• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 283
  • 64
  • 62
  • 29
  • 9
  • 8
  • 7
  • 6
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 600
  • 84
  • 79
  • 68
  • 61
  • 58
  • 57
  • 56
  • 56
  • 55
  • 54
  • 51
  • 49
  • 48
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

The Effect Of Carbon Nanotube/organic Semiconductor Interfacial Area On The Performance Of Organic Transistors

Kang, Narae 01 January 2012 (has links)
Organic field-effect transistors (OFETs) have attracted tremendous attention due to their flexibility, transparency, easy processiblity and low cost of fabrication. High-performance OFETs are required for their potential applications in the organic electronic devices such as flexible display, integrated circuit, and radiofrequency identification tags. One of the major limiting factors in fabricating high-performance OFET is the large interfacial barrier between metal electrodes and OSC which results in low charge injection from the metal electrodes to OSC. In order to overcome the challenge of low charge injection, carbon nanotubes (CNTs) have been suggested as a promising electrode material for organic electronic devices. In this dissertation, we study the effect of carbon nanotube (CNT) density in CNT electrodes on the performance of organic field effect transistor (OFETs). The devices were fabricated by thermal evaporation of pentacene on the Pd/single walled CNT (SWCNT) electrodes where SWCNTs of different density (0-30/um) were aligned on Pd using dielectrophoresis (DEP) and cut via oxygen plasma etching to keep the length of nanotube short compared to the channel length. From the electronic transport measurements of 40 devices, we show that the average saturation mobility of the devices increased from 0.02 for zero SWCNT to 0.06, 0.13 and 0.19 cm2/Vs for low (1-5 /µm), medium (10-15 /µm) and high (25-30 /µm) SWCNT density in the electrodes, respectively. The increase is three, six and nine times for low, medium and high density SWCNTs in the electrode compared to the devices that did not contain any SWCNT. In addition, the current on-off ratio and on-current of the devices are increased up v to 40 times and 20 times with increasing SWCNT density in the electrodes. Our study shows that although a few nanotubes in the electrode can improve the OFET device performance, significant improvement can be achieved by maximizing SWCNT/OSC interfacial area. The improved OFET performance can be explained due to a reduced barrier height of SWCNT/pentacene interface compared to metal/pentacene interface which provides more efficient charge injection pathways with increased SWCNT/pentacene interfacial area.
122

MOLECULAR DYNAMICS SIMULATION STUDY OF SOLID-LIQUID INTERFACE PROPERTIES OF HCP MAGNESIUM

Bai, Yunfei 10 1900 (has links)
<p>The structural and thermodynamic properties of a crystal-melt interface in</p> <p>elemental magnesium have been investigated using molecular dynamics (MD)</p> <p>simulations with an embedded atom method description of the interatomic potential.</p> <p>Three low index interfacial orientations, (0001), (1101) and (1120), have been studied.</p> <p>From fine-grained atomic density profiles, the structural interfacial widths show obvious anisotropy and the variation of interatomic planar spacing as a function of distance through the crystal-melt boundary is established. Mainly from the coarse-grained density profiles, the effective 10-90 width of the interface region, defined as the intrinsic width, in each orientation has been determined. In addition, the interfacial stresses are obtained from an integration of the interfacial stress profiles and the results show significant anisotropy, which is possibly related to the anisotropy of occupation fraction profiles. Finally, from a determination of the excess energy and interfacial stress of the solid-liquid interface and from previous published results for the interfacial free energy at the melting point, the Gibbs-Cahn integration is employed to derive an estimation of the temperature dependence of the interfacial free energy at non-equilibrium temperatures. All of the crystal-melt interfacial properties for magnesium are compared with simulation data from other elemental metals and alloys, as well as from other model systems such as Lennard- Jones and hard spheres.</p> / Master of Applied Science (MASc)
123

Interfacial Tension and Phase Behavior of Oil/Aqueous Systems with Applications to Enhanced Oil Recovery

