• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 3
  • 1
  • Tagged with
  • 11
  • 11
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Surface charge accumulation and partial discharge activity for small gaps of electrode/epoxy interface in sf6 gas

Okubo, Hitoshi, Mansour, Diaa-Eldin A., Kojima, Hiroki, Hayakawa, Naoki, Endo, Fumihiro 08 1900 (has links)
No description available.
2

Partial Discharges: Experimental Investigation, Model Development, and Data Analytics

Razavi Borghei, Seyyed Moein 11 February 2022 (has links)
Insulation system is an inseparable part of electrical equipment. In this study, one of the most important aging factors in insulation systems known as partial discharge (PD) is targeted. PD phenomenon has been studied for more than a century and yet new technologies still demand the investigation of PD impact. Nowadays, electrification is penetrating into various fossil-fuel-based industries such as transportation system that demands the reliability of electrical equipment under various harsh environmental conditions. Due to the lack of knowledge on the behavior of insulation systems, research in this area is intensively needed. The current study probes into the partial discharge phenomenon from two aspects and the groundwork for both aspects are provided by experimentation of multiple PD types. In the first goal, a finite-element analysis (FEA) approach is developed based on measurement data to estimate electric field distribution. The FEA model is coupled with a programming scheme to evaluate PD conditions, calculate PD metrics, and perform statistical analysis of the results. For the second target, it is aimed to use deep neural networks to identify and discriminate different sources of PD. The measurement data are used to generate thousands of phase-resolved PD (PRPD) images that will be used for training deep learning models. To meet the characteristics of the dataset, a deep residual neural network is designed and optimized to discriminate PD sources in an accurate, stable, and time-efficient way. The outcome of this research enhances the reliability of electrical apparatus through a better understanding of the PD behavior and lays a foundation for automatic monitoring of PD sources. / Doctor of Philosophy / Electrical equipment functions properly when its conductive elements are electrically insulated. The science of dealing with insulation systems has become more prominent in recent years due to the novel challenges and circumstances introduced by the rapid electrification trend. As an instance, the electrification trend in transportation systems can impose a multitude of environmental, thermal, and mechanical constraints which were not traditionally considered. These new challenges have led to an accelerated deterioration rate of insulation materials. To address this concern, this study targets the experimentation and modeling of the main aging mechanism in electrical equipment known as partial discharge (PD). A numerical model based on finite-element analysis (FEA) is developed that agrees with the test results and can accurately predict the aging of insulating materials due to the PD phenomenon. Moreover, the growing interest toward electrification of the aviation industry (as a response to the climate change crisis) requires the study of insulating materials under low-pressure (high-altitude) conditions. Theoretical and experimental data confirm the more frequent occurrence of PDs and their higher intensity under low-pressure conditions. Safety of operation is the highest priority in airborne transportation, yet no study has addressed the condition monitoring system as a necessary asset of the electric aircraft. To address this research gap, this work develops a dielectric online condition monitoring system (DOCMS) that actively monitors the deterioration level of insulation using deep learning methods. Based on standardized measurements under low-pressure conditions, the data are preprocessed to train the deep neural network with the pattern of PD activities. The proposed scheme can achieve >82% with short-term signals emitted measured from the system.
3

The Modeling of Partial Discharge under Fast, Repetitive Voltage Pulses Using Finite-Element Analysis

