• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 6
  • Tagged with
  • 12
  • 12
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Integral de Kurzweil para funções a valores em um espaço de Riesz - uma introdução / Kurzweil integral for functions with values in a Riesz space - an introduction

Monteiro, Giselle Antunes 03 August 2007 (has links)
Neste trabalho estudamos a integral de Kurzweil para funções definidas em um intervalo fechado limitado da reta e a valores em um espaço de Riesz. Apresentamos algumas propriedades básicas dessa integral e teoremas que relacionam a convergência uniforme de uma seqüência de funções Kurzweil integráveis com a convergência da seqüência formada pelas respectivas integrais. / In this work we study the Kurzweil integral for functions defined in a compact interval and with values in a Riesz space. We present some elementary properties for this integral and we prove theorems that relate the uniform convergence of a sequence of Kurzweil integrable functions to the convergence of the sequence of their integrals.
2

Integral de Kurzweil para funções a valores em um espaço de Riesz - uma introdução / Kurzweil integral for functions with values in a Riesz space - an introduction

Giselle Antunes Monteiro 03 August 2007 (has links)
Neste trabalho estudamos a integral de Kurzweil para funções definidas em um intervalo fechado limitado da reta e a valores em um espaço de Riesz. Apresentamos algumas propriedades básicas dessa integral e teoremas que relacionam a convergência uniforme de uma seqüência de funções Kurzweil integráveis com a convergência da seqüência formada pelas respectivas integrais. / In this work we study the Kurzweil integral for functions defined in a compact interval and with values in a Riesz space. We present some elementary properties for this integral and we prove theorems that relate the uniform convergence of a sequence of Kurzweil integrable functions to the convergence of the sequence of their integrals.
3

Generalized linear differential equations in a Banach space: continuous dependence on parameters and applications / Equações diferenciais generalizadas lineares em espaços de Banach: dependência contínua com relação a parâmetros e aplicações

Giselle Antunes Monteiro 14 February 2012 (has links)
The purpose of this work is to investigate continuous dependence on parameters for generalized linear differential equations in a Banach space- valued setting. More precisely, we establish a theorem inspired by the clas- sical continuous dependence result due to Z. Opial. In addition, our second outcome extends, to Banach spaces, the result proved by M. Ashordia in the framework of finite dimensional generalized linear differential equations. Roughly speaking, the continuous dependence derives from assumptions of uniform convergence of the functions in the right-hand side of the equations, together with the uniform boundedness of variation of the linear terms. Fur- thermore, applications of these results to dynamic equations on time scales and also to functional differential equations are proposed. Besides these results on continuous dependence, we complete the theory of abstract Kurzweil-Stieltjes integration so that it is well applicable for our purposes in generalized linear differential equations. In view of this, our contributions are related not only to differential equations but also to the abstract Kurzweil-Stieltjes integration theory itself. The new results presented in this work are contained in the papers [26] and [27], both accepted for publication / O objetivo deste trabalho é investigar a dependência contínua de soluções em relação a parâmetros para equações diferenciais lineares generalizadas no contexto de espaços de Banach. Mais precisamente, apresentamos um teo- rema inspirado no resultado clássico de dependência contínua obtido por Z. Opial. Nosso segundo resultado estende, para espaços de Banach, o provado por M. Ashordia no contexto de equações diferenciais lineares gen- eralizadas em dimensão finita. Em linhas gerais, a dependência contínua decorre da convergência uniforme das funções à direita das equações, junta- mente com a limitação uniforme da variação dos termos lineares. No mais, são propostas aplicações desses resultados em equações dinâmicas em escalas temporais e também em equações diferenciais funcionais. Além dos resultados em dependência contínua, completamos à teoria de integração abstrata de Kurzweil-Stieltjes de modo que esta se adeque aos nossos propósitos em equações diferenciais lineares generalizadas. Assim, nossas contribuições dizem respeito não apenas a equações diferenciais, mas também a teoria de integração abstrata de Kurzweil-Stieltjes em si. Os resultados originais apresentados neste trabalho estão contidos nos artigos [26] e [27], ambos aceitos para publicação
4

Integral equations in the sense of Kurzweil integral and applications / Equações integrais no sentido da integral de Kurzweil e aplicações