Jaeyub Chung (9511022) 16 December 2020 (has links)
Chemical enhanced oil recovery (cEOR) aims to increase the oil recovery of mature oil fields, using aqueous solutions of surfactants and polymers, to mobilize trapped oil and maintain production. The interfacial tensions (IFTs) between the injected aqueous solution, the oil droplets in reservoirs, and other possible phases formed (e.g., a “middle phase” microemulsion) are important for designing and assessing a chemical formulation. Ultralow IFTs, less than 10<sup>-2</sup> mN·m<sup>-1</sup>, are needed to increase the capillary number and help mobilize trapped oil droplets. Despite this fact, phase behavior tests have received more attention than IFTs for designing and evaluating surfactant formulations that result in high oil recovery efficiencies, because incorporating reliable IFTs into such evaluation process is avoided due to difficulties in obtaining reliable values. Hence, the main thrusts of this dissertation are to: (a) develop robust IFT measurement protocols for obtaining reliable IFTs regardless of the complexity of water and oil phase constituents and (b) improve the existing surfactant polymer formulation evaluation and screening processes by successfully incorporating the IFT as one of the critical parameters.<br>First, two robust tensiometry protocols using the known emerging bubble method (EBM) and the spinning bubble method (SBM) were demonstrated, for determining accurately equilibrium surface tensions (ESTs) and equilibrium IFTs (EIFTs). The protocols are used for measuring the dynamic surface tensions (DSTs), determining the steady state values, and establishing the stability of the steady state values by applying small surface area perturbations by monitoring the ST or IFT relaxation behavior. The perturbations were applied by abruptly expanding or compressing surface areas by changing the bubble sizes with an automated dispenser for the EBM, and by altering the rotation frequency of the spinning tube for the SBM. Such robust tension measurement protocols were applied for Triton X-100 aqueous solutions at a fixed concentration above its critical micelle concentration (CMC). The EST value of the model solution was 31.5 ± 0.1 mN·m<sup>-1</sup> with the EBM and 30.8 ± 0.2 mN·m<sup>-1</sup> with the SBM. These protocols provide robust criteria for establishing the EST values.<br>Second, the EIFTs of a commercial single chain anionic surfactant solution in a synthetic brine against a crude oil from an active reservoir were determined with the new protocol described earlier. The commercial surfactant used here has an oligopropoxy group between a hydrophobic chain and a sulfate head group. The synthetic brine has 9,700 ppm of total dissolved salts, which are a mixture of sodium chloride (NaCl), potassium chloride (KCl), manganese (II) chloride tetrahydrate (MnCl<sub>2</sub>·4H<sub>2</sub>O), magnesium (II) chloride hexahydrate (MgCl<sub>2</sub>·6H<sub>2</sub>O), barium chloride dihydrate (BaCl<sub>2</sub>·2H<sub>2</sub>O), sodium sulfate decahydrate (Na<sub>2</sub>SO<sub>4</sub>·10H<sub>2</sub>O), sodium bicarbonate (NaHCO<sub>3</sub>), and calcium chloride dihydrate (CaCl<sub>2</sub>·2H<sub>2</sub>O). The DSTs curves of the surfactant concentrations from 0.1 ppm to 10,000 ppm by weight had a simple adsorption/desorption equilibrium at air/water surface with surfactant diffusion from bulk aqueous phase. Such a mechanism was also observed from the tension relaxation behavior after area perturbations for the oil/water interfaces while DIFT measurements. The CMC of the commercial surfactant was determined to be 12 ppm in water and 1 ppm in the synthetic brine used. From the initial tension reduction curves from DST and DIFT measurements, the equilibrium timescales were shorter with brine than with water, because the adsorbed surfactant on the oil/water interfaces were partitioned into oil phases. For both DST and DIFT results suggest that the adsorbed surfactant layer at interfaces were typical adsorbed soluble monolayers.<br>Third, the phase and rheological behavior of a commercial anionic surfactant in water and in brine are important for large scale applications. A phase map of the surfactant at 25 °C at full range of surfactant concentration was obtained. The supramolecular structures of the various phases were characterized by dynamic light scattering (DLS), cryogenic transmission electron microscopy (cryo-TEM), conductimetry, densitometry, and x-ray scattering. The identified phases evolved as the surfactant concentration was increased; they were a micellar solution phase, a hexagonal liquid crystalline phase, and a lamellar liquid crystalline phase. In addition, the characterization results provided detailed information about supramolecular structure parameters such as micellar sizes and their aggregation numbers, and liquid crystal spacings. The phase and rheological behavior trends identified here were of great importance because the trend was similar to that of single chain monoisomeric surfactant. Thus, this study provides a potential universality of phase behavior trends of surfactant-water systems despite of the multicomponent nature of surfactants.