Nestgenossinnen von fremden Artgenossen mit Hilfe kutikulärer Kohlenwasserstoffen unterscheiden, die als Kolonie-Erkennungssignale dienen. Ich untersuchte Kolonieerkennung innerhalb und zwischen den beiden parabiotischen Arten. Mittels Gaschromatographie-Massenspektrometrie (GC-MS) analysierte ich daneben die kutikulären Substanzen beider Ameisenarten, um etwaige Unterschiede zu verwandten, nichtparabiotischen Arten zu finden, und um abzuschätzen, wie stark die Substanzen beider Arten sich überschneiden. Eine starke Überschneidung würde z.B. dafür sprechen, daß inter¬spezifische Toleranz durch chemische Mimikry verursacht wird. Außerdem untersuchte ich anhand von Biotests die Funktion zweier verschiedener kutikulärer Substanzklassen. Die interspezifische Toleranz zwischen den beiden parabiotischen Arten war artspezifisch, aber nicht koloniespezifisch. Ca. rufifemur tolerierte alle Cr. modiglianii-Arbeiterinnen, auch von fremden Kolonien, attackierte aber Arbeiterinnen anderer Crematogaster-Arten. Cr. modiglianii dagegen duldete Ca. rufifemur-Arbeiterinnen von bestimmten fremden Kolonien, attackierte jedoch diejenigen bestimmter anderer Kolonien. Wie chemische Analysen ergaben, kommt Ca. rufifemur in zwei sympatrischen, chemisch verschiedenen Morphen (‚rote’ und ‚schwarze’ Morphe) vor, die praktisch keine Kohlenwasserstoffe gemeinsam haben. Cr. modiglianii duldete nur diejenigen Ca. rufifemur-Arbeiterinnen, die zur gleichen Morphe gehörten wie ihr eigener Partner. Cr. modiglianii attackierte auch weitere, nichtparabiotische Camponotus-Arten. Gegenseitige interspezifische Toleranz war also auf die Arten Cr. modiglianii und Ca. rufifemur beschränkt. Ca. rufifemur duldete häufig koloniefremde Artgenossen derselben Morphe. Die kleineren Arbeiterinnenkasten wurden eher geduldet als große Arbeiterinnen (Soldaten), möglicher¬weise weil sie 2-3-fach kleinere Kohlenwasserstoffmengen pro Körperoberfläche besitzen als letztere. Im Gegensatz dazu attackierte Cr. modiglianii fast stets koloniefremde Artgenossen. Die Kohlenwasserstoffe beider Arten waren deutlich langkettiger als bei nichtparabiotischen Arten der gleichen Gattungen. Langkettige Kohlenwasserstoffe sind aufgrund ihrer geringeren Flüchtigkeit schwerer wahrzunehmen als kürzerkettige und fördern deshalb vermutlich interspezifische Toleranz. Auffällig war weiterhin, daß die kutikulären Kohlenwasserstoffe bei Ca. rufifemur zu bis zu 98% aus Methylalkenen bestanden, die als kutikuläre Substanzen bei Insekten höchst ungewöhnlich sind. Cr. modiglianii und Ca. rufifemur besaßen fast keine gemeinsamen Kohlenwasserstoffe, es lag also keine chemische Mimikry vor. Die einzigen gemeinsamen Kohlenwasserstoffe in größeren Mengen waren zwei Methylalkene, die bei der roten Ca. rufifemur-Morphe ca. 89% des Kohlenwasserstoffprofils ausmachten und auch bei den Cr. modiglianii-Kolonien vorkam, die mit dieser Morphe zusammenlebten. Vermutlich übernahmen diese Cr. modiglianii-Kolonien die beiden Substanzen von ihren roten Ca. rufifemur-Partnern. Cr. modiglianii-Arbeiterinnen waren signifikant weniger aggressiv gegenüber fremden Artgenossinnen, wenn diese mit derselben Ca. rufifemur-Morphe assoziiert waren wie sie selbst. Diese Art schien demnach die Kohlenwasserstoffe, die sie von ihrem Parabiosepartner übernommen hatte, als Erkennungssignale zu nutzen. Neben den Kohlenwasserstoffen kam auf der Kutikula beider Ameisenarten eine Reihe bisher unbekannter Stoffe vor. Die quantita¬tive Zusammen¬setzung dieser Substanzen variierte zwischen parabiotischen Nestern, ähnelte sich aber jeweils zwischen den beiden Arten eines Nests. Sie werden wahrscheinlich in der Dufourdrüse von Cr. modiglianii produziert und auf den Ca. rufifemur-Partner übertragen werden. Als mögliche Übertragungsmechanismen kommen interspezifische Trophallaxis sowie ‚Besteigeverhalten’ in Betracht, bei dem Cr. modiglianii auf Ca. rufifemur-Arbeiterinnen klettert, ohne von diesen vertrieben zu werden. Obwohl die Zusammensetzung der unbekannten Substanzen stark zwischen parabiotischen Nestern variierte, dienten sie – im Gegensatz zu den Kohlenwasserstoffen – nicht der Kolonieerkennung. Sie reduzierten jedoch signifikant die Aggressivität von Ca. rufifemur. Die ultimaten, also ökologischen und evolutionären Aspekte meiner Doktorarbeit beschäftigen sich mit potentiellen Kosten und Nutzen, die Cr. modiglianii und Ca. rufifemur aus ihrer parabiotischen Lebensweise ziehen könnten, mit ihren Interaktionen zu weiteren Arten sowie populationsgenetischen Analysen. Meine Untersuchungen zu einer trail sharing-Assoziation zwischen drei anderen Ameisenarten beschäftigen sich mit zwei Mechanismen, die trail sharing verursachen oder fördern könnten. Ob Parabiosen parasitisch, kommensalistisch oder mutualistisch sind, ist weitgehend unbekannt und hängt von den Kosten und Nutzen ab, die beiden Partnern durch die Parabiose entstehen. Ich untersuchte deshalb Nahrungskonkurrenz (als eine der wahrscheinlichsten Kosten), Nischendifferenzierung