Razavi Borghei, Seyyed Moein 04 1900 (has links)
By 2030, it is expected that 80% of all electric power will flow through power electronics systems. Wide bandgap power modules that can tolerate higher voltages and currents than silicon-based modules are the most promising solution to reducing the size and weight of power electronics systems. These wide-bandgap power modules constitute powerful building blocks for power electronics systems, and wide bandgap-based converter/power electronics building blocks are envisaged to be widely used in power grids in low- and medium-voltage applications and possibly in high-voltage applications for high-voltage direct current and flexible alternating current transmission systems. One of the merits of wide bandgap devices is that their slew rates and switching frequencies are much higher than silicon-based devices. However, from the insulation side, frequency and slew rate are two of the most critical factors of a voltage pulse, influencing the level of degradation of the insulation systems that are exposed to such voltage pulses. The shorter the rise time, the shorter the lifetime. Furthermore, lifetime dramatically decreases with increasing frequency. Thus, although wide bandgap devices are revolutionizing power electronics, electrical insulating systems are not prepared for such a revolution; without addressing insulation issues, the electronic power revolution will fail due to dramatically increased failure rates of electrification components. In this regard, internal partial discharges (PDs) have the most effect on insulation degradation. Internal PDs which occur in air-filled cavities or voids are localized electrical discharges that only partially bridge the insulation between conductors. Voids in solid or gel dielectrics are challenging to eliminate entirely and may result simply during manufacturing process. The objective of this study is to develop a Finite-Element Analysis (FEA) PD model under fast, repetitive voltage pulses, which has been done for the first time. The model is coded and implemented in COMSOL Multiphysics linked with MATLAB, and its simulation results are validated with experimental tests. Using the model, the influence of different parameters including void shape, void size, and void air pressure on PD parameters are studied. / M.S. / To decarbonize and reduce energy consumption for commercial aviation, the development of lightweight and ultra-efficient all-electric powertrain including electric motors, drives, and associated thermal management systems has been targeted. Using wide bandgap (WBG) power modules that can tolerate high voltages and currents can reduce the size and weight of the drive. However, the operation of WBG-based power converter can endanger the reliability of the electrified systems, most importantly, the insulation system. In this study, it is attempted to model the impact of such threats to the insulation system using numerical models.
4

Posouzení vlivu provedení zateplení bytového domu v Třebíči na výdaje spojené s provozem této nemovitosti / Assessment of the Impact of Thermal Insulation Performance of a Residential Building in Trebic on Running Expenses of this Property

Kostíková, Veronika January 2012 (has links)
This thesis evaluates the influence of thermal insulation of residential building design for expenses associated with operating the property. The thesis first analyzes the current problems in our panel construction, basic concepts related to energy performance of buildings and methods of supplying heat to the building. Is discussed in more detail the way the building insulation using ETICS. In assessing the economic returns are two options proposed austerity measures. The work includes Energy Performance Certificate apartment house, on the basis of the assessed amount of energy saved for the variations of thermal insulation. Both variants are also measured by isolating the needs for economic evaluation. The conclusion assesses the turnaround time of each action.
5

Studies on Electrical Treeing in High Voltage Insulation Filled with Nano-Sized Particles