<br>Fourth, the EIFTs of the pre-equilibrated mixtures of surfactant, brine, and oil were determined and compared to the EIFTs prior to pre-equilibration, in order to systematically identify the most relevant IFT for oil recovery. The EIFT between surfactant solutions and oil without any pre-equilibration prior to tension measurements is defined as the un-pre-equilibrated EIFT (EIFT<sub>up</sub>). The EIFT between oil and water phases after the pre-equilibration of surfactant, brine, and oil is defined as pre-equilibrated EIFT (EIFT<sub>p</sub>). The EIFT<sub>p</sub>’s were generally higher than EIFT<sub>up</sub>’s. In addition, the effects of three mixing methods and the water-to-oil volume ratio (WOR) on the EIFT<sub>p</sub> were evaluated. Out of three mixing methods, (A) mild mixing, (B) magnetic stirring, and (C) shaking vigorously by hand, method C produced mixtures which are the closest to the equilibrium state. The mixtures produced by method C had the largest decrease of the surfactant concentration during pre-equilibration due to the surfactant partitioning into oil phases. Moreover, the WOR affects the EIFT<sub>p</sub> significantly due to the preferential partitioning of surfactant components into oil phases. More specifically, the WOR and the EIFT<sub>p</sub> were found to be inversely correlated, because the amount of partitioned surfactant increased as the oil volume fraction increased. The EIFT<sub>p</sub>’s were different from the EIFT<sub>up</sub>’s at the same total surfactant concentrations in the aqueous layer evidently because of preferential partitioning of the various surfactant components.<br>Finally, the effect of surfactant losses due to adsorption into the rock surface on the pre-equilibrated EIFT (EIFT<sub>p</sub>) were evaluated to improve surfactant formulation protocols. Here, five types of EIFTs were identified, along with robust protocols for determining them. These are: (I) the un-pre-equilibrated equilibrium IFT (EIFT<sub>up</sub>); (II) the un-pre-equilibrated EIFTs in the presence of rock (EIFT<sub>up,rock</sub>); (III) the pre-equilibrated EIFTs (EIFT<sub>p</sub>) in the presence of oil; (IV) the pre-equilibrated EIFT in the presence of rock and oil (EIFT<sub>p,rock</sub>); and (V) the effluent EIFT (EIFT<sub>eff</sub>). The EIFT<sub>up</sub> is the EIFT of the aqueous surfactant/brine solution against an oil drop without any pre-equilibration. The EIFT<sub>up,rock</sub> is the EIFT between an oil drop and the surfactant solution after pre-equilibration with a rock sample to account for adsorption losses. The EIFT<sub>p</sub> is the EIFT between the pre-equilibrated water and the oil phases from surfactant/brine/oil mixtures. The EIFT<sub>p,rock</sub> is the EIFT between the pre-equilibrated water and the oil phases from surfactant/brine/oil/rock mixtures. The EIFT<sub>eff</sub> is the EIFT from an effluent sample mixture of a laboratory-scale core flood test. Among the five types of EIFTs, the EIFT<sub>p,rock</sub> was found to be the most important for the highest oil recovery performance in core flood tests, because it captures the most important surfactant partition processes, the partitioning to the oil phase and the partitioning by adsorption on the rock surface. Among three surfactant formulations tested with core flood experiments, the one with the lowest EIFT<sub>p,rock</sub> (~0.01 mN·m<sup>-1</sup>) had the highest oil recovery ratio (78%), and the one with the highest EIFT<sub>p,rock</sub> (~0.2 mN·m<sup>-1</sup>) had the lowest oil recovery ratio (55%). The other EIFTs correlated less with the oil recovery performance. Identifying surfactant formulations that have low or ultralow EIFTs, especially ultralow EIFT<sub>p,rock</sub>’s, are critical for screening formulations appropriate for core flood tests and target field applications, and for predicting oil recovery performance. These works are a significant contribution for improving (a) the surfactant formulation evaluation protocols, and (b) the utilization of reliable IFTs and phase behavior test protocols for oil recovery and many other surfactant and colloid sciences applications.<br>
124