in bezug auf die Nahrungssuche (was die Konkurrenz verringern könnte), sowie mehrere etwaige Nutzen aus der parabiotischen Lebensweise. Darüber hinaus untersuchte ich Interaktionen zwischen den Ameisen und dem Hemiepiphyten Poikilospermum cordifolium. Die Nischen der beiden Arten in bezug auf Fouragierdistanz vom Nest, tageszeitliche Aktivitätsspanne und Nahrungspräferenzen. Keine der beiden Arten vertrieb die Partnerart gewaltsam von Ködern, so daß keine direkte Konkurrenz erkennbar war. Für beide Ameisenarten sind eine Reihe von Vorteilen aus der parabiotischen Lebensweise denkbar. Darunter fallen interspezifisches Spurfolgeverhalten, gemeinsame Nestverteidigung, Bereitstellung von Nistraum durch die Partnerart, Nahrungsaustausch mittels Trophallaxis und gegenseitige Brutfürsorge. Wenn eine Ameisenart der Pheromonspur einer anderen Art folgt, erreicht sie Nahrungsressourcen, die die andere Art gefunden hat. Wie durch künstliche Pheromonspuren gezeigt wurde, folgte Ca. rufifemur tatsächlich Spuren von Cr. modiglianii, jedoch nicht umgekehrt. Ca. rufifemur profitierte damit vom Wissen ihrer Partnerart über Nahrungsressourcen (informationaler Parasitismus). Cr. modiglianii wiederum schien von der Nestverteidigung durch Ca. rufifemur zu profitieren. Ca. rufifemur-Soldaten sind deutlich größer als Cr. modiglianii-Arbeiterinnen. Obwohl Cr. modiglianii oft ebenfalls effektiv das Nest verteidigte, erscheint es wahrscheinlich, daß diese Art einen Nutzen aus der Nestverteidigung durch Ca. rufifemur zieht. In neotropische Parabiosen (Ameisengärten) spielen mutualistische Epiphyten durch die Bereitstellung von Nistraum eine große Rolle. Die neotropische Camponotus-Art nützt ihrem Crematogaster-Partner, indem sie Epiphytensamen pflanzt, wozu Crematogaster zu klein ist. Die Parabiosen Borneos waren ebenfall oft von dem Hemiepiphyten Poikilospermum cordifolium (Barg.-Petr.) Merr (Cecropiaceae) besiedelt. Keimlinge und größere Individuen von P. cordifolium wuchsen häufig an parabiotischen Nesteingängen. P. cordifolium bietet jedoch keinen Nistraum und ist daher, abgesehen von der Bereitstellung nahrhafter Elaiosomen, Perianthe und extrafloralem Nektar, für die Ameisen von geringerer Bedeutung als die Epiphyten der Neotropen. Als Fazit erscheint die Parabiose für beide Ameisenarten vorteilhaft. Die wichtigsten Vorteile sind Nestverteidigung (für Cr. modiglianii) und interspezifisches Spurfolgen (für Ca. rufifemur). Allerdings scheint Ca. rufifemur stärker von seinem Partner abzuhängig zu sein als umgekehrt. Von beiden parabiotischen Arten analysierte ich mitochondriale DNA aus verschiedenen Regionen Borneos. Nach meinen Ergebnissen existieren vermutlich vier genetisch und chemisch verschiedene, aber nah miteinander verwandte Camponotus rufifemur-Morphen. Im Gegensatz dazu zeigte Crematogaster modiglianii hohe genetische Differenzierung zwischen entfernten Populationen, aber keine weitere Differenzierung in genetische oder chemische Morphen. Dieses Ergebnis spricht gegen eine morphen-spezifische Cocladogenese zwischen Cr. modiglianii und Ca. rufifemur, obwohl eine weniger spezifische Coevolution der beiden Arten sehr wahrscheinlich ist. In den Regenwäldern Borneos sind trail sharing-Assoziationen zwischen Polyrhachis (Polyrhachis) ypsilon Emery 1887 und Camponotus (Colobopsis) saundersi Emery 1889 weit verbreitet und schließen oft weitere Arten wie Dolichoderus cuspidatus Smith 1857 ein. Ich untersuchte eine trail sharing-Assoziation zwischen diesen drei Arten und erforschte zwei Mechanismen, die eine solche Assoziation eventuell fördern könnten: interspezifisches Spur-folgeverhalten und differentielle interspezifische Aggression. In Spurfolge¬versuchen folgte D. cuspidatus regelmäßig künstlichen Extraktpfaden der anderen beiden Arten. Auf diese Weise parasitierte D. cuspidatus wahrscheinlich auf deren Informationen über Nahrungsressourcen. Im Gegensatz dazu folgten nur wenige Arbeiterinnen von P. ypsilon und Ca. saundersi heterospezifischen Extraktpfaden. Die Assoziation zwischen P. ypsilon und Ca. saundersi kann folglich nicht dadurch erklärt werden, daß fouragierende Arbeiterinnen heterospezifischen Pheromonspuren folgen. In diesem Fall könnte trail sharing möglicherweise darauf beruhen, daß einige wenige scouts heterospezifischen Spuren folgen und anschließend ihre eigene Spur legen. Die interspezifische Aggression zwischen P. ypsilon, Ca. saundersi und D. cuspidatus war stark asymmetrisch, denn Ca. saundersi war gegenüber den anderen beiden Arten stark submissiv. Alle drei Arten unterschieden heterospezifische Arbeiterinnen von ihrem eigenen und einem fremden Standort. Es erscheint daher wahrscheinlich, daß die Arten eines trail sharing-Standorts sich aneinander gewöhnen. Differentielle Toleranz durch dominante Ameisenarten könnte zustande kommen, indem sich diese selektiv an bestimmte submissive Arten gewöhnen, sie dulden und auf diese Weise die Zusammensetzung von trail sharing-Assoziationen beeinflussen.