Alapati, Sridhar January 2012 (has links) (PDF)
Polymers are widely used as insulating materials in high voltage power apparatus because of their excellent electrical insulating properties and good thermomechanical behavior. However, under high electrical stress, polymeric materials can get deteriorated which can eventually lead to the failure of the insulation and thereby the power apparatus. Electrical treeing is one such phenomena whereby dendritic paths progressively grow from a region of high electrical stress and branch into conducting channels in a solid dielectric. The propagation of electrical trees is of particular interest for the power industry as it is one of the major causes of failure of high voltage insulation especially in high voltage cables, cast resin transformers as well as rotating machines. To improve the life time of the electrical insulation systems there is a need to improve the electrical treeing resistance of the insulating material for high voltage application. With the development of nanotechnology, polymer nanocomposites containing nano sized particles have drawn much attention as these materials are found to exhibit unique combinations of physical, mechanical and thermal properties that are advantageous as compared to the traditional polymers or their composites. Literature reveals that significant progress has been made with respect to the mechanical, optical, electronic and photonic properties of these functional materials. Some efforts have also been directed towards the study of dielectric/electrical insulation properties of these new types of materials. Considering the above facts, the present research work focuses on utilizing these new opportunities which have been opened up by the advent of nanocomposites to develop tree resistant insulating materials for high voltage power applications. Electrical treeing is a common failure mechanism in most of the polymeric insulation systems and hence electrical treeing studies have been carried out on two types of polymers (viz. polyethylene used in high voltage cable and epoxy used in rotating machines and resin cast transformers) along with three different types of nano-fillers, viz. Al2O3, SiO2 and MgO and with different filler loadings (0.1, 1, 3, 5 wt%). Furthermore, considering the fact that electrical treeing is a discharge phenomenon, the partial discharge characteristics during electrical tree growth in polymer nanocomposites was studied. As morphological changes in the polymer influence the electrical tree growth, the influence of nano-particle induced morphological changes on the electrical treeing has also been studied. Above all, an attempt has also been made to characterize and analyze the interaction dynamics at the interface regions in the polymer nanocomposite and the influence of these interface regions on the tree growth phenomena in polymer nanocomposites. A laboratory based nanocomposite processing method has been successfully designed and adopted to prepare the samples for treeing studies. Treeing experimental results show that there is a significant improvement in tree initiation time as well as tree inception voltage with nano-filler loading in polymer nanocomposites. It is observed that even with the addition of a small amount (0.1 and 1 % by weight) of nano-particles to epoxy results in the improvement of electrical treeing resistance as compared to the unfilled epoxy. In fact, different tree growth patterns were observed for the unfilled epoxy and epoxy nanocomposites. Surprisingly, even though there is not much improvement in tree inception time, a saturation tendency in tree growth with time was observed at higher filler loadings. To understand the influence of nano-particles on electrical treeing, the interaction dynamics in the epoxy nanocomposites were studied and it was shown that the nature of the bonding at the interface play an important role on the electrical tree growth in epoxy nanocomposites. The results of electrical treeing experiments in polyethylene nanocomposites obtained in this study also reveal some interesting findings. An improved performance of polyethylene against electrical treeing with the inclusion of nano-fillers is observed. It is observed that there is a significant improvement in the tree inception voltage even with low nano-filler loadings in polyethylene. Other interesting results such as change in tree growth pattern from branch to bush as well as slower tree growth with increase in filler loading were also observed. Another peculiar observation is that tree inception voltage increased with increase in filler loading upto a certain filler loadings (3 % by weight) and then decreased in its value at high filler loading. The morphology of polyethylene nanocomposites was studied and a good correlation between morphological changes and treeing results was observed. Effect of cross-linking on electrical treeing has also been studied and a better performance of cross-linking of nano-filled polyethylene samples as compared to the polyethylene samples without cross-linking was observed. The partial discharge (PD) activity during electrical tree growth was monitored and different PD characteristics for unfilled and nano-filled polyethylene samples were observed. Interestingly, a decrease in PD magnitude as well as the number of PD pulses with electrical tree growth in polyethylene nanocomposites was observed. It is known that PD activity depends on the tree channel conductivity, charge trapping and gas pressure inside the tree channel. The ingress of nano-particles into the tree channel influences the above known phenomena and affects the PD activity during electrical tree growth. The observed decrease in PD magnitude with increase in filler loading leads to the slow propagation of electrical trees in polyethylene nanocomposites. In summary, it can be concluded that polymer nanocomposites performed better against electrical treeing as compared to the unfilled and the conventional micron sized filled polymer composites. Even with low filler loading an improved electrical treeing resistance was observed in polymer nanocomposites. An optimum filler loading and a suitable filler to inhibit electrical treeing in the polymers studied are proposed. This work also establishes the fact that the characteristics of the interface region and the induced morphological changes have a strong influence on the electrical treeing behaviors of nanocomposites. These encouraging results showed that epoxy and polyethylene nanocomposites can be used as tree resistant insulating materials for high voltage applications. These results also contribute to widen the scope of applications of polymer nanocomposites in electrical power sector as well as development of multifunctional insulation systems.
6

Méthode de conception des bobinages des actionneurs électriques adaptés aux nouvelles contraintes de l'avionique / Deisgn method for electrical actuators windings for new aeronautical requirements