Marques, Rafael dos Santos 25 July 2016 (has links)
Being part of a research group on functional differential equations (FDEs, for short), due to my formation in non-absolute integration theory and because certain kinds of FDEs can be expressed as integral equations, I was motivated to investigate the latter. The purpose of this work, therefore, is to develop the theory of integral equations, when the integrals involved are in the sense of Kurzweil- Henstock or Kurzweil-Henstock-Stieltjes, through the correspondence between solutions of integral equations and solutions of generalized ordinary differential equations (we write generalized ODEs, for short). In order to be able to obtain results for integral equations, we propose extensions of both the Kurzweil integral and the generalized ODEs (found in [36]). We develop the fundamental properties of this new generalized ODE, such as existence and uniqueness of solutions results, and we propose stability concepts for the solutions of our new class of equations. We, then, apply these results to a class of nonlinear Volterra integral equations of the second kind. Finally, we consider a model of population growth (found in [4]) that can be expressed as an integral equation that belongs to this class of nonlinear Volterra integral equations. / Sendo parte de um grupo de pesquisa em equações diferenciais funcionais (escrevemos EDFs), por causa de minha formação em teoria de integração não absoluta e porque certos tipos de EDFs podem ser escritas como equações integrais, decidi estudar esse último tipo de equações. O objetivo desse trabalho, portanto, é desenvolver a teoria de equações integrais, quando as integrais envolvidas são no sentido de Kurzweil-Henstock ou Kurzweil-Henstock-Stieltjes, através da correspondência entre soluções de equações integrais e soluções de equações diferenciais ordinárias generalizadas (ou EDOs generalizadas). A fim de obter resultados para estas equações integrais, propomos extensões de ambas a integral de Kurzweil e as EDOs generalizadas (encontradas em [36]). Desenvolvemos propriedades fundamentais dessa nova EDO generalizada, como resultados de existência e unicidade de solução, e propomos conceitos de estabilidade para as soluções de nossa nova classe de equações. Nós, então, aplicamos esses resultados a uma classe de equações integrais de Volterra não lineares de segunda espécie. Finalmente, consideramos um modelo de crescimento de populações (encontrado em [4]) que pode ser escrito como uma equação integral pertencente a essa classe de equações integrais de Volterra não lineares.
5

Generalized linear differential equations in a Banach space: continuous dependence on parameters and applications / Equações diferenciais generalizadas lineares em espaços de Banach: dependência contínua com relação a parâmetros e aplicações

Monteiro, Giselle Antunes 14 February 2012 (has links)
The purpose of this work is to investigate continuous dependence on parameters for generalized linear differential equations in a Banach space- valued setting. More precisely, we establish a theorem inspired by the clas- sical continuous dependence result due to Z. Opial. In addition, our second outcome extends, to Banach spaces, the result proved by M. Ashordia in the framework of finite dimensional generalized linear differential equations. Roughly speaking, the continuous dependence derives from assumptions of uniform convergence of the functions in the right-hand side of the equations, together with the uniform boundedness of variation of the linear terms. Fur- thermore, applications of these results to dynamic equations on time scales and also to functional differential equations are proposed. Besides these results on continuous dependence, we complete the theory of abstract Kurzweil-Stieltjes integration so that it is well applicable for our purposes in generalized linear differential equations. In view of this, our contributions are related not only to differential equations but also to the abstract Kurzweil-Stieltjes integration theory itself. The new results presented in this work are contained in the papers [26] and [27], both accepted for publication / O objetivo deste trabalho é investigar a dependência contínua de soluções em relação a parâmetros para equações diferenciais lineares generalizadas no contexto de espaços de Banach. Mais precisamente, apresentamos um teo- rema inspirado no resultado clássico de dependência contínua obtido por Z. Opial. Nosso segundo resultado estende, para espaços de Banach, o provado por M. Ashordia no contexto de equações diferenciais lineares gen- eralizadas em dimensão finita. Em linhas gerais, a dependência contínua decorre da convergência uniforme das funções à direita das equações, junta- mente com a limitação uniforme da variação dos termos lineares. No mais, são propostas aplicações desses resultados em equações dinâmicas em escalas temporais e também em equações diferenciais funcionais. Além dos resultados em dependência contínua, completamos à teoria de integração abstrata de Kurzweil-Stieltjes de modo que esta se adeque aos nossos propósitos em equações diferenciais lineares generalizadas. Assim, nossas contribuições dizem respeito não apenas a equações diferenciais, mas também a teoria de integração abstrata de Kurzweil-Stieltjes em si. Os resultados originais apresentados neste trabalho estão contidos nos artigos [26] e [27], ambos aceitos para publicação
6