STUDY OF THE THERMAL STRATIFICATION IN PWR REACTORS AND THE PTS (PRESSURIZED THERMAL SHOCK) PHENOMENON

Romero Hamers, Adolfo 20 March 2014 (has links)
In the event of hypothetical accident scenarios in PWR, emergency strategies have to be mapped out, in order to guarantee the reliable removal of decay heat from the reactor core, also in case of component breakdown. One essential passive heat removal mechanism is the reflux condensation cooling mode. This mode can appear for instance during a small break loss-of-coolant-accident (LOCA) or because of loss of residual heat removal (RHR) system during mid loop operation at plant outage after the reactor shutdown. In the scenario of a loss-of-coolant-accident (LOCA), which is caused by the leakage at any location in the primary circuit, it is considered that the reactor will be depressurized and vaporization will take place, thereby creating steam in the PWR primary side. Should this lead to ¿reflux condensation¿, which may be a favorable event progression, the generated steam will flow to the steam generator through the hot leg. This steam will condense in the steam generator and the condensate will flow back through the hot leg to the reactor, resulting in counter-current steam/water flow. In some scenarios, the success of core cooling depends on the behaviour of this counter-current flow. Over several decades, a number of experimental and theoretical studies of counter-current gas¿liquid two-phase flow have been carried out to understand the fundamental aspect of the flooding mechanism and to prove practical knowledge for the safety design of nuclear reactors. Starting from the pioneering paper of Wallis (1961), extensive CCFL data have been accumulated from experimental studies dealing with a diverse array of conditions A one-dimensional two field model was developed in order to predict the counter-current steam and liquid flow that results under certain conditions in the cold leg of a PWR when a SBLOCA (small break loss of coolant accident) in the hot leg is produced. The counter-current model that has been developed can predict the pressure, temperature, velocity profiles for both phases, also by taking into account the HPI injection system in the cold leg under a counter-current flow scenario in the cold leg. This computer code predicts this scenario by solving the mass, momentum and energy conservation equations for the liquid and for the steam separately, and linking them by using the interfacial and at the steam wall condensation and heat transfer, and the interfacial friction as the closure relations. The convective terms which appear in the discretization of the mass and energy conservation equations, were evaluated using the ULTIMATE-SOU (second order upwinding) method. For the momentum equation convective terms the ULTIMATE-QUICKEST method was used. The steam-water counter-current developed code has been validated using some experimental data extracted from some previously published articles about the direct condensation phenomenon for stratified two-phase flow and experimental data from the LAOKOON experimental facility at the Technical University of Munich. / Romero Hamers, A. (2014). STUDY OF THE THERMAL STRATIFICATION IN PWR REACTORS AND THE PTS (PRESSURIZED THERMAL SHOCK) PHENOMENON [Tesis doctoral]. Editorial Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/36536 / Alfresco
125

Estudo experimental e modelagem do escoamento estratificado ondulado óleo-água / Experimental study and modeling of wavy oil-water stratified pipe flow