27

The influence of ultraviolet radiation on plant-insect interactions / Der Einfluss von ultravioletter Strahlung auf Pflanzen-Insekten Interaktionen

Kuhlmann, Franziska January 2009 (has links) (PDF)
Plants must respond to multiple stimuli in a natural environment. Therefore they need the ability to rapidly reorganise and specifically build up appropriate metabolites to adapt to their environment. Abiotic cues, such as ambient solar radiation, influence the next trophic level directly, but also an altered plant composition triggered by these environmental cues can have an effect on the behaviour of herbivores. The aim of this study was to test effects of the important ultraviolet (UV) radiation on plants and on plant-insect interactions using multi-level investigations. The focus was on the conduction of controlled experiments with broccoli plants in highly engineered greenhouses covered with innovative materials, which only differed in their UV-B transmission. For the first time in this controlled environment the plant-mediated UV-B effects on phloem-feeding aphids were studied. Broccoli plants (Brassica oleracea L. convar. botrytis, Brassicaceae) were under filter tents either exposed to (inclusion, +UV) or not exposed to (exclusion, -UV) UV-A / UV-B radiation. In greenhouses covered with new, innovative materials transmitting high (80%), medium (23%) or low (4%) levels of ambient solar UV-B radiation, in particular the influence of UV-B radiation on broccoli was examined. Plants respond highly specific to environmental stimuli such as UV-B radiation and herbivory. UV-B radiation has a strong impact on the plants’ architecture and flavonoid contents, which can in turn influence plant-insect interactions. Phloem-feeding aphids can be negatively affected by UV-B mediated plant changes. However, a direct effect of UV radiation on the behaviour of herbivores is also evident. Mainly the number, composition and quality of herbivorous species as well as an exceeding of a certain infestation threshold determine the mode of plant changes. In conclusion, UV-B radiation has the potential to harden plants against herbivores and simultaneously increases the concentrations of valuable secondary metabolites for human nutrition in important crop species such as broccoli. / In ihrer natürlichen Umgebung sind Pflanzen verschiedensten und vor allem wechselnden Umwelteinflüssen ausgesetzt, auf die sie schnell und angemessen reagieren müssen. Das Insektenverhalten der nächsten trophischen Ebene wird direkt durch abiotische Umweltfaktoren, wie zum Beispiel Sonnenstrahlung, sowie durch daraus resultierende Veränderungen in Pflanzen gesteuert. Das Ziel dieser Untersuchung war es, herauszufinden, wie sich ultraviolette (UV) Strahlung auf Pflanzen und Pflanzen-Insekten Interaktionen auswirken kann. Dies wurde auf verschiedensten Ebenen untersucht. Mit Hilfe von speziell angefertigten Gewächshäusern konnten Brokkolipflanzen unter kontrollierten UV-B Bedingungen angezogen werden. Der Einfluss von UV-B Strahlung auf Brokkoli und von UV-B induzierten Effekten in Brokkoli auf phloem-fressende Blattläuse wurde erstmals untersucht. Die Experimente wurden mit Brokkolipflanzen (Brassica oleracea L. convar. botrytis, Brassicaceae) durchgeführt, die in Folienzelten mit unterschiedlicher UV-Strahlungsdurchlässigkeit exponiert wurden. Die Eindeckungen der Folienzelte waren entweder UV-A / UV-B durchlässig (+UV) oder undurchlässig (-UV). Gewächshäuser mit innovativen Eindeckungsmaterialien, die speziell UV-B in hohen (80%), mittleren (23%) oder geringen (4%) Mengen transmittierten, wurden genutzt, um den alleinigen Effekt von UV-B Strahlung auf Pflanzen hervorzuheben. Pflanzen reagieren auf verschiedene Umweltreize wie zum Beispiel UV-B Strahlung und Herbivorie sehr zielgerichtet. UV-B Strahlung hat einen starken Einfluss auf das Pflanzenwachstum und die Flavonoidgehalte, was wiederum Pflanzen-Insekten Interaktionen artspezifisch steuern kann. Phloem-fressende Herbivoren können durch UV-B-induzierte Pflanzenveränderungen negativ beeinflusst werden. Ein direkter UV-Effekt auf das Verhalten von Herbivoren ist jedoch ebenfalls erwiesen. Sowohl die Anzahl, Zusammensetzung und Qualität von Herbivorenarten also auch das Überschreiten einer definierten Befallsschwelle bestimmen das Ausmaß der Pflanzenveränderungen. Zusammenfassend ist zu sagen, dass UV-B Strahlung Pflanzen gegenüber Fraßfeinden abhärten und gleichzeitig die Konzentration wertvoller pflanzlicher Inhaltsstoffe für die menschliche Ernährung in Feldfrüchten erhöhen kann.
28

Synaptic plasticity in visual and olfactory brain centers of the desert ant Cataglyphis / Synaptische Plastizität visueller und olfaktorischer Gehirnzentren der Wüstenameise Cataglyphis

Stieb, Sara Mae January 2011 (has links) (PDF)
Wüstenameisen der Gattung Cataglyphis wurden zu Modellsystemen bei der Erforschung der Navigationsmechanismen der Insekten. Ein altersabhängiger Polyethismus trennt deren Kolonien in Innendienst-Arbeiterinnen und kurzlebige lichtausgesetzte Fourageure. Nachdem die Ameisen in strukturlosem oder strukturiertem Gelände bis zu mehrere hundert Meter weite Distanzen zurückgelegt haben, können sie präzise zu ihrer oft unauffälligen Nestöffnung zurückzukehren. Um diese enorme Navigationsleistung zu vollbringen, bedienen sich die Ameisen der sogenannten Pfadintegration, welche die Informationen aus einem Polarisationskompass und einem Entfernungsmesser verrechnet; des Weiteren orientieren sie sich an Landmarken und nutzen olfaktorische Signale. Im Fokus dieser Arbeit steht C. fortis, welche in Salzpfannen des westlichen Nordafrikas endemisch ist - einem Gebiet, welches vollständig von anderen Cataglyphis Arten gemieden wird. Die Tatsache, dass Cataglyphis eine hohe Verhaltensflexibilität aufweist, welche mit sich drastisch ändernden sensorischen Anforderungen verbunden ist, macht diese Ameisen zu besonders interessanten Studienobjekten bei der Erforschung synaptischer Plastizität visueller und olfaktorischer Gehirnzentren. Diese Arbeit fokussiert auf plastische Änderungen in den Pilzkörpern (PK) - sensorischen Integrationszentren, die mutmaßlich an Lern- und Erinnerungsprozessen, und auch vermutlich am Prozess des Landmarkenlernens beteiligt sind - und auf plastische Änderungen in den synaptischen Komplexen des Lateralen Akzessorischen Lobus (LAL) – einer bekannten Relaisstation in der Polarisations-Leitungsbahn. Um die strukturelle synaptische Plastizität der PK in C. fortis zu quantifizieren, wurden mithilfe immunozytochemischer Färbungen die prä- und postsynaptischen Profile klar ausgeprägter synaptischer Komplexe (Mikroglomeruli, MG) der visuellen Region (Kragen) und der olfaktorischen Region (Lippe) der PK-Kelche visualisiert. Die Ergebnisse legen dar, dass eine Volumenzunahme der PK-Kelche während des Übergangs