Integral equations in the sense of Kurzweil integral and applications / Equações integrais no sentido da integral de Kurzweil e aplicações

Rafael dos Santos Marques 25 July 2016 (has links)
Being part of a research group on functional differential equations (FDEs, for short), due to my formation in non-absolute integration theory and because certain kinds of FDEs can be expressed as integral equations, I was motivated to investigate the latter. The purpose of this work, therefore, is to develop the theory of integral equations, when the integrals involved are in the sense of Kurzweil- Henstock or Kurzweil-Henstock-Stieltjes, through the correspondence between solutions of integral equations and solutions of generalized ordinary differential equations (we write generalized ODEs, for short). In order to be able to obtain results for integral equations, we propose extensions of both the Kurzweil integral and the generalized ODEs (found in [36]). We develop the fundamental properties of this new generalized ODE, such as existence and uniqueness of solutions results, and we propose stability concepts for the solutions of our new class of equations. We, then, apply these results to a class of nonlinear Volterra integral equations of the second kind. Finally, we consider a model of population growth (found in [4]) that can be expressed as an integral equation that belongs to this class of nonlinear Volterra integral equations. / Sendo parte de um grupo de pesquisa em equações diferenciais funcionais (escrevemos EDFs), por causa de minha formação em teoria de integração não absoluta e porque certos tipos de EDFs podem ser escritas como equações integrais, decidi estudar esse último tipo de equações. O objetivo desse trabalho, portanto, é desenvolver a teoria de equações integrais, quando as integrais envolvidas são no sentido de Kurzweil-Henstock ou Kurzweil-Henstock-Stieltjes, através da correspondência entre soluções de equações integrais e soluções de equações diferenciais ordinárias generalizadas (ou EDOs generalizadas). A fim de obter resultados para estas equações integrais, propomos extensões de ambas a integral de Kurzweil e as EDOs generalizadas (encontradas em [36]). Desenvolvemos propriedades fundamentais dessa nova EDO generalizada, como resultados de existência e unicidade de solução, e propomos conceitos de estabilidade para as soluções de nossa nova classe de equações. Nós, então, aplicamos esses resultados a uma classe de equações integrais de Volterra não lineares de segunda espécie. Finalmente, consideramos um modelo de crescimento de populações (encontrado em [4]) que pode ser escrito como uma equação integral pertencente a essa classe de equações integrais de Volterra não lineares.
7

Controlabilidade e observabilidade em equações diferenciais ordinárias generalizadas e aplicações / Controllability and observability in generalized ordinary differential equations and applications

Silva, Fernanda Andrade da 30 October 2017 (has links)
Neste trabalho, introduzimos os conceitos de controlabilidade e de observabilidade para equações diferenciais ordinárias generalizadas, apresentamos resultados inéditos sobre condições suficientes e necessárias para controlabilidade e para observabilidade para estas equações e também apresentaremos uma aplicação. Utilizando teoremas de correspondência entre equações diferenciais ordinárias generalizadas e outras equações diferenciais, traduzimos os resultados obtidos para os casos particulares de controlabilidade e observabilidade para equações diferenciais em medida e equações diferencias com impulsos. O fato de trabalharmos no ambiente das equações diferenciais ordinárias generalizadas permitiu que os resultados obtidos pudessem envolver funções com muitas descontinuidades e muito oscilantes, ou seja, de variação ilimitada. Os resultados novos apresentados aqui estão contidos no artigo [21] que se encontra em fase final de redação e será submetido à publicação em breve. / In this work, we introduce concepts of controllability and observability for generalized ordinary differential equations, we present new results on necessary and sufficient conditions for controllability and observability for these equations and we also present an application. Using theorems of correspondence between generalized ordinary differential equations and other differential equations, we translate the results obtained for the particular cases of controllability and observability for measure differential equations and differential equations with impulses. The fact that we work in the framework of generalized ordinary differential equations allows us to obtain results where the functions involved can have many discontinuities and be highly oscillating, that is, of unbounded variation. The new results presented here are contained in the preprint [21] which is under final revision and will soon be submitted for publication.
8

Dicotomias em equações diferenciais ordinárias generalizadas e aplicações / Dichotomies in generalized ordinary differential equations and applications