Pereira, Cléber Carvalho 18 March 2011 (has links)
O escoamento estratificado óleo-água é bastante comum na indústria do petróleo, especialmente em poços direcionas offshore, oleodutos e gasodutos. Entretanto, existem poucos trabalhos na literatura sobre a natureza da estrutura ondulatória observada no escoamento em dutos ascendentes ou descendentes a partir da horizontal. O objetivo deste trabalho foi estudar as propriedades geométricas e cinemáticas da onda interfacial, i.e, forma média, comprimento, amplitude e celeridade, e assim contribuir para a compreensão do papel da onda interfacial na dinâmica do escoamento estratificado. Um software baseado em plataforma Labview® possibilitou a automação para obtenção dos dados das ondas interfaciais extraídas de imagens de vídeos de alta resolução. Além das propriedades das ondas, também se coletaram valores de fração volumétrica in situ e de gradiente de pressão bifásico para cinco ângulos de inclinação (-20°, -10°, 0°, 10° e 20°) em diferentes pares de vazões de óleo e água. Desenvolveu-se um modelo fenomenológico considerando os termos ondulatórios do escoamento para o cálculo da fração volumétrica in situ e do gradiente de pressão bifásico, sendo comparado com modelos disponíveis na literatura e dados experimentais. A concordância do modelo proposto com os dados coletados neste trabalho se mostrou muito boa, o que sugere um avanço em comparação ao existente na literatura. O estudo da equação da onda de perturbação interfacial para o escoamento estratificado óleo-água indicou que a natureza da onda observada é cinemática e não dinâmica; e baseado na equação da celeridade da onda cinemática pode-se confrontar a celeridade experimental com a teórica, revelando boa concordância. / The oil-water stratified flow is quite common in the oil industry, especially in offshore directional wells and pipelines. However, there are few studies on the physics of the wavy structure observed in upward and downward stratified flow. The goal of this work was to study the geometric and kinematic properties of interfacial waves, i.e., the average shape, wavelength, amplitude and celerity. A homemade Labview®-based software enabled the automatic acquisition of data extracted from frames obtained via high resolution video recording. In situ volume fraction and two-phase pressure gradient data for five inclination angles (-20°, -10°, 0°, 10° and 20°) at several pairs of oil and water flow rates were also collected. A phenomenological model that takes into account the wavy structure is proposed to calculate volume fractions and two-phase pressure gradient and it was compared with available models from the literature and experimental data. The good agreement of the proposed model with the data collected in this study is promising and suggests that it may provide better predictions in comparison with models from the literature. The study of the interfacial perturbation wave equation for stratified flow indicates that the observed waves nature is kinematic and not dynamic; and based on the kinematic wave velocity equation we could compare the experimental celerity with the theoretical one, with good agreement.
126

Emprego de sondas solvatocrômicas no estudo de solvatação em solventes puros, misturas de solventes e soluções micelares / Employment solvatochromic probes in the study of solvation in pure solvents, solvent mixtures and micellar solutions

Tada, Erika Batista 08 October 2004 (has links)
Neste trabalho, sondas solvatocrômicas foram empregadas no estudo da solvatação em solventes puros e misturas aquosas de solventes polares práticos e apráticos. A partir da polaridade de misturas aquosas de solventes orgânicos, determinou-se a concentração de água interfacial de micelas catiônicas. Finalmente, avaliou-se o efeito da polaridade e força iônica interfaciais de micelas catiônicas sobre a velocidade da reação entre p-nitrofenildifenilfosfato e o íon fluoreto. No estudo de misturas aquosas de solventes orgânicos, um novo modelo de solvatação preferencial foi elaborado, segundo o qual três espécies presentes em solução competem pela camada de solvatação da sonda: água, solvente orgânico e o \"complexo\" formado por uma molécula de água e outra de solvente orgânico (Solv-Água). Através deste modelo, analisou-se o efeito da temperatura e das propriedades das sondas e dos solventes orgânicos sobre o fenômeno da solvatação. Em soluções aquosas de micelas catiônicas, observou-se uma desidratação da interface em função do aumento do grupo hidrofílico do tensotativo e da mudança de geometria micelar de esférica para cilíndrica. Verificou-se que a velocidade da reação entre pnitrofenildifenilfosfato e fluoreto é pouco afetada pela interface micelar e pode ser reproduzida, na ausência de micelas, em soluções com mesma concentração de água e força iônica que as micelas. / Solvatochromic probes have been employed to study the polarity of pure solvents and binary mixtures of water with protic and aprotic polar solvents. From polarity data of aqueous organic mixtures, the concentration of interfacial water of cationic micelles has been determined. In aqueous solutions of cationic micelles, the dehydration of interfacial region has been observed as a result of increasing the volume of the surfactant head group and changing micellar geometry from spherical to cylindrical. Finally, the effect of interfacial polarity and ionic force on the rate of the reaction between 4-nitrophenyldiphenylphosphate and fluoride ion has been evaluated. In studying aqueous organic mixtures, a new preferential solvation model has been developed, that considers the competition between three species in solution for the probe micro-solvation shell: water, organic solvent and a 1:1 \"complex\" formed by water and organic solvent (Solv-Água). Based on this new model, the effect of temperature, as well as probe and organic solvent properties on solvation has been analyzed. It has been observed that the rate of the reaction between p-nitrophenyldiphenylphosphate and fluoride ion shows little dependence on the properties of interfacial region of cationic micelles and can be reproduced, in the absence of micelles, in solutions containing the same water concentration and ionic force as the micellar pseudo-phase.
127