Moeneclaey, Julien 23 February 2015 (has links)
Le développement d’avions plus électriques se traduit par une plus grande utilisation d'actionneurs électriques qui remplacent des systèmes hydrauliques et pneumatiques existants ou répondent à de nouveaux besoins. La distribution de l'énergie à bord est basée sur un réseau continu 540V connecté à des convertisseurs électroniques de puissance. Les composants électroniques de puissance à grands gaps (SiC, GaN) améliorent les performances des convertisseurs mais les fronts de tension très raides sont imposés aux bobinages des actionneurs électriques. Chaque front excite un régime transitoire comportant une surtension importante et donc des champs électriques intenses dans l’isolation inter-spires des bobines. Lorsque cette contrainte électrique répétitive dépasse le seuil d'apparition des décharges partielles (PDIV), la durée de vie des couches organiques qui isolent les spires est fortement réduite. L'étude détaillée des décharges partielles (DP) dans l'espace qui sépare les fils émaillés des bobinages permet de situer les zones dans lesquelles les DP se produisent. Elle montre que le thermocollage, avec des surépaisseurs adaptées de thermocolle, permet d'élever le PDIV au-delà des pointes répétitives de tension pour les actionneurs qui fonctionnent dans les parties pressurisées des avions. Des solutions ordonnées de bobinages ont été expérimentées sur des bobines cylindriques imprégnées. Cette analyse montre que l'imprégnation augmente légèrement le PDIV de l'isolation inter-spires dans des proportions qui ne correspondent pas totalement aux caractéristiques intrinsèques du vernis utilisé. Par conséquent, les bobines imprégnées doivent être conçues sur la base des performances de l'isolation primaire du fil émaillé. L’arrangement des spires dans une bobine ordonnée permet de répartir les contraintes et donc de concevoir des bobines qui résistent aux pointes de tension répétitives imposées par l'onduleur aux basses pressions correspondant aux zones non pressurisées d'un avion en vol. Un modèle, basé sur un schéma équivalent HF prenant en considération les deux premières résonances des bobines élémentaires, permet d'analyser la répartition des contraintes entre les bobines connectées en série d'une phase. / The More Electric Aircraft development is reflected by a bigger use of the electrical actuators, which replace the hydraulic or pneumatic system existing or they can also answer to new needs. The energy distribution on board is based on a high voltage continuous bus of 540V connected to electrical power converter. The electric power wide band gap components (SiC, GaN) improve the converters performances but very steep of voltage edge is imposed on the windings of the electric actuators. Each edge excites a transitory regime including an important surge which corresponds to intense electric fields in the inter-turns insulation of coils. When this repetitive electrical constraint exceeds the partial discharges inception voltage (PDIV), the life time of the organic layer between the turns is strongly reduced. The detailed study of the partial discharges (PD) in the area which separate the enamel wire of the windings allows to locate the area where the PD appears. The use of thermo-bonding, with a bonding thickness adapted, allows to raise PDIV beyond the repetitive edge of voltage for the actuators which work in the pressurized parts of the planes. The orderly windings solutions were tested on impregnated cylindrical coils. This analysis shows that the impregnation increases slightly the PDIV from the inter-turns insulation in proportions that do not totally correspond to the intrinsic characteristics of the used varnish. Therefore, the impregnated coils must be conceived on the basis of the primary insulation performance of the enamelled wire. The turn’s arrangement in an orderly coil allows to distribute the constraints and so to conceive the windings which can resist the compulsory repetitive of voltage spikes by the inverter in low pressures corresponding to not pressurized zones in a plane during the flight. A model, based on HF equivalent schema taking in consideration the first two resonances of the elementary coils, allows to analyse the constraints distribution between the coils connected in series of a machine phase.
7

Studies On The Dielectric And Electrical Insulation Properties Of Polymer Nanocomposites