Fábio Lima Santos 16 December 2016 (has links)
Neste trabalho, estabelecemos a teoria de dicotomias para equações diferenciais ordinárias generalizadas, introduzindo os conceitos de dicotomias para essas equações generalizadas, estudando as suas propriedades e propondo resultados novos. Investigamos condições para a existência de soluções limitadas e condições para a existência de dicotomia exponencial. Utilizando teoremas de correspondência entre equações diferenciais ordinárias generalizadas e outras equações, traduzimos os resultados obtidos para os casos particulares de dicotomias para equações diferenciais em medida e para equações diferenciais com impulsos. O fato de trabalharmos no ambiente das equações diferenciais ordinárias generalizadas faz com que os resultados obtidos para os casos particulares possam envolver funções com muitas descontinuidades e de variação ilimitada. / In this work we establish the theory of dichotomies for generalized ordinary dierential equations, introducing the concepts of dichotomies for these equations, studying their properties and proposing new results. We investigate conditions of existence of exponential dichotomies and bounded solutions. Using correspondence theorems between generalized ordinary dierential equations and other equations, we translate the obtained results to the particular cases of dichotomies for measure dierential equations and for impulsive dierential equations. The fact that we work in the framework of generalized ordinary dierential equations allows us to obtain results for the particular cases where the functions involved can have many discontinuities and be of unbounded variation.
9

Dicotomias em equações diferenciais ordinárias generalizadas e aplicações / Dichotomies in generalized ordinary differential equations and applications

Santos, Fábio Lima 16 December 2016 (has links)
Neste trabalho, estabelecemos a teoria de dicotomias para equações diferenciais ordinárias generalizadas, introduzindo os conceitos de dicotomias para essas equações generalizadas, estudando as suas propriedades e propondo resultados novos. Investigamos condições para a existência de soluções limitadas e condições para a existência de dicotomia exponencial. Utilizando teoremas de correspondência entre equações diferenciais ordinárias generalizadas e outras equações, traduzimos os resultados obtidos para os casos particulares de dicotomias para equações diferenciais em medida e para equações diferenciais com impulsos. O fato de trabalharmos no ambiente das equações diferenciais ordinárias generalizadas faz com que os resultados obtidos para os casos particulares possam envolver funções com muitas descontinuidades e de variação ilimitada. / In this work we establish the theory of dichotomies for generalized ordinary dierential equations, introducing the concepts of dichotomies for these equations, studying their properties and proposing new results. We investigate conditions of existence of exponential dichotomies and bounded solutions. Using correspondence theorems between generalized ordinary dierential equations and other equations, we translate the obtained results to the particular cases of dichotomies for measure dierential equations and for impulsive dierential equations. The fact that we work in the framework of generalized ordinary dierential equations allows us to obtain results for the particular cases where the functions involved can have many discontinuities and be of unbounded variation.
10

Controlabilidade e observabilidade em equações diferenciais ordinárias generalizadas e aplicações / Controllability and observability in generalized ordinary differential equations and applications

Fernanda Andrade da Silva 30 October 2017 (has links)
Neste trabalho, introduzimos os conceitos de controlabilidade e de observabilidade para equações diferenciais ordinárias generalizadas, apresentamos resultados inéditos sobre condições suficientes e necessárias para controlabilidade e para observabilidade para estas equações e também apresentaremos uma aplicação. Utilizando teoremas de correspondência entre equações diferenciais ordinárias generalizadas e outras equações diferenciais, traduzimos os resultados obtidos para os casos particulares de controlabilidade e observabilidade para equações diferenciais em medida e equações diferencias com impulsos. O fato de trabalharmos no ambiente das equações diferenciais ordinárias generalizadas permitiu que os resultados obtidos pudessem envolver funções com muitas descontinuidades e muito oscilantes, ou seja, de variação ilimitada. Os resultados novos apresentados aqui estão contidos no artigo [21] que se encontra em fase final de redação e será submetido à publicação em breve. / In this work, we introduce concepts of controllability and observability for generalized ordinary differential equations, we present new results on necessary and sufficient conditions for controllability and observability for these equations and we also present an application. Using theorems of correspondence between generalized ordinary differential equations and other differential equations, we translate the results obtained for the particular cases of controllability and observability for measure differential equations and differential equations with impulses. The fact that we work in the framework of generalized ordinary differential equations allows us to obtain results where the functions involved can have many discontinuities and be highly oscillating, that is, of unbounded variation. The new results presented here are contained in the preprint [21] which is under final revision and will soon be submitted for publication.

Page generated in 0.0654 seconds