Desenvolvimento de modelos neurais para o processamento de sinais acústicos visando a medição de propriedades topológicas em escoamentos multifásicos / Development of neural models for the processing of acoustic signals aiming at the measurement of topological properties in multi-phase flow

Nascimento, Érica Regina Filletti 15 February 2007 (has links)
Uma nova metodologia para a medida não intrusiva da fração volumétrica e da área interfacial é proposta neste trabalho, com base em redes neurais para processar respostas obtidas de sinais acústicos. A distribuição geométrica das fases dentro do escoamento é mapeada pela velocidade local de propagação acústica, considerada na equação diferencial que governa o problema. Esta equação é resolvida numericamente pelo método de diferenças finitas com as condições de contorno reproduzindo a estratégia de pulso/eco. Um número significativo de distribuições das velocidades de propagação foi considerado na solução da equação diferencial para construir uma base de dados, da qual os parâmetros da rede podem ser ajustados. Especificamente, o modelo neural é construído para mapear características extraídas dos sinais obtidos de quatro sensores acústicos, localizados no contorno externo do domínio de sensoriamento, estimando a fração volumétrica e a área interfacial correspondentes. Estas características correspondem às amplitudes e aos tempos de chegada dos três maiores picos da onda acústica. Os resultados numéricos mostram que o modelo neural pode ser treinado em um tempo computacional razoável e é capaz de estimar os valores da fração volumétrica e da área interfacial dos exemplos do conjunto de teste. / A new methodology for measuring the volumetric fraction and interfacial area in two-phase flows is proposed in this work, based on neural network for processing the responses obtained from an acoustic interrogation signal. The geometrical distribution of the phases within the flow is mapped by the local acoustic propagation velocity which is considered in the governing differential equation. This equation is solved numerically by the finite difference method with boundary conditions reproducing the pulse/echo strategy. A significant number of propagation velocities distributions were considered in the solution of the differential equation in order to construct a database from which the neural model parameters could be adjusted. Specifically, the neural model is constructed to map the features extracted from the signals delivered by four acoustic sensors, placed on the external boundary of the sensing domain, into the corresponding volumetric fraction and interfacial area. These features correspond to the amplitudes and the times of arrival on the three first peaks of the acoustic wave. Numerical results showed that the neural model can be trained in a reasonable computational time and it is capable of estimating the values of the volumetric fraction and the interfacial area of examples of the set of test.
128

Nanorhéologie de fluides complexes aux interfaces / Nanorheology of complex fluids at interfaces

