• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 285
  • 65
  • 62
  • 29
  • 9
  • 8
  • 7
  • 6
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 606
  • 84
  • 81
  • 69
  • 62
  • 59
  • 57
  • 56
  • 56
  • 55
  • 55
  • 51
  • 49
  • 49
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Effects of Electric Fields on Forces between Dielectric Particles in Air

Chiu, Ching-Wen 11 June 2013 (has links)
We developed a quantitative measurement technique using atomic force microscopy (AFM) to study the effects of both DC and AC external electric fields on the forces between two dielectric microspheres. In this work we measured the DC and AC electric field-induced forces and adhesion force between two barium titanate (BaTiO?) glass microspheres in a low humidity environment by this technique. The objective here is to find out the correlation between these measured forces and applied field strength, frequency, and the separation distance between the two spheres was studied. Since the spheres would oscillate under an AC field, the AC field-induced force was divided into dynamic component (i.e., time-varying term) and static component (i.e., time-averaged term) to investigate. The oscillatory response occurs at a frequency that is twice the drive frequency since the field-induced force is theoretically proportional to the square of the applied field. This behavior can be observed in the fast Fourier transformation (FFT) spectra of the time series of the deflection signal. The magnitude of the vibration response increases when the frequency of the drive force is near resonant frequency of the particle-cantilever probe. The amplitude of this vibration increases with proximity of the two particles, and ultimately causes the particles to repeatedly hit each other as in tapping mode AFM. The effect of the Maxwell-Wagner interfacial relaxation on the DC electric field-induced force was discovered by monitoring the variation of the field-induced force with time. The static component of the AC electric field-induced force does not vary with the applied frequency in the range from 1 to 100 kHz, suggesting that the crossover frequency may equal to or less than 1 kHz and the permittivities of the BaTiO? glass microspheres and medium dominate the field-3 induced force. The AC field-induced force is proportional to the square of the applied electric field strength. This relationship persists even when the separation between the spheres is much smaller than the diameter of the microspheres. The large magnitude of the force at small separations suggests that the local field is distorted by the presence of a second particle, and the continued dependence on the square of the field but the measured force is much larger than the theoretical results, suggesting that the local electric field around the closely spaced spheres is distorted and enhanced but the effects of the local field distortion may have not much to with the applied electric field. Compared with the calculated results from different models, our results demonstrate that the field-induced force is much more long-range than expected in theory. In addition, the DC field-induced adhesion force is larger than the AC field-induced one due to the interfacial charge accumulation, agreeing with the discovery of the Maxwell-Wagner interfacial relaxation effect on the DC field-induced force. No obvious correlation between the field-induced adhesion and the applied frequency is found. However, both the DC and AC field-induced adhesion forces display the linearity with the square of the applied electric field strength as well. / Master of Science
102

Debond Buckling of Woven E-glass/Balsa Sandwich Composites Exposed to One-sided Heating

Cholewa, Nathan 26 January 2015 (has links)
An experimental investigation was undertaken to analyze the behavior of sandwich composite structures exposed to one-sided heating where a debond exists between the unexposed facesheet and core material. Sandwich composites of plain weave E-glass/epoxy facesheets and an end-grain balsa wood core manufactured using the Vacuum Assisted Resin Transfer Molding (VARTM) technique were the only materials analyzed. These were selected due to their current use in naval vessels and the heightened interest in the fire response properties of balsa wood and its utility as a core material. In order to better understand the interfacial behavior, Mode I Double Cantilever Beam (DCB) fracture tests were performed at ambient, 60 C, and 80 C to determine the influence of the decreased Mode I fracture toughness. While ambient testing showed that stable crack growth could be obtained, high temperature tests resulted in considerable damage occurring to the core at the crack-front preventing stable crack growth. This can be attributed to the significant decrease in the balsa core strength and material properties even for small increases in temperature. Additionally, Mode II Cracked Split Beam (CSB) tests were performed at ambient temperature to examine the sliding dominant crack-growth. Again, the occurrence of balsa core damage prevented stable crack-growth and an accurate measurement of Mode II fracture toughness was not obtained. Intermediate-scale compression testing with one-sided heating at two heat flux levels was performed with a custom designed load frame on sandwich composite columns. This enabled the influence of the debond to be measured using a 3D-Digital Image Correlation (DIC) technique spatially linked with a thermographic camera. The DIC allowed for a detailed observation of debond growth and buckling prior to global failure of the test article. A behavior similar to that observed in the Mode I DCB fracture tests occurred: as the interfacial temperature increased, the amount of crack growth decreased. This crack growth was followed by a core failure at the crack-front, triggering a global failure of the test article. This global failure for test articles containing a debond manifested itself primarily as an anti-symmetric post-buckling shape. Test articles with no debond exhibited the typical progression of the out-of-plane displacement profile for a fixed-fixed column. As the out-of-plane displacement increased, core failure ultimately occurred near the gripped region where the zero-slope condition is required, triggering global failure of the no debond test article. These tests highlight that the reduction in strength and material properties of the end-grain balsa wood core significantly outweigh the reduction in interfacial fracture toughness due to the increased temperatures. / Master of Science
103