von Innendiensttieren zu Fourageuren von einer Abnahme der MG-Anzahl im Kragen und, mit einem geringeren Anteil, in der Lippe - dieser Effekt wird als Pruning bezeichnet - und einem gleichzeitigen Auswachsen an Dendriten PK-intrinsischer Kenyonzellen begleitet wird. Im Dunkeln gehaltene Tiere unterschiedlichen Alters zeigen nach Lichtaussetzung den gleichen Effekt und im Dunkel gehaltene, den Fourageuren altersmäßig angepasste Tiere weisen eine vergleichbare MG-Anzahl im Kragen auf wie Innendiensttiere. Diese Ergebnisse deuten darauf hin, dass die immense strukturelle synaptische Plastizität in der Kragenregion der PK-Kelche hauptsächlich durch visuelle Erfahrungen ausgelöst wird und nicht ausschließlich mit Hilfe eines internen Programms abgespielt wird. Ameisen, welche unter Laborbedingungen bis zu einem Jahr alt wurden, zeigen eine vergleichbare Plastizität. Dies deutet darauf hin, dass das System über die ganze Lebensspanne eines Individuums flexibel bleibt. Erfahrene Fourageure wurden in Dunkelheit zurückgeführt, um zu untersuchen, ob die lichtausgelöste synaptische Umstrukturierung reversibel ist, doch ihre PK zeigen nur einige die Zurückführung widerspiegelnde Plastizitätsausprägungen, besonders eine Änderung der präsynaptischen Synapsinexprimierung. Mithilfe immunozytochemischer Färbungen, konfokaler Mikroskopie und 3D-Rekonstruktionen wurden die prä- und postsynaptischen Strukturen synaptischer Komplexe des LAL in C. fortis analysiert und potentielle strukturelle Änderungen bei Innendiensttieren und Fourageuren quantifiziert. Die Ergebnisse zeigen, dass diese Komplexe aus postsynaptischen, in einer zentralen Region angeordneten Fortsätzen bestehen, welche umringt sind von einem präsynaptischen kelchartigen Profil. Eingehende und ausgehende Trakte wurden durch Farbstoffinjektionen identifiziert: Projektionsneurone des Anterioren Optischen Tuberkels kontaktieren Neurone, welche in den Zentralkomplex ziehen. Der Verhaltensübergang wird von einer Zunahme an synaptischen Komplexen um ~13% begleitet. Dieser Zuwachs suggeriert eine Art Kalibrierungsprozess in diesen potentiell kräftigen synaptischen Kontakten, welche vermutlich eine schnelle und belastbare Signalübertragung in der Polarisationsbahn liefern. Die Analyse von im Freiland aufgenommener Verhaltenweisen von C. fortis enthüllen, dass die Ameisen, bevor sie mit ihrer Fouragiertätigkeit anfangen, bis zu zwei Tage lang in unmittelbarer Nähe des Nestes Entdeckungsläufe unternehmen, welche Pirouetten ähnliche Drehungen beinhalten. Während dieser Entdeckungsläufe sammeln die Ameisen Lichterfahrung und assoziieren möglicherweise den Nesteingang mit spezifischen Landmarken oder werden anderen visuellen Informationen, wie denen des Polarisationsmusters, ausgesetzt und adaptieren begleitend ihre neuronalen Netzwerke an die bevorstehende Herausforderung. Darüber hinaus könnten die Pirouetten einer Stimulation der an der Polarisationsbahn beteiligten neuronalen Netzwerke dienen. Videoanalysen legen dar, dass Lichtaussetzung nach drei Tagen die Bewegungsaktivität der Ameisen heraufsetzt. Die Tatsache, dass die neuronale Umstrukturierung in visuellen Zentren wie auch die Veränderungen im Verhalten im selben Zeitrahmen ablaufen, deutet darauf hin, dass ein Zusammenhang zwischen struktureller synaptischer Plastizität und dem Verhaltensübergang von der Innendienst- zur Fouragierphase bestehen könnte. Cataglyphis besitzen hervorragende visuelle Navigationsfähigkeiten, doch sie nutzen zudem olfaktorische Signale, um das Nest oder die Futterquelle aufzuspüren. Mithilfe konfokaler Mikroskopie und 3D-Rekonstruktionen wurden potentielle Anpassungen der primären olfaktorischen Gehirnzentren untersucht, indem die Anzahl, Größe und räumliche Anordnung olfaktorischer Glomeruli im Antennallobus von C. fortis, C. albicans, C. bicolor, C. rubra, und C. noda verglichen wurde. Arbeiterinnen aller Cataglyphis-Arten haben eine geringere Glomeruli-Anzahl im Vergleich zu denen der mehr olfaktorisch-orientierten Formica Arten - einer Gattung nah verwandt mit Cataglyphis - und denen schon bekannter olfaktorisch-orientierter Ameisenarten. C. fortis hat die geringste Anzahl an Glomeruli im Vergleich zu allen anderen Cataglyphis-Arten und besitzt einen vergrößerten Glomerulus, der nahe dem Eingang des Antennennerves lokalisiert ist. C. fortis Männchen besitzen eine signifikant geringere Glomeruli-Anzahl im Vergleich zu Arbeiterinnen und Königinnen und haben einen hervorstechenden Männchen-spezifischen Makroglomerulus, welcher wahrscheinlich an der Pheromon-Kommunikation beteiligt ist. Die Verhaltensrelevanz des vergrößerten Glomerulus der Arbeiterinnen bleibt schwer fassbar. Die Tatsache, dass C. fortis Mikrohabitate bewohnt, welche von allen anderen Cataglyphis Arten gemieden werden, legt nahe, dass extreme ökologische Bedingungen nicht nur zu Anpassungen der visuellen Fähigkeiten, sondern auch des olfaktorischen Systems geführt haben. Die vorliegende Arbeit veranschaulicht, dass Cataglyphis ein exzellenter Kandidat ist bei der Erforschung neuronaler Mechanismen, welche Navigationsfunktionalitäten zugrundeliegen, und bei der Erforschung neuronaler Plastizität, welche verknüpft ist mit der lebenslangen Flexibilität eines individuellen Verhaltensrepertoires. / Desert ants of the genus Cataglyphis have become model systems for the study of insect navigation. An age-related polyethism subdivides their colonies into interior workers and short-lived light-exposed foragers. While foraging in featureless and cluttered terrain over distances up to several hundred meters, the ants are able to precisely return back to their often inconspicuous nest entrance. They accomplish this enormous navigational performance by using a path integration system - including a polarization compass and an odometer - as their main navigational means in addition to landmark-dependent orientation and olfactory cues. C. fortis, being the focus of the present thesis, is endemic to the salt flats of western North Africa, which are completely avoided by other Cataglyphis species. The fact that Cataglyphis ants undergo a behavioral transition associated with drastically changing sensory demands makes these ants particularly interesting for studying synaptic plasticity in visual and olfactory brain centers. This thesis focuses on plastic changes in the mushroom bodies (MBs) - sensory integration centers supposed to be involved in learning and memory presumably including landmark learning - and in synaptic complexes belonging to the lateral accessory lobe (LAL) known to be a relay station in the polarization processing pathway. To investigate structural synaptic plasticity in the MBs of C. fortis, synaptic complexes (microglomeruli, MG) in the visual (collar) and olfactory (lip) input regions of the MB calyx were immunolabeled and their pre- and