Barraud, Chloé 06 July 2016 (has links)
Les liquides confinés présentent beaucoup de comportements fascinants, très différents de ceux qui sont observés dans leur volume. Le confinement peut induire un déplacement de l'équilibre des phases (par exemple de la transition liquide-vapeur, aussi appelé condensation capillaire), il peut modifier la température de transition vitreuses des polymères, ou bien imposer un ordre dans l'arrangement moléculaire du fluide. Les modifications des propriétés mécaniques des liquides aux interfaces sont particulièrement importantes au niveau des applications. Cependant au niveau de la compréhension, le simple cas des liquides newtoniens est toujours sujet à controverse, avec d'une part des simulations numériques montrant que la viscosité ne devrait pas être modifiée pour des confinements supérieurs à quelques tailles moléculaires, et d'autre part des expériences non unanimes, montrant parfois des modifications qualitatives des propriétés rhéologiques sous confinement. Récemment nous avons montré que les méthodes d'impédance hydrodynamique en géométrie sphère-plan constituent une méthode privilégiée, non-intrusive et non-ambigüe, pour aborder la nano-mécanique des liquides aux interfaces (1,2). S'agissant d'interphases, cad de couches fluides dont les propriétés sont modifiées par la proximité d'un solide, il est possible d'accéder à leur module sans contact, donc sans la perturbation apportée par une seconde surface. S'agissant de l'effet du confinement sur la rhéologie, nous avons montré que la déformation élastique à l'échelle du pico-mètre des surfaces confinantes, donne une forte modification de la rhéologie apparente du fluide, même en l'absence de tout effet intrinsèque. Le sujet de thèse vise à mettre en oeuvre les méthodes d'impédance hydrodynamique pour étudier la rhéologie de solutions de polymères confinés. On étudiera plus précisément deux systèmes modèles d'importance fondamentale aussi bien que pratique : les brosses de polymères greffés, dont les propriétés mécaniques sont un enjeu dans les applications de lubrification aussi bien que pour les écoulements biologiques, et les solutions de polymères hydro-solubles d'intérêt pour la récupération assistée du pétrole, en vue de comprendre les effets de fluidification sous confinement et de faire la part entre modification de la viscosité et couche de déplétion induite par l'écoulement. Au niveau instrumental, un des enjeux de la thèse sera de mettre en oeuvre les mesures d'impédance hydrodynamique sur deux types d'instruments complémentaires au niveau de l'échelle de la sonde: l'appareil de mesure de forces dynamique (SFA) du Liphy, et l'AFM à détection interférométrique développé à l'Institut Néel. Ces différentes échelles d'investigation devront permettre de préciser les propriétés moyennes mécaniques moyennes des liquides confinés et leurs gradients au voisinage de la paroi. Une perspective du travail sera de mettre en regard les propriétés mécaniques et rhéologiques intrinsèques des brosses polymères déterminées directement sur SFA ou AFM, avec leur propriétés fonctionnelles: propriétés de lubrification des contacts frottants, ou de modification des écoulements des dans micro-canaux. Ceci sera poursuivi sur la plateforme expérimentale mise en place par Lionel Bureau au Liphy : SFA de friction, systèmes micro-fluidiques à visée biomimétique (parois fonctionnalisées par des brosses polymères). L'enjeu sera alors de comprendre comment les propriétés mécaniques et rhéologiques des brosses déterminent celles des systèmes dans lesquels elles interviennent. / Liquids confined present many fascinating behaviors very different from those observed in their volume. Confinement can induce a shift in the balance of phases (eg the liquid-vapor transition, also called capillary condensation), it can change the glass transition temperature of the polymer, or impose order on the molecular arrangement of fluid. The changes in the mechanical properties of liquid interfaces are particularly important in applications. However the level of understanding, the simple case of Newtonian liquids is still controversial, with one hand, numerical simulations show that the viscosity should not be changed for some higher molecular sizes containment, and secondly non-unanimous experiences, sometimes showing qualitative changes in rheological properties under confinement. Recently we have shown that the methods of hydrodynamic impedance sphere-plane geometry is a privileged, non-intrusive method and unambiguous, to discuss the mechanics of nano-liquid interfaces (1,2). As interphase, ie fluid layers whose properties are modified by the proximity of a solid, it is possible to accede their contactless module, so without the disturbance caused by a second surface.S As regards the effect of confinement on the rheology, we have shown that the elastic deformation across the pico meter of confining surfaces, gives a strong modification beyond apparent rheology of the fluid, even in the absence of any intrinsic effect. The thesis aims to implement the hydrodynamic impedance methods to study the rheology of polymer solutions confined. We specifically consider two models of fundamental importance as well as practical systems: brushes grafted polymer whose mechanical properties are an issue in lubrication applications as well as for biological flows and solutions of water-soluble polymers interest in enhanced oil recovery, in order to understand the effects of thinning containment and to distinguish between changes in viscosity and depletion layer induced by the flow. At the instrumental level, one of the challenges of the thesis is to implement the hydrodynamic impedance measurements on two complementary instruments at the level of the probe: the measuring dynamic power (SFA) of Liphy, and AFM interferometric detection developed at the Institut Néel. These different scales of investigation will help to clarify the medium average mechanical properties of liquids confined and their gradients near the wall. A view of work will be to look mechanical and rheological properties of polymer brushes intrinsic determined directly on SFA or AFM with their functional properties: lubricating properties of sliding contacts, or modification of the flow in microchannels. This will continue on the implementation by Lionel Bureau Liphy experimental platform: SFA friction advised biomimetic micro-fluidic systems (walls functionalized polymer brushes). The challenge will be to understand how the mechanical and rheological properties of brushes determine those systems in which they operate.
129

Avaliação da tensão interfacial dinâmica em revestimentos epóxi do tipo DGEBA modificada com agentes de cura à base de amina.