Quantitative evaluation of thin film adhesion using the probe test

Chadha, Harpreet Singh 26 October 2006 (has links)
In this study, a test technique, referred to as the probe test, has been developed as a quantitative tool for measuring the adhesion in thin adhesive films and coatings. The technique was initially developed as a qualitative test by the Hewlett-Packard Company for measuring adhesion of thin film microelectronic coatings. In the probe test method, an inclined needle-like probe with a conical tip is advanced underneath the free edge of a thin polymeric coating bonded to a substrate, causing the edge to lift-up from the surface of the substrate. A debond is thus initiated at the loading point and propagates as a semi-circular crack at the interface as the probe slides under the coating. A standard test procedure has been developed for testing thin adhesive coating/substrate systems. The sample system used is a thin film epoxy polymer coated silicon system. The interfacial fracture energy (Gc) (or critical strain energy release rate) has been used as a quantitative measure of adhesion for the given adhesive coating/substrate system. The probe test experiments were conducted using an optical microscope and a WYKO optical profiler. Using the optical microscope, the debond radius was measured for different debond sizes. Using the WYKO optical profiler, the three-dimensional surface topography of the debonded coating around the crack front was measured for different debond sizes. Using the experimental data from the probe test, analytical and numerical (finite element-based) techniques have been developed to determine the interfacial fracture energy (Gc) for the given adhesive coating/substrate system. The analytical techniques were developed based on different plate theory formulations (thin/thick plate - small/large deflection) of the probe test geometry and local curvature measurement at the crack tip. The finite element based techniques were developed using a hybrid numerical-experimental approach and surface-based contact interaction analysis in ABAQUS. The results obtained using thick plate-large deflection formulation correlated with finite element contact interaction analysis results. The probe test can be used with transparent or opaque coatings and thus offers a promising alternative to indentation and other tests methods for characterizing thin film and coating adhesion. / Master of Science
104

Interfacial characteristics of nano-engineered concrete composites

Wang, X., Zheng, Q., Dong, S., Ashour, Ashraf, Han, B. 02 November 2023 (has links)
No / This study investigates the interfacial characteristics between aggregates and cement paste matrix in nanofillers modified concrete. A three-point bend test on the specimens composed of two pieces of aggregates bonded with a thin layer of cement pastes with/without nanofillers was carried out to characterize the interfacial bond strength of the composites. The scanning electron microscope observations and energy dispersive x-ray spectrometry analysis were also performed to characterize the interfacial microstructures and compositions of the composites. The experimental results indicated that the nanocomposites have higher interfacial bond strength and narrower interfacial transition zone thickness as well as more optimized intrinsic compositions and microstructures than that of composites without nanofillers. Specifically, the interfacial bond strength of nanocomposites can reach 7.67 MPa, which is 3.03 MPa/65.3% higher than that of composites without nanofillers. The interfacial transition zone thickness of nanocomposites ranges from 9 μm to 12 μm, while that of composites without nanofillers is about 18 μm. The ratio of CaO to SiO2 in the interface of composites without nanofillers is 0.69, and that of nanocomposites increases to 0.75–1.12. Meanwhile, the nanofiller content in nanocomposite interface is 1.65–1.98 times more than that in the bulk matrix. The interfacial microstructures of nanocomposites are more compact and the content and crystal size of calcium hydroxide were significantly reduced compared with that of composites without nanofillers. / National Science Foundation of China (51978127 and 51908103), and the China Postdoctoral Science Foundation (2019M651116).
105

