51 |
Integrable deformations of principal chiral models and the AdS/CFT correspondence / 主カイラル模型の可積分変形とAdS/CFT対応Kawaguchi, Io 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18066号 / 理博第3944号 / 新制||理||1568(附属図書館) / 30924 / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 川合 光, 教授 國廣 悌二, 教授 畑 浩之 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
52 |
Studies on Matrix Eigenvalue Problems in Terms of Discrete Integrable Systems / 離散可積分系による行列固有値問題の研究Akaiwa, Kanae 24 September 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第19341号 / 情博第593号 / 新制||情||103(附属図書館) / 32343 / 京都大学大学院情報学研究科数理工学専攻 / (主査)教授 中村 佳正, 教授 矢ケ崎 一幸, 教授 西村 直志 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
|
53 |
Studies on Non-autonomous Discrete Hungry Integrable Systems Associated with Some Eigenvalue Problems / 固有値問題に関連する非自励型離散ハングリー可積分系の研究Shinjo, Masato 25 September 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第20739号 / 情博第653号 / 新制||情||113(附属図書館) / 京都大学大学院情報学研究科数理工学専攻 / (主査)教授 中村 佳正, 教授 山下 信雄, 教授 西村 直志 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
|
54 |
Integrability of Boltzmann's discontinuous gravitational system / Integrabilitet i Boltzmanns diskontinuerliga gravitationssystemBoman, Frode January 2021 (has links)
A dynamical system originally invented by Boltzmann has had recent developments. The system consists of a particle in a gravitational potential with an added centrifugal force, which is subject to reflection against a wall that separates the system from the gravitational center. The recent developments are with regards to the integrability of the system in the special case of vanishing centrifugal term. The purpose of this essay is to explicate these developments. / Ett dynamiskt system, ursprungligen uppfunnet av Boltzmann, har nyligen sett utvecklingar. Systemet består av en partikel i en gravitationspotential med en tillagd centrifugalkraft, som reflekterar vid kontakt med en vägg som skiljer partikeln och gravitationscentrumet. De nya utvecklingarna är inom systemets integrabilitet i det specialfall att centrifugalkraften är borttagen. Syftet med denna uppsats är att explicera dessa framtaganden.
|
55 |
Computation and Physics in Algebraic GeometryFevola, Claudia 17 July 2023 (has links)
Physics provides new, tantalizing problems that we solve by developing and implementing innovative and effective geometric tools in nonlinear algebra. The techniques we employ also rely on numerical and symbolic computations performed with computer algebra.
First, we study solutions to the Kadomtsev-Petviashvili equation that arise from singular curves. The Kadomtsev-Petviashvili equation is a partial differential equation describing nonlinear wave motion whose solutions can be built from an algebraic curve. Such a surprising connection established by Krichever and Shiota also led to an entirely new point of view on a classical problem in algebraic geometry known as the Schottky problem. To explore the connection with curves with at worst nodal singularities, we define the Hirota variety, which parameterizes KP solutions arising from such curves. Studying the geometry of the Hirota variety provides a new approach to the Schottky problem. We investigate it for irreducible rational nodal curves, giving a partial solution to the weak Schottky problem in this case.
Second, we formulate questions from scattering amplitudes in a broader context using very affine varieties and D-module theory. The interplay between geometry and combinatorics in particle physics indeed suggests an underlying, coherent mathematical structure behind the study of particle interactions. In this thesis, we gain a better understanding of mathematical objects, such as moduli spaces of point configurations and generalized Euler integrals, for which particle physics provides concrete, non-trivial examples, and we prove some conjectures stated in the physics literature.
Finally, we study linear spaces of symmetric matrices, addressing questions motivated by algebraic statistics, optimization, and enumerative geometry. This includes giving explicit formulas for the maximum likelihood degree and studying tangency problems for quadric surfaces in projective space from the point of view of real algebraic geometry.
|
56 |
QCD at High Energies and Yangian SymmetryKirschner, Roland 06 April 2023 (has links)
Yangian symmetric correlators provide a tool to investigate integrability features of
QCD at high energies. We discuss the kernel of the equation of perturbative Regge asymptotics,
the kernels of the evolution equation of parton distributions, Born scattering amplitudes and
coupling renormalization.
|
57 |
Studies on Discrete Integrable Systems with Positivity and Their Applications / 正値性を持つ離散可積分系とその応用についてKobayashi, Katsuki 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(情報学) / 甲第24038号 / 情博第794号 / 新制||情||134(附属図書館) / 京都大学大学院情報学研究科数理工学専攻 / (主査)准教授 辻本 諭, 教授 梅野 健, 教授 矢ヶ崎 一幸 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
|
58 |
Integrable chains with Jordan - Schwinger representationsKirschner, Roland 01 August 2022 (has links)
The restiction to the class of Jordan - Schwinger representations of s`(n+1) results
in simple relations for the L matrices and in explicit expressions for the general Yang-Baxter
operators as products of two parameter permutation operators. Limits are studied which are
related to the finite dimensional representations and to degenerate Yangians. The analogy to
the s`(2) case leads to analogous forms of global spin chain operators.
|
59 |
Solitons et comportement asymptotique des solutions en grand temps pour l'équation de Novikov-VeselovKazeykina, Anna 03 December 2012 (has links) (PDF)
Ce travail est consacré à l'étude de l'équation de Novikov-Veselov, un analogue ( 2 + 1 )-dimensionnel de l'équation renommée de Korteweg-de Vries, intégrable via la transformée de la diffusion inverse pour l'équation de Schrödinger stationnaire en dimension 2 à énergie fixe. Nous commençons par étudier une classe spéciale de solutions rationnelles non singulières de l'équation de Novikov-Veselov à énergie positive, construites par Grinevich et Zakharov, et nous démontrons que ces solutions sont multisolitons. Les solutions de Grinevich-Zakharov sont localisées comme $ O( | x |^{ -2 } ) $, $ | x | \to \infty $, et dans le travail présent, nous prouvons que cette localisation est presque la plus forte possible pour les solitons de l'équation de Novikov-Veselov: nous montrons que l'équation de Novikov-Veselov à énergie non nulle ne possède pas de solitons localisés plus fort que $ O ( | x |^{ - 3 } ) $, $ | x | \to \infty $. Pour le cas d'énergie zéro, nous montrons que si les solitons de l'équation de Novikov-Veselov appartiennent à l'image des solutions de l'équation de Novikov-Veselov modifiée sous la transformation de Miura, dans ce cas, la localisation plus forte que $ O( | x |^{ -2 } ) $ n'est pas possible. Dans le travail présent, nous étudions également la question du comportement asymptotique des solutions du problème de Cauchy pour l'équation de Novikov-Veselov à énergie non nulle (pour le cas d'énergie positive, les solutions transparentes ou " reflectionless " sont considérées). Sous l'hypothèse de non singularité des données de diffusion des solutions nous obtenons que ces solutions décroissent avec le temps de façon uniforme comme $ O( t^{ -1 } ) $, $ t \to +\infty $, dans le cas d'énergie positive et comme $ O( t^{ -3/4 } ) $, $ t \to +\infty $, dans le cas d'énergie négative; dans ce dernier cas, nous démontrons également que l'estimation obtenue est optimale.
|
60 |
A Characterization Theorem for Local Operators in Factorizing Scattering Models / Ein Theorem über die Charakterisierung lokaler Operatoren in Modellen mit faktorisierender StreumatrixCadamuro, Daniela 26 October 2012 (has links)
No description available.
|
Page generated in 0.0594 seconds