Singha, Santanu 07 1900 (has links)
Today, nanotechnology has added a new dimension to materials technology by creating opportunities to significantly enhance the properties of existing conventional materials. Polymer nanocomposites belong to one such class of materials and even though they show tremendous promise for dielectric/electrical insulation applications (“nanodielectrics” being the buzzword), the understanding related to these systems is very premature. Considering the desired research needs with respect to some of the dielectric properties of polymer nanocomposites, this study attempts to generate an understanding on some of the existing issues through a systematic and detailed experimental investigation coupled with a critical analysis of the data. An epoxy based nanocomposite system is chosen for this study along with four different choices of nano-fillers, viz. TiO2, Al2O3, ZnO and SiO2. The focus of this study is on the properties of nanocomposites at low filler loadings in the range of 0.1 - 5% by weight and the properties under investigation are the permittivity/tan delta behaviors, DC volume resistivity, AC dielectric strength and electrical discharge resistant characteristics. Significant efforts have also been directed towards addressing the interface interaction phenomena in epoxy nanocomposites and their subsequent influence on the dielectric properties of the material. The accurate characterization of the dielectric properties for polymer nanocomposites depends on the dispersion of nanoparticles in the polymer matrix and to achieve a good dispersion of nanoparticles in the epoxy matrix for the present study, a systematic design of experiments (DOE) is carried out involving two different processing methods. Consequently, a laboratory based epoxy nanocomposite processing methodology is proposed in this thesis and this process is found to be successful in dispersing nanoparticles effectively in the epoxy matrix, especially at filler concentrations lower than 5% by weight. Nanocomposite samples for the study are prepared using this method and a rigorous conditioning is performed before the dielectric measurements. The dielectric properties of epoxy nanocomposites obtained in the present study show interesting and intriguing characteristics when compared to those of unfilled epoxy and microcomposite systems and few of the results are unique and advantageous. In an unexpected observation, the addition of nanoparticles to epoxy is found to reduce the value of nanocomposite real permittivity below that of unfilled epoxy over a wide range of frequencies. Similarly, it has been observed that irrespective of the filler type, tan delta values in the case of nanocomposites are either same or lower than the value of unfilled epoxy up to a filler loading of 5% by weight, depending on the frequency and filler concentration. In fact, the nanocomposite real permittivities and tan delta values are also observed to be lower as compared to the corresponding microcomposites of the same constituent materials at the same filler loading. In another significant result, enhancements in the electrical discharge resistant characteristics of epoxy nanocomposites (with SiO2/Al2O3 nanoparticles) are observed when compared to unfilled epoxy, especially at longer durations of discharge exposures. Contrary to these encouragements observed for few of the dielectric properties, the trends of DC volume resistivity and AC dielectric breakdown strength characteristics in epoxy nanocomposites are found to be different. Irrespective of the type of filler in the epoxy matrix, it has been observed that the values of both AC dielectric strengths and DC volume resistivities are lower than that of unfilled epoxy for the filler loadings investigated. The results mentioned above seem to suggest that there has to be an interaction between the nanoparticles and the epoxy chains in the nanocomposite and therefore, glass transition temperature (Tg) measurements are performed to characterize the interaction phenomena, if any. The results of Tg for all the investigated nanocomposites also show interesting trends and they are observed to be lower than that of unfilled epoxy up to certain nanoparticle loadings. This lowering of the Tg in epoxy nanocomposites was not observed in the case of unfilled and microcomposite systems thereby strongly confirming the fact that there exists an interaction between the epoxy chains and nanoparticles in the nanocomposite. Considering the variations obtained for the nanocomposite real permittivity and Tg with respect to filler loading, a dual nanolayer interface model is utilized to explain the interaction dynamics and according to the model, interactions between epoxy chains and nanoparticles lead to the formation of two epoxy nanolayers around the nanoparticle. Analysis shows that the characteristics of the interface region have a strong influence on the dielectric behaviors of the nanocomposites and the suggested interface model seems to fit the characteristics obtained for the different dielectric/electrical insulation properties rather well. Further investigations are performed to understand the nature of interaction between nanoparticles and epoxy chains through FTIR studies and results show that there is probably an occurrence of hydrogen bonding between the epoxide groups of the epoxy resin and the free hydroxyl (OH) groups present on the nanoparticle surfaces. The results obtained for the dielectric properties of epoxy nanocomposites in this study have widened the scope of applications of these functional materials in the electrical sector. The occurrence of lower values of real permittivity for nanocomposites is definitely unique and unexpected and this result has huge potential in electronic component packaging applications. Further, the advantages related to tan delta and electrical discharge resistance for these materials carry lot of significance since, electrical insulating materials with enhanced electrical aging properties can be designed using nanocomposite technology. Although the characteristics of AC dielectric strengths and DC volume resistivities are not found to be strictly advantageous for epoxy nanocomposites at the investigated filler loadings, these properties can be optimized when designing insulation systems for practical applications. In spite of all these advantages, serious and systematic research efforts are still desired before these materials can be successfully utilized in electrical equipment.
8

Étude de l’amélioration de la performance énergétique de bâtiments due à l’emploi d’enduit minéral à fort pouvoir isolant / Improving the buildings envelopes energy performance using aerogel-based insulating mineral rendering