Interfacial characteristics of nano-engineered concrete composites

Wang, X., Zheng, Q., Dong, S., Ashour, Ashraf, Han, B. 03 July 2020 (has links)
Yes / This study investigates the interfacial characteristics between aggregates and cement paste matrix in nanofillers modified concrete. A three-point bend test on the specimens composed of two pieces of aggregates bonded with a thin layer of cement pastes with/without nanofillers was carried out to characterize the interfacial bond strength of the composites. The scanning electron microscope observations and energy dispersive x-ray spectrometry analysis were also performed to characterize the interfacial microstructures and compositions of the composites. The experimental results indicated that the nanocomposites have higher interfacial bond strength and narrower interfacial transition zone thickness as well as more optimized intrinsic compositions and microstructures than that of composites without nanofillers. Specifically, the interfacial bond strength of nanocomposites can reach 7.67 MPa, which is 3.03 MPa/65.3% higher than that of composites without nanofillers. The interfacial transition zone thickness of nanocomposites ranges from 9 μm to 12 μm, while that of composites without nanofillers is about 18 μm. The ratio of CaO to SiO2 in the interface of composites without nanofillers is 0.69, and that of nanocomposites increases to 0.75–1.12. Meanwhile, the nanofiller content in nanocomposite interface is 1.65–1.98 times more than that in the bulk matrix. The interfacial microstructures of nanocomposites are more compact and the content and crystal size of calcium hydroxide were significantly reduced compared with that of composites without nanofillers. / The National Science Foundation of China (51978127 and 51908103), and the China Postdoctoral Science Foundation (2019M651116).
106

Gravimetric and density profiling using the combination of surface acoustic waves and neutron reflectivity

Toolan, D.T.W., Barker, R., Gough, Tim, Topham, P.D., Howse, J.R., Glidle, A. 22 October 2016 (has links)
Yes / A new approach is described herein, where neutron reflectivity measurements that probe changes in the density profile of thin films as they absorb material from the gas phase have been combined with a Love wave based gravimetric assay that measures the mass of absorbed material. This combination of techniques not only determines the spatial distribution of absorbed molecules, but also reveals the amount of void space within the thin film (a quantity that can be difficult to assess using neutron reflectivity measurements alone). The uptake of organic solvent vapours into spun cast films of polystyrene has been used as a model system with a view to this method having the potential for extension to the study of other systems. These could include, for example, humidity sensors, hydrogel swelling, biomolecule adsorption or transformations of electroactive and chemically reactive thin films. This is the first ever demonstration of combined neutron reflectivity and Love wave-based gravimetry and the experimental caveats, limitations and scope of the method are explored and discussed in detail.
107

[pt] DEFORMAÇÃO DE GOTAS SUBMETIDAS AO ESCOAMENTO DE CISALHAMENTO ESTIMULADAS POR SURFACTANTE NÃO-IÔNICO / [en] DROPLET DEFORMATION UNDER SHEAR FLOW STIMULATED BY NON-IONIC SURFACTANT

LARA SCHIMITH BERGHE 10 October 2024 (has links)
[pt] Sistemas líquido-líquido imiscíveis são amplamente encontrados na natureza e em processos industriais, abrangendo uma variedade de aplicações, incluindo adesão bacteriana, formação de biofilme, emulsificação, administração de medicamentos, injeção de água na recuperação de petróleo e remediação de solventes clorados em águas subterrâneas. Esses sistemas ocorrem quando dois líquidos não podem formar uma mistura homogênea devido a diferenças em suas propriedades moleculares, como polaridade ou densidade. Como resultado, os líquidos mantêm uma interface onde entram em contato, mas não se misturam, formando camadas distintas. Esse comportamento é influenciado pela tensão interfacial, uma força que minimiza a área de contato entre os dois líquidos e, assim, exerce uma influência significativa na estabilidade e no comportamento do sistema. Surfactantes, ou agentes tenso ativos (SSAs), são frequentemente usados para controlar as propriedades dessas interfaces. Esses compostos reduzem significativamente a tensão interfacial entre dois líquidos imiscíveis. Este estudo visa medir experimentalmente a tensão interfacial em um sistema líquido-líquido por meio de um método dinâmico in situ utilizando um reômetro equipado com sistema de microscopia. Este equipamento permite a observação e medição em tempo real do comportamento da interface dos fluidos sob várias condições. Dessa forma, a tensão interfacial é determinada com base nas teorias existentes de deformação de gotas, como o método de retração de gotas deformadas (DDRM). Investigamos o comportamento da tensão interfacial em um sistema composto por uma mistura de 95 por cento empeso de polidimetilsiloxano (PDMS) e hexadecano, uma solução de 80 por cento empeso de glicerol em água deionizada, e o surfactante não iônico lipofílico Twenn 80, com concentrações variando de 0,0005 por cento a 0,0500 por cento em peso. / [en] Immiscible liquid-liquid systems are widely found in nature and industrial processes, covering a variety of applications, including bacterial adhesion, biofilm formation, emulsification, drug delivery, water flooding in oil recovery, and remediation of chlorinated solvents in groundwater. These systems occur when two liquids cannot form a homogeneous mixture due to differences in their molecular properties, such as polarity or density. As a result, the liquids maintain an interface where they come into contact but do not mix, forming distinct layers. This behaviour is influenced by interfacial tension, a force that minimises the contact area between the two liquids and thus exerts a significant influence on the stability and behaviour of the system. Surfactants, or surface-active agents (SSAs), are often used to manage and manipulate the properties of these interfaces. These compounds significantly reduce the interfacial tension between two immiscible liquids. This study aims to experimentally measure the interfacial tension in a liquid-liquid system through a dynamic in situ method using the Rheo-Microscopy apparatus. This equipment allows real-time observation and measurement of fluid interface behaviour under various conditions. In this way, interfacial tension is determined based on existing drop deformation theories, such as the deformed drop retraction method (DDRM). We investigated the interfacial tension behaviour in a system composed of a 95 wt.percent polydimethylsiloxane (PDMS) hexadecane mixture, an 80 wt.percent glycerol solution in deionized water, and the lipophilic non-ionic surfactant Tween 80, with concentrations ranging from 0.0005 to 0.0500 wt.percent.
108