postsynaptic profiles were quantified. The results show that a volume increase of the MB calyx during behavioral transition is associated with a decrease of MG number - an effect called pruning - in the collar and, less pronounced, in the lip that goes along with dendritic expansion in MB intrinsic Kenyon cells. Light-exposure of dark-reared ants of different age classes revealed similar effects and dark-reared ants age-matched to foragers had MG numbers comparable to those of interior workers. The results indicate that the enormous structural synaptic plasticity of the MB calyx collar is primarily driven by visual experience rather than by an internal program. Ants aged artificially for up to one year expressed a similar plasticity indicating that the system remains flexible over the entire life-span. To investigate whether light-induced synaptic reorganization is reversible, experienced foragers were transferred back to darkness with the result that their MBs exhibit only some reverse-type characteristics, in particular differences in presynaptic synapsin expression. To investigate the structure of large synaptic complexes in the LAL of C. fortis and to detect potential structural changes, pre- and postsynaptic profiles in interior workers and foragers were immunolabeled and quantified by using confocal imaging and 3D-reconstruction. The results show that these complexes consist of postsynaptic processes located in a central region that is surrounded by a cup-like presynaptic profile. Tracer injections identified input and output tracts of the LAL: projection neurons from the anterior optic tubercle build connections with neurons projecting to the central complex. The behavioral transition is associated with an increase by ~13% of synaptic complexes suggesting that the polarization pathway may undergo some sort of calibration process. The structural features of these synaptic contacts indicate that they may serve a fast and reliable signal transmission in the polarization vision pathway. Behavioral analyses of C. fortis in the field revealed that the ants perform exploration runs including pirouette-like turns very close to the nest entrance for a period of up to two days, before they actually start their foraging activity. During these orientation runs the ants gather visual experience and might associate the nest entrance with specific landmarks or get entrained to other visual information like the polarization pattern, and, concomitantly adapt their neuronal circuitries to the upcoming challenges. Moreover, the pirouettes may serve to stimulate and calibrate the neuronal networks involved in the polarization compass pathway. Video recordings and analyses demonstrate that light experience enhanced the ants’ locomotor activity after three days of exposure. The fact that both the light-induced behavioral and neuronal changes in visual brain centers occur in the same time frame suggests that there may be a link between structural synaptic plasticity and the behavioral transition from interior tasks to outdoor foraging. Desert ants of the genus Cataglyphis possess remarkable visual navigation capabilities, but also employ olfactory cues for detecting nest and food sites. Using confocal imaging and 3D-reconstruction, potential adaptations in primary olfactory brain centers were analyzed by comparing the number, size and spatial arrangement of olfactory glomeruli in the antennal lobe of C. fortis, C. albicans, C. bicolor, C. rubra, and C. noda. Workers of all Cataglyphis species have smaller numbers of glomeruli compared to those of more olfactory-guided Formica species - a genus closely related to Cataglyphis - and to those previously found in other olfactory-guided ant species. C. fortis has the lowest number of glomeruli compared to all other species, but possesses a conspicuously enlarged glomerulus that is located close to the antennal nerve entrance. Males of C. fortis have a significantly smaller number of glomeruli compared to female workers and queens and a prominent male-specific macroglomerulus likely to be involved in sex pheromone communication. The behavioral significance of the enlarged glomerulus in female workers remains elusive. The fact that C. fortis inhabits microhabitats that are avoided by all other Cataglyphis species suggests that extreme ecological conditions may not only have resulted in adaptations of visual capabilities, but also in specializations of the olfactory system. The present thesis demonstrates that Cataglyphis is an excellent candidate for studying the neuronal mechanisms underlying navigational features and for studying neuronal plasticity associated with the ant’s lifelong flexibility of individual behavioral repertoires.
29

Neuronal basis of temporal polyethism and sky-compass based navigation in \(Cataglyphis\) desert ants / Die neuronale Grundlage von Alterspolyethismus und Himmelskompassnavigation in der Wüstenameise \(Cataglyphis\)

Schmitt, Franziska January 2017 (has links) (PDF)
Desert ants of the genus Cataglyphis (Formicinae) are widely distributed in arid areas of the palearctic ecozone. Their habitats range from relatively cluttered environments in the Mediterranean area to almost landmark free deserts. Due to their sophisticated navigational toolkit, mainly based on the sky-compass, they were studied extensively for the last 4 decades and are an exceptional model organism for navigation. Cataglyphis ants exhibit a temporal polyethism: interior workers stay inside the dark nest and serve as repletes for the first ∼2 weeks of their adult life (interior I). They then switch to nursing and nest maintenance (interior II) until they transition to become day-active outdoor foragers after ∼4 weeks. The latter switch in tasks involves a transition phase of ∼2-3 days during which the ants perform learning and orientation walks. Only after this last phase do the ants start to scavenge for food as foragers. In this present thesis I address two main questions using Cataglyphis desert ants as a model organism: 1. What are the underlying mechanisms of temporal polyethism? 