Ibrahim, Mohamad 19 December 2014 (has links)
En France, le secteur du bâtiment est le plus grand consommateur d'énergie et représente environ 43% de la consommation totale d'énergie. L'isolation thermique dans le bâtiment est nécessaire afin d'améliorer son efficacité énergétique. Dans certains pays dont la France, la rénovation des bâtiments occupe une place essentielle dans la stratégie de transition énergétique. La stratégie mise en place consiste donc à renforcer l'isolation thermique des enveloppes de bâtiment et ceci en perdant le moins de surface habitable possible. Ceci justifie le fait de développer et de mettre en œuvre à l'avenir des matériaux super isolants comme les aérogels. Les objectifs de cette étude sont d'examiner le comportement thermique des bâtiments et d'étudier l'amélioration possible de leur efficacité énergétique en utilisant un nouvel enduit isolant à base d'aérogels de silice et ainsi que l'énergie solaire. Tout d'abord, la performance thermique et hygrothermique des murs extérieurs est étudiée afin de trouver la meilleure structure de ces murs. Deuxièmement, nous étudions l'évolution du confort thermique et du comportement énergétique des maisons en adoptant le nouvel enduit isolant comme isolation extérieure. Cette évolution a aussi été représentée par un modèle mathématique. On a comparé les résultats obtenus à l'aide de ces modèles avec les mesures expérimentales faites sur une maison récemment construite. Enfin, le potentiel de réduction de la charge de chauffage en adoptant un système actif dans la paroi est analysé. Ce système est proposé pour capter une partie de l'énergie solaire qui tombe sur la façade sud et qui est disponible pendant les journées non nuageuses en hiver, et la transférer vers la façade nord par l'intermédiaire de canalisations d'eau intégrées dans l'enduit isolant objet de l'étude. / In France, the building sector is the largest consumer of energy and accounts for about 43% of the total energy consumption. The building sector offers significant potential for improved energy efficiency through the use of high-performance insulation and energy-efficient systems. For existing buildings, renovation has a high priority in France because these buildings represent a high proportion of energy consumption and they will be present for decades to come. Nowadays, there is a growing interest in the so-called super-insulating materials, such as Aerogels. The objectives of this study are to examine the thermal behavior of buildings and to foster energy efficiency through the use of a newly developed aerogel-based insulating coating as well as the use of renewable energy sources, specifically solar energy. Firstly, the thermal and hygrothermal performance of exterior walls having different layer composition structures are examined. Secondly, the heating energy demand as well as the risk of summer overheating is examined for different construction periods and under different climates. Also, a mathematical model is built and compared to experimental measurement of a recently built full-scale house. Finally, the potential to decrease the heating load by adopting a closed wall loop system is scrutinized. The latter is a proposed system to capture some of the solar energy falling on the south facade available during non-cloudy winter days and transfer it to the north facade through water pipes embedded in the aerogel-based coating.
9

Studies On Epoxy Nanocomposites As Electrical Insulation For High Voltage Power Apparatus