Studies on Non-Graphitizable Carbon as Negative Electrode Materials for Use in Sodium-Ion Batteries / ナトリウムイオン電池負極としての難黒鉛化性炭素の研究

Tsujimoto, Shota 25 March 2024 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第25302号 / 工博第5261号 / 新制||工||2001(附属図書館) / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 安部 武志, 教授 阿部 竜, 教授 陰山 洋 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DGAM
109

Development of green natural rubber composites : Effect of nitrile rubber, fiber surface treatment and carbon black on properties of pineapple leaf fiber reinforced natural rubber composites / Développement de matériaux composites « verts » à base de caoutchouc naturel : Effet du caoutchouc nitrile, du traitement de surface des fibres et du noir de carbone sur les propriétés des composites à base de caoutchouc naturel renforcé par des fibres de feuilles d'ananas

Hariwongsanupab, Nuttapong 05 May 2017 (has links)
Les effets du caoutchouc nitrile (NBR), du traitement de la surface des fibres et du noir de carbone sur les propriétés des composites à base de caoutchouc naturel renforcé par des fibres d'ananas (NR / PALF) ont été étudiés. L'incorporation de NBR et le traitement de surface de la fibre ont été utilisés pour améliorer les propriétés mécaniques des composites à faible déformation, alors que le noir de carbone a été utilisé pour améliorer ces propriétés à forte déformation. La teneur en fibres a été fixée à 10 phr. Les matériaux composites ont été préparés à l'aide d'un mélangeur à cylindres et ont été réticulés sous presse permettant ainsi le maintien de l'orientation des fibres. Ces composites ont été caractérisés à l’aide du rhéomètre à matrice mobile (MDR), par analyse thermique mécanique dynamique (DMTA) et par tests de traction. La morphologie après fracture cryogénique a été observée à l'aide de la microscopie électronique à balayage (MEB). L'effet du NBR dont la teneur varie de 0 à 20 phr par rapport à la teneur totale en caoutchouc, a été également étudié. Le NBR est utilisé afin d’encapsuler totalement les fibres d’ananas (PALF) ; ceci conduisant à un meilleur transfert de contraintes entre la matrice et les fibres. La méthode de mélange a également été étudiée. Plusieurs types de silanes tels que le propylsilane, l'allylsilane et le silane-69 ont été utilisés pour traiter les fibres pré-nettoyées à l’aide d’un traitement alcalin. Les fibres silanisées ont été caractérisées par spectroscopie infrarouge à transformée de Fourier (FTIR), par spectroscopie de photoélectrons aux rayons X (XPS) et par MEB. Le traitement de la fibre par le silane-69 a permis d’augmenter fortement le module du matériau composite à faible déformation. Ce traitement a été plus efficace que l'incorporation de NBR dans les composites NR / PALF. Ceci peut s’expliquer par une possible réticulation chimique entre le caoutchouc et la fibre traitée au silane-69 plutôt qu’une simple interaction physique du NR, du NBR et de la fibre. Cependant, le renforcement par fibre réduit la déformation à la rupture. Par conséquent, du noir de carbone a également été incorporé dans les composites NR/NBR/PALF et NR/ PALF traitée, afin d’améliorer leurs propriétés ultimes. En incorporant du noir de carbone à un taux de 30 phr dans les deux composites, les propriétés mécaniques des composites ont été améliorées et peuvent être contrôlées à la fois à des déformations faibles et hautes. / The effects of nitrile rubber (NBR), fiber surface treatment and carbon black on properties of pineapple leaf fiber-reinforced natural rubber composites (NR/PALF) were studied. The incorporation of NBR and surface treatment of fiber were used to improve the mechanical properties of composites at low deformation, whereas carbon black was used to improve these properties at high deformation. The fiber content was fixed at 10 phr. The composites were prepared using two-roll mill and were cured using compression moulding with keeping the fiber orientation. These composites were characterized using moving die rheometer (MDR), dynamic mechanical thermal analysis (DMTA) and tensile testing. The morphology after cryogenic fracture was observed using scanning electron microscopy (SEM). The effect of NBR from 0 to 20 phr of total rubber content was investigated. NBR is proposed to encase PALF leading to higher stress transfer between matrix and PALF. The method of mixing was also studied. For the fiber surface treatment, propylsilane, allylsilane and silane-69 were treated on the alkali-treated fiber. Treated fibers were characterized using Fourier-Transform infrared spectroscopy (FTIR), x-ray photoelectron spectroscopy (XPS) and SEM. Silane-69 treatment of fiber increased the modulus at low deformation more than the incorporation of NBR of NR/PALF composites due to the chemical crosslinking between rubber and fiber from silane-69 treatment rather than the physical interaction of NR, NBR and fiber. However, reinforcement by fiber reduced the deformation at break. Hence, carbon black was also incorporated into NR/NBR/PALF and NR/surface-treated PALF composites to improve the ultimate properties. By incorporation of carbon black 30 phr in both composites, the mechanical properties of composites were improved and can be controlled at both low and high deformations.
110