2. What is the neuronal basis of sky-compass based navigation in Cataglyphis ants? Neuropeptides are important regulators of insect physiology and behavior and as such are promising candidates regarding the regulation of temporal polyethism in Cataglyphis ants. Neuropeptides are processed from large precursor proteins and undergo substantial post-translational modifications. Therefore, it is crucial to biochemically identify annotated peptides. As hardly any peptide data are available for ants and no relevant genomic data has been recorded for Cataglyphis, I started out to identify the neuropeptidome of adult Camponotus floridanus (Formicinae) workers (manuscript 1). This resulted in the first neuropeptidome described in an ant species – 39 neuropeptides out of 18 peptide families. Employing a targeted approach, I identified allatostatin A (AstA), allatotropin (AT), short neuropeptide F (sNPF) and tachykinin (TK) using mass spectrometry and immunohistology to investigate the distribution of AstA, AT and TK in the brain (manuscript 2). All three peptides are localized in the central complex, a brain center for sensory integration and high-order control of locomotion behavior. In addition, AstA and TK were also found in visual and olfactory input regions and in the mushroom bodies, the centers for learning and memory formation. Comparing the TK immunostaining in the brain of 1, 7 and 14 days old dark kept animals revealed that the distribution in the central complex changes, most prominently in the 14 day old group. In the Drosophila central complex TK modulates locomotor activity levels. I therefore hypothesize that TK is involved in the internal regulation of the interior I–interior II transition which occurs after ∼2 weeks of age. I designed a behavioral setup to test the effect of neuropeptides on the two traits: ’locomotor activity level’ and ’phototaxis’ (manuscript 3). The test showed that interior I ants are less active than interior II ants, which again are less active than foragers. Furthermore, interior ants are negatively phototactic compared to a higher frequency of positive phototaxis in foragers. Testing the influence of AstA and AT on the ants’ behavior revealed a stage-specific effect: while interior I behavior is not obviously influenced, foragers become positively phototactic and more active after AT injection and less active after AstA injection. I further tested the effect of light exposure on the two behavioral traits of interior workers and show that it rises locomotor activity and results in decreased negative phototaxis in interior ants. However, both interior stages are still more negatively phototactic than foragers and only the activity level of interior II ants is raised to the forager level. These results support the hypothesis that neuropeptides and light influence behavior in a stage-specific manner. The second objective of this thesis was to investigate the neuronal basis of skycompass navigation in Cataglyphis (manuscript 4). Anatomical localization of the sky-compass pathway revealed that its general organization is highly similar to other insect species. I further focused on giant synapses in the lateral complex, the last relay station before sky-compass information enters the central complex. A comparison of their numbers between newly eclosed ants and foragers discloses a rise in synapse numbers from indoor worker to forager, suggesting task-related synaptic plasticity in the sky-compass pathway. Subsequently I compared synapse numbers in light preexposed ants and in dark-kept, aged ants. This experiment showed that light as opposed to age is necessary and sufficient to trigger this rise in synapse number. The number of newly formed synapses further depends on the spectral properties of the light to which the ants were exposed to. Taken together, I described neuropeptides in C. floridanus and C. fortis, and provided first evidence that they influence temporal polyethism in Cataglyphis ants. I further showed that the extent to which neuropeptides and light can influence behavior depends on the animals’ state, suggesting that the system is only responsive under certain circumstances. These results provided first insight into the neuronal regulation of temporal polyethism in Cataglyphis. Furthermore, I characterized the neuronal substrate for sky-compass navigation for the first time in Cataglyphis. The high level of structural synaptic plasticity in this pathway linked to the interior–forager transition might be particularly relevant for the initial calibration of the ants’ compass system. / Wüstenameisen der Gattung Cataglyphis sind weit verbreitet in ariden Gebieten der paläarktischen Ökozone. Die von ihnen bewohnten Habitate reichen von landmarkenreichen Arealen im Mittelmeerraum, zu beinahe landmarkenfreien Wüstengebieten. Aufgrund ihres hochentwickelten Navigationssystems, welches größtenteils auf dem Himmelskompass basiert, wurden sie in den letzten 4 Jahrzehnten extensiv studiert und sind ein einzigartiges Modellsystem für Navigation. Cataglyphis weisen einen alterskorrelierten Polyethismus auf: Innendienstler dienen als Speichertiere für die ersten ∼2 Wochen ihres adulten Lebens (Interior I). Sie gehen daraufhin zu Brutpflege und Nestbau (Interior II) über bis sie nach ∼4 Wochen zu tagaktiver Furagiertätitkeit außerhalb ihres Nestes wechseln. Dieser letzte Übergang dauert ∼2-3 Tage und wird von den Ameisen genutzt, um Lernund Orientierungsläufe durchzuführen. In der vorliegenden Arbeit befasse ich mich vor allem mit zwei Fragen, die ich mit Hilfe von Cataglyphis als Modellorganismus beantworten möchte: 1. Welches sind die zugrunde liegenden Mechanismen des Alterspolyethismus? 2. Was ist die neuronale Grundlage von Navigation, die auf dem Himmelskompass basiert? Neuropeptide sind bedeutende Regulatoren der Physiologie und des Verhaltens von Insekten und als solche vielversprechende Kandidaten im Hinblick auf die Regulation des Alterspolyethismus in Cataglyphis Ameisen. Neuropeptide werden aus größeren Vorläuferproteinen herausgeschnitten und posttranslational stark modifiziert. Daher ist es wichtig, annotierte Peptide auch biochemisch zu identifizieren. Da für Ameisen kaum Peptiddaten zur Verfügung stehen und es zudem keine relevanten genomischen Daten für Cataglyphis gibt, identifizierte ich zunächst das Neuropeptidom adulter Camponotus floridanus (Formicinae) Arbeiterinnen (Manuskript 1). Daraus resultierte das erste Neuropeptidom, das für eine Ameisenart beschrieben wird—39 Neuropeptide aus 18 Peptidfamilien. In einer weiteren Studie identifizierte ich gezielt die Neuropeptidfamilien Allatostatin A (AstA), Allatotropin (AT), das kurze Neuropeptid F (sNPF) und Tachykinin (TK) mittels Massenspektroskopie und untersuchte die Verteilung von AstA, AT und TK im Gehirn mit Hilfe der Immunhistologie (Manuskript 2). Alle drei Peptide sind im Zentralkomplex lokalisiert, dem Gehirnzentrum welches sensorische Eingänge integriert und in einer übergeordneten Rolle Lokomotorverhalten steuert. AstA und TK sind zudem in den visuellen und olfaktorischen Eingangsregionen, sowie den Pilzkörpern, den Zentren für Lernen und Gedächtnisbildung, zu finden. Ein Vergleich der TK-Immunfärbung im Gehirn von 1, 7 und 14 Tage alten im Dunkeln gehaltenen Tieren zeigt, dass sich die Verteilung im Zentralkomplex verändert— dies ist besonders prominent in der 14 Tage alten Gruppe. In Drosophila moduliert TK im Zentralkomplex Lokomotoraktivität. Basierend darauf stelle ich die Hypothese auf, dass TK in der internen Regulierung des Übergangs von Interior