Preetha, P 08 1900 (has links) (PDF)
High voltage rotating machines play a significant role in generation and use of electrical energy as the demand for power continues to increase. However, one of the main causes for down times in high voltage rotating machines is related to problems with the winding insulation. The utilities want to reduce costs through longer maintenance intervals and a higher lifetime of the machines. These demands create a challenge for the producers of winding insulations, the manufacturers of high voltage rotating machines and the utilities to develop new insulation materials which can improve the life of the equipment and reduce the maintenance cost. The advent of nanotechnology in recent times has heralded a new era in materials technology by creating opportunities to significantly enhance the properties of existing conventional materials. Polymer nanocomposites belong to one such class of materials that exhibit unique combinations of physical, mechanical and thermal properties which are advantageous as compared to the traditional polymers or their composites. Even though they show tremendous promise for dielectric/electrical insulation applications, there are no studies relating to the long term performance as well as life estimation of the nanocomposites. Considering this, an attempt is made to generate an understanding on the feasibility of these nanocomposites for electrical insulation applications. An epoxy based nanocomposite system is chosen for this study along with alumina (Al2O3) and silica (SiO2) as the nanofillers. The first and the foremost requirement for studies on polymer nanocomposites is to achieve a uniform dispersion of nanoparticles in the polymer matrix, as nanoparticles are known to agglomerate and form large particle sizes. A laboratory based direct dispersion method is used to process epoxy nanocomposites in order to get well dispersed samples. A detailed microscopy analysis of the filler dispersion using Scanning Electron Microscope (SEM) has been carried out to check the dispersion of the nanofiller in the polymer. An attempt is made to characterize and analyze the interaction dynamics at the interface regions in the epoxy nanocomposite by glass transition temperature (Tg) measurements and Fourier transform infrared (FTIR) spectroscopy studies. The values of Tg for the nanocomposites studied decreases at 0.1 wt% filler loading and then starts to increase gradually with increase in filler loading. This Tg variation suggests that there is certainly an interaction between the epoxy chains and the nanoparticles. Also no new chemical bonds were observed in the spectra of epoxy nanocomposite as compared to unfilled epoxy. But changes were observed in the peak intensity and width of the –OH band in the spectrum of epoxy nanocomposite. This change was due to the formation of the hydrogen bonding between the epoxy and the nanofiller. The thermal conductivity of the epoxy alumina and the epoxy silica nanocomposites increased even with the addition of 0.1 wt% of the filler. This increase in thermal conductivity is one of the factors that make these nanocomposites a better option for electrical insulation applications. The dielectric properties of epoxy nanocomposites obtained in this investigation also reveal few interesting behaviors which are found to be unique and advantageous as compared to similar properties of unfilled materials. It is observed that the addition of fillers of certain loadings of nanoparticles to epoxy results in the nanocomposite permittivity value to be lower than that of the unfilled epoxy over the entire range of frequencies [10-2-106 Hz] considered in this study. This reduction has been attributed to the inhibition of polymer chain mobility caused by the addition of the nanoparticles. The tan values are almost the same or lower as compared to the unfilled epoxy for the different filler loadings considered. This behavior is probably due to the influence of the interface as the strong bonding at the interface will make the interface very stable with fewer defects apart from acting as charge trapping centres. From a practical application point of view, the surface discharge resistant characteristics of the materials are very important and this property has also been evaluated. The resistance to surface discharge is measured in the form of roughness on the surface of the material caused by the discharges. A significant enhancement in the discharge resistance has been observed for nanocomposites as compared to unfilled epoxy/ microcomposites, especially at longer exposure durations. The partial discharge (PD) measurements were carried out at regular intervals of time and it is observed that the PD magnitude reduced with discharge duration in the case of epoxy alumina nanocomposites. An attempt was made to understand the chemical changes on the surface by conducting the FTIR studies on the aged surface. For all electrical insulation applications, materials having higher values of dielectric strengths are always desired and necessary. So AC breakdown studies have also been conducted. The AC breakdown strength shows a decreasing trend up to a certain filler loading and then an increase at 5 wt% filler loading for epoxy alumina nanocomposites. It has been also observed that the type of filler as well as the thickness of the filler influences the breakdown strength. The AC dielectric strength of microcomposites are observed to be lower than the nanocomposites. Extensive research by long term aging studies and life estimation are needed before these new nanocomposites can be put into useful service. So long term aging studies under combined electrical and thermal stresses have been carried out on unfilled epoxy and epoxy alumina nanocomposite samples of filler loading 5 wt%. The important dielectric parameters like pemittivity, tan  and volume resistivity were measured before and after aging to understand the performance of the material under study. The leakage current was measured at regular intervals and tan  values were calculated with duration of aging. It was observed that the tan  values increased drastically for unfilled epoxy for the aging duration considered as compared to epoxy alumina nanocomposites. The life estimation of unfilled epoxy as well as epoxy nanocomposites were also performed by subjecting the samples to different stress levels of 6 kV/mm, 7 kV/mm and 8 kV/mm at 60 oC. It is observed that the epoxy alumina nanocomposite has an enhanced life which is nine times the life of the unfilled epoxy. These results obtained for the nanocomposites enable us to design a better material with improved dielectric strength, dielectric properties, thermal conductivity, resistance to surface discharge degradation and enhanced life without sacrificing the flexibility in the end product and the ease of processing. Dry type transformers and stator winding insulation need to be cast with the above material developed and tested before practically implementing these in the actual application.
10

Polyfunkční dům / Multifunctional House

Šimek, Pavel January 2014 (has links)
Master´s thesis is designed as a complete documentation of a multifunctional house. The multifunctional house is located in the town Nová Paka and functionally designed as a restaurant, garages and 8 flats. Built-up area is 886.95 square meters. The building is covered with a flat roof. The supporting structure is designed prefabricated reinforced concrete frame. Infill walls are made of clay blocks Porotherm. The house is insulated contact system ETICS. The thesis contains a static layout, fire safety, energy saving and safety in use. Drawings were processed with software for design - ArchiCAD.

Page generated in 0.114 seconds