Novos tensoativos oxigenados para fluidos supercríticos / Novel oxygenated surfactants for supercritical fluids

Silva, Fernando Luiz Cássio 19 December 2011 (has links)
Dióxido de carbono supercrítico (scCO2) é um solvente pouco eficiente para substâncias polares em geral. Uma maneira interessante de superar esta limitação e explorar todo o seu potencial como solvente verde, possível substituto para os solventes orgânicos voláteis comuns, é a introdução de tensoativos específicos para scCO2 no sistema. No presente trabalho, foram sintetizadas três novas séries de tensoativos oxigenados para scCO2. As moléculas possuem cabeças CO2-fóbicas mono e poli-hidroxiladas, em sua maioria à base de açúcares, e três tipos de cadeias CO2-fílicas, duas delas perfluoradas (-C7F15 e -C9F19) e uma peracetilada (derivada do ácido D-glucônico). Foram investigadas as suas solubilidades e comportamentos de fase em CO2 e em sistemas ternários (água-CO2-tensoativo), bem como a atividade na interface CO2-água. Todos eles dispersaram água em scCO2 com [água] / [tensoativo] (W) igual a 10, exibindo pressões de névoa comparáveis àquelas do sistema \"a seco\". Adicionalmente, os tensoativos reduziram a tensão interfacial CO2-água. O efeito das cabeças CO2-fóbicas e cadeias CO2-fílicas nessa redução pôde ser analisado separadamente. Os resultados dos experimentos de tensão interfacial dinâmica sugerem que tanto a difusão das moléculas da fase contínua para a subinterface, quanto a sua inserção e migração na interface contribuem para o decaimento das tensões interfaciais. / Supercritical carbon dioxide (scCO2) is a poor solvent for polar substances in general. An interesting way to overcome this limitation and fulfill its potential as a green solvent, a possible substitute for common volatile organic solvents, is the introduction of scCO2-suitable surfactants in the system. In the present work, three series of novel oxygenated surfactants for scCO2 were synthesized. The amphiphiles contain mono and poly-hydroxylated CO2-phobic heads, most of them sugar-based, as well as three types of CO2-philic tails, two of them perfluorinated (-C7F15 and -C9F19) and one peracetylated (D-gluconic acid derivative). Their solubilities and phase behaviors in CO2 and in ternary systems (water-CO2-surfactant), as well as their activities at the CO2-water interface, were investigated. All of them dispersed water in scCO2- with water-to-surfactant ratio (W) of 10, exhibiting cloud pressures comparable to those of \"dry\" systems. Also, the surfactants reduced the CO2-water interfacial tension. The effect of both the CO2-phobic heads and the CO2-philic tails could be analyzed separately. Dynamic interfacial tension results suggest that both diffusion from bulk CO2 to subinterface and insertion and migration of molecules within the interface contribute to the time-dependent decay of the interfacial tensions.

Page generated in 0.0603 seconds