I zu Interior II involviert ist, welchen die Tiere im Alter von ∼2 Wochen durchlaufen. Für eine dritte Studie konstruierte ich ein Verhaltenssetup um den Einfluss von Neuropeptiden und Licht auf die beiden Verhaltensmerkmale ’Lokomotoraktivität’ und ’Phototaxis’ zu testen (Manuskript 3). Der Test zeigte, dass Interior I Ameisen weniger aktiv sind als Interior II Ameisen, welche wiederum weniger aktiv sind als Furageure. Zudem sind Interior Ameisen negativ phototaktisch, verglichen mit einer häufiger zu beobachtenden positiven Phototaxis bei Furageuren. Im Test zeigte sich auch, dass der Einfluss von AstA und AT stadiumsspezifisch ist: während das Verhalten von Interior I Tieren nicht offensichtlich beeinflusst wird, werden Furageure durch die Injektion von AT positiv phototaktisch, sowie aktiver und AstA-Injektion führt zu geminderter Lokomotoraktivität. Darüber hinaus testete ich den Lichteinfluss auf beide Verhaltensmerkmale in den Innendienststadien und zeige, dass er Lokomotoraktivität steigert und in einer geminderten negativen Phototaxis resultiert. Beide Innendienststadien sind jedoch weiterhin negativer phototaktisch als Furageure und nur die Lokomotoraktivtät von Interior II Ameisen wird auf das Niveau von Furageuren angehoben. Diese Ergebnisse stützen die Hypothese, dass Neuropeptide und Licht stadiumsspezifisch Verhalten beeinflussen. Der zweite Aspekt dieser Thesis war es, die neuronale Grundlage der Himmelskompassnavigation in Cataglyphis aufzuklären (Manuskript 4). Die neuroanatomische Lokalisation der Himmelskompasssehbahn zeigt, dass die allgemeine Organisation dieser neuronalen Bahn der bei bisher untersuchten anderen Insekten stark ähnelt. Ich habe mich daraufhin auf Riesensynapsen im lateralen Komplex konzentriert, der letzten Verschaltungsstation ehe die Himmelskompassinformation in den Zentralkomplex übertragen wird. Ein Vergleich zwischen der Synapsenzahl in frisch geschlüpfte Ameisen und erfahrenen Furageueren zeigte einen Anstieg der Synapsenzahl von Innendienst zu Furaguer, was aufgabenabhängige synaptische Plastizität in der Himmelskompasssehbahn suggeriert. In einem weiteren Versuch verglich ich die Riesensynapsenzahlen lichtexponierter Tiere und dunkel gehaltener, gealteter Tiere. Dieses Experiment zeigte, dass der Zuwachs an Riesensynapsen durch den Lichteinfluss ausgelöst wird und keinen altersabhängigen Prozess darstellt. Zudem verändert sich die Anzahl der neu gebildeten Riesensynapsen in Abhängigkeit von den spektralen Eigenschaften des Lichts, dem die Ameisen ausgesetzt sind. Zusammengefasst beschrieb ich in dieser Thesis Neuropeptide in C. floridanus und Cataglyphis und lieferte erste Evidenz, dass diese den Alterspolyethismus in Cataglyphis beeinflussen. Zudem zeigte ich, dass das Ausmaß in dem Neuropeptide und Lichtexposition Verhalten beeinflussen können, stadiumsspezifisch ist. Dies suggeriert, dass das System nur unter bestimmten Bedingungen auf externe Einflüsse reagiert. Diese Ergebnisse lieferten erste wichtige Einblicke in die neuronale Grundlage von Alterspolyethismus in Cataglyphis. Zudem charakterisierte ich erstmals das neuronale Substrat der Himmelskompassnavigation in Cataglyphis. Das hohe Maß an synaptischer Plastizität in dieser Sehbahn beim Übergang von Innenzu Außendienst, könnte besondere Relevanz für die initiale Kalibrierung des Kompasssystems haben.
30

From individual behavior to collective structure / Von individuellem Verhalten zu kollektiven Strukturen

Weidenmüller, Anja January 2001 (has links) (PDF)
The social organization of insect colonies has long fascinated naturalists. One of the main features of colony organization is division of labor, whereby each member of the colony specializes in a subset of all tasks required for successful group functioning. The most striking aspect of division of labor is its plasticity: workers switch between tasks in response to external challenges and internal perturbations. The mechanisms underlying flexible division of labor are far from being understood. In order to comprehend how the behavior of individuals gives rise to flexible collective behavior, several questions need to be addressed: We need to know how individuals acquire information about their colony's current demand situation; how they then adjust their behavior according; and which mechanisms integrate dozens or thousands of insect into a higher-order unit. With these questions in mind I have examined two examples of collective and flexible behavior in social bees. First, I addressed the question how a honey bee colony controls its pollen collection. Pollen foraging in honey bees is precisely organized and carefully regulated according to the colony's needs. How this is achieved is unclear. I investigated how foragers acquire information about their colony's pollen need and how they then adjust their behavior. A detailed documentation of pollen foragers in the hive under different pollen need conditions revealed that individual foragers modulate their in-hive working tempo according to the actual pollen need of the colony: Pollen foragers slowed down and stayed in the hive longer when pollen need was low and spent less time in the hive between foraging trips when pollen need of their colony was high. The number of cells inspected before foragers unloaded their pollen load did not change and thus presumably did not serve as cue to pollen need. In contrast, the trophallactic experience of pollen foragers changed with pollen need conditions: trophallactic contacts were shorter when pollen need was high and the number and probability of having short trophallactic contacts increased when pollen need increased. Thus, my results have provided support for the hypothesis that trophallactic experience is one of the various information pathways used by pollen foragers to assess their colony's pollen need. The second example of collective behavior I have examined in this thesis is the control of nest climate in bumble bee colonies, a system differing from pollen collection in honey bees in that information about task need (nest climate parameters) is directly available to all workers. I have shown that an increase in CO2 concentration and temperature level elicits a fanning response whereas an increase in relative humidity does not. The fanning response to temperature and CO2 was graded; the number of fanning bees increased with stimulus intensity. Thus, my study has evidenced flexible colony level control of temperature and CO2. Further, I have shown that the proportion of total work force a colony invests into nest ventilation does not change with colony size. However, the dynamic of the colony response changes: larger colonies show a faster response to perturbations of their colony environment than smaller colonies. Thus, my study has revealed a size-dependent change in the flexible colony behavior underlying homeostasis. I have shown that the colony response to perturbations in nest climate is constituted by workers who differ in responsiveness. Following a brief review of current ideas and models of self-organization and response thresholds in insect colonies, I have presented the first detailed investigation of interindividual variability in the responsiveness of all workers involved in a collective behavior. My study has revealed that bumble bee workers evidence consistent responses to certain stimulus levels and differ in their response thresholds. Some consistently respond to low stimulus intensities, others consistently respond to high stimulus intensities. Workers are stimulus specialists rather than task specialists. Further, I have demonstrated that workers of a colony differ in two other parameters of responsiveness: response probability and fanning activity. Response threshold, response probability and fanning activity are independent parameters of individual behavior. Besides demonstrating and quantifying interindividual variability, my study has provided empirical support for the idea of specialization through reinforcement. Response thresholds of fanning bees decreased over successive trials. I have discussed the importance of interindividual variability for specialization and the collective control of nest climate and present a general discussion of self-organization and selection. This study contributes to our understanding of individual behavior and collective structure in social insects. A fascinating picture of social organization is beginning to emerge. In place of centralized systems of communication and information transmission, insect societies frequently employ mechanisms based upon self-organization. Self-organization promises to be an important and unifying principle in physical, chemical and biological systems. / Ein besonderes Merkmal sozialer Insekten ist die Arbeitsteilung. Die Mitglieder einer Kolonie führen jeweils unterschiedliche Arbeiten aus und wechseln, je nach Bedarfslage der Kolonie, flexibel zwischen den verschiedenen Tätigkeiten. Die Mechanismen dieser flexiblen Arbeitsteilung sind bislang weitgehend unverstanden. Wie erfahren einzelne Arbeiterinnen welche Tätigkeiten gerade notwendig sind? Nach welchen Regeln ändern sie ihr Verhalten, wenn sich die Anforderungen an die Kolonie ändern? Wie wird das Verhalten vieler Einzelindividuen so koordiniert, daß die Kolonie als Ganzes sinnvoll auf eine sich verändernde Umwelt reagieren kann? In der vorliegenden Arbeit bin ich diesen Fragen an zwei unterschiedlichen Systemen nachgegangen. Im ersten Kapitel dieser Arbeit untersuchte ich die Regulation des Pollensammelns bei Honigbienen. Pollen ist für Honigbienen eine wichtige Proteinquelle zur Aufzucht der Brut. Sowohl die Menge an Brut als auch die bereits im Stock vorhanden Menge an Pollen beeinflußt die Sammelaktivität. Bislang ist unklar, wie die Sammelbienen Information über den Pollenbedarf ihrer Kolonie erhalten und wie sie ihr Verhalten dementsprechend ändern. Meine Versuche zeigten, daß Pollensammlerinnen ihr Arbeitstempo der aktuellen Bedarfslage anpassen: Ist der Pollenbedarf der Kolonie hoch, verbringen sie wenig Zeit im Stock, ist ausreichend Pollen vorhanden, gehen sie ihrer Sammeltätigkeit langsamer nach. Während ihres Aufenthalts im Stock haben die Sammlerinnen eine Vielzahl trophallaktischer Kontakte mit anderen Bienen. Die Anzahl solcher Kontakte änderte sich mit dem Pollenbedarf der Kolonie: Bei hohem Pollenbedarf sind die trophallaktischen Kontakte kürzer und die Anzahl sehr kurzer Kontakte hoch. Diese Ergebnisse unterstützen die Hypothese, daß Änderungen in der trophallaktischen Erfahrung eine wichtige Informationsquelle über den aktuellen Pollenbedarf einer Kolonie darstellen. Das zweite Beispiel flexibler Arbeitsteilung, welches ich in dieser Arbeit untersucht habe, ist die Regulation des Nestklimas in Hummelkolonien. Dieses System unterscheidet sich von dem oben dargestellten grundlegend, da Information über Änderungen im Bedarf an Arbeitskraft jedem Koloniemitglied zugänglich ist. Jedes Koloniemitglied im Nest kann direkt erfahren wie sich das Nestklima ändert. Ich konnte zeigen, daß Hummelkolonien auf einen Temperaturanstieg und eine Zunahme der Kohlendioxidkonzentration im Nest mit Ventilationsverhalten reagieren. Einzelne Hummeln fächeln dabei mit ihren Flügeln und sorgen so für Evaporationskühlung bzw. eine verstärkte Belüftung des Nestes. Erhöhte Luftfeuchtigkeit löste diese Reaktion nicht aus. Die Anzahl fächelnder Hummeln war abhängig von den Temperatur/CO2 Werten, die Kolonie reagierte fein abgestimmt auf die aktuellen Bedingungen. Unabhängig von ihrer Größe investierten die untersuchten Kolonien einen bestimmten Anteil ihrer Arbeiterinnen in die Ventilation des Nestes. Große Kolonien unterschieden sich jedoch von kleinen Kolonien in ihrer Antwortgeschwindigkeit: Große Kolonien antworten schneller auf einen Temperatur / CO2 Anstieg als kleine. Die flexible und fein abgestimmte Kolonieantwort auf Veränderungen im Nestklima basiert auf dem Verhalten vieler Einzelindividuen. Im dritten Kapitel dieser Arbeit stellte ich aktuelle Ideen und Hypothesen zu Selbstorganisation und dem Einfluß interindividueller Variabilität auf Kolonieverhalten dar. Regulation des Nestklimas in Hummelkolonien ist ein ideales System um interindividuelle Variabilität und ihre Auswirkungen zu untersuchen. Ich konnte zum ersten Mal Unterschiede im Antwortverhalten aller an einem kollektiven Verhalten beteiligten Koloniemitglieder quantifizieren. Neben Unterschieden in Antwortschwellen, die in der Literatur zwar viel diskutiert, aber noch nie schlüssig nachgewiesen wurden, konnte ich zeigen, daß sich Arbeiterinnen einer Kolonie in zwei weiteren Parametern unterscheiden: Die Wahrscheinlichkeit auf einen Stimulus zu reagieren und die Dauer, mit der die Arbeiterinnen das Verhalten ausführen (Aktivität) ist zwischen Individuen unterschiedlich. Diese drei Parameter (Reaktionsschwelle, Antwortwahrscheinlichkeit und Aktivität) sind vermutlich unabhängige Parameter individuellen Verhaltens. Neben diesen interindividuellen Unterschieden konnte ich nachweisen, daß sich die Antwortschwellen verändern, je häufiger eine Hummel fächelt: Arbeiterinnen reagieren von Mal zu Mal auf niedrigere Stimulusintensitäten. Diese Ergebnisse sind für unser Verständnis von Arbeitsteilung und Spezialisierung bei sozialen Insekten von besonderer Bedeutung. In dieser Arbeit habe ich sowohl das Verhalten individueller Arbeiterinnen als auch die daraus resultierende kollektive Antwort der Kolonie untersucht. Es wird zunehmend deutlicher, daß dem faszinierenden Verhalten sozialer Insekten häufig nicht zentrale Informationsverarbeitung sondern Selbstorganisation zugrunde liegt.

Page generated in 0.0463 seconds