Friedrich, Leila Augusta January 2006 (has links)
Submitted by Edileide Reis (leyde-landy@hotmail.com) on 2013-04-23T12:35:07Z No. of bitstreams: 1 Leila Friedrich.pdf: 945666 bytes, checksum: 6bd01ba22dfd6b6e880b4f9a131adaee (MD5) / Made available in DSpace on 2013-04-23T12:35:07Z (GMT). No. of bitstreams: 1 Leila Friedrich.pdf: 945666 bytes, checksum: 6bd01ba22dfd6b6e880b4f9a131adaee (MD5) Previous issue date: 2006 / As tubulações de aço carbono, para a produção e transporte de produtos químicos, apresentam limitações como resistência à ação da corrosão, sob ação do calor, causando desgaste. Por esse motivo se faz o uso de revestimentos que reduzem o contato da superfície com o meio corrosivo. No entanto, os revestimentos usados para o escoamento de fluídos têm ainda que apresentar uma menor interação com a superfície, uma menor tensão interfacial. Uma grande aplicação destes revestimentos é em dutos de petróleo, devido às obstruções ocasionadas à medida que o óleo escoa através do duto, pois este perde calor para o meio e conseqüentemente se dá à deposição de compostos parafínicos. Análises destes revestimentos com a técnica PLF-FI são de suma importância para avaliar a tensão interfacial dinâmica, pois esta técnica difere das tradicionais para a caracterização da superfície, por ser um método não destrutível e dinâmico. Para a confecção das amostras alguns tempos e temperaturas de cura foram aplicados. Neste presente trabalho, avaliamos quais as superfícies apresentam menor molhabilidade sob condições de fluxo com a superfície, visando um menor número de ocorrências de obstruções das tubulações e paradas para manutenções. Os valores de polarização máxima são verificados para as amostras curadas numa faixa de temperatura entre 120°C a 140°C e tempos de 6 a 10 horas, e sendo estes as variáveis de processo mais indicadas para a produção em alta escala. O presente trabalho foi organizado em 5 capítulos, apresentando-se no Capítulo 1 uma introdução do estudo realizado para a otimização do processo de cura em resinas epóxi modificada com agentes de cura a base de amina. No capítulo 2, apresenta-se uma revisão das tubulações, resina epóxi, a composição, e a cura dos revestimentos. No 12 capítulo 3, revisam-se as técnicas de análises e descrevem-se todas as técnicas experimentais realizadas. No capítulo 4, discutem-se os resultados adquiridos pelas técnicas utilizadas. No capítulo 5, relatam-se as conclusões deste trabalho. / Salvador
130

Desenvolvimento de sistemas a base de tensoativos para recupera??o avan?ada de petr?leo

Ribeiro Neto, Valdir Cotrim 31 August 2007 (has links)
Made available in DSpace on 2014-12-17T15:01:13Z (GMT). No. of bitstreams: 1 ValdirCRN.pdf: 131656 bytes, checksum: 4153e21d4042d68f4cdd2a9f2c14b5e9 (MD5) Previous issue date: 2007-08-31 / Petroleum is a complex combination of various classes of hydrocarbons, with paraffinic, naphtenic and aromatic compounds being those more commonly found in its composition. The recent changes in the world scenario, the large reserves of heavy oils and also the lack of new discoveries of large petroleum fields are indications that, in the near future, the oil recovery by conventional methods will be limited. In order to increase the efficiency of the extraction process, enhanced recovery methods are cited in applications where conventional techniques have proven to be little effective. The injection of surfactant solutions as an enhanced recovery method is advantageous in that surfactants are able to reduce the interfacial tensions between water and oil, thus augmenting the displacement efficiency and, as a consequence, increasing the recovery factor. This work aims to investigate the effects of some parameters that influence the surfactant behavior in solution, namely the type of surfactant, the critical micelle concentration (CMC) and the surface and interface tensions between fluids. Seawater solutions containing the surfactants PAN, PHN and PJN have been prepared for presenting lower interfacial tensions with petroleum and higher stability under increasing temperature and salinity. They were examined in an experimental apparatus designed to assess the recovery factor. Botucatu (Brazil) sandstone plug samples were submitted to assay steps comprising saturation with seawater and petroleum, conventional recovery with seawater and enhanced recovery with surfactant solutions. The plugs had porosity between 29.6 and 32.0%, with average effective permeability to water of 83 mD. The PJN surfactant, at a concentration 1000% above CMC in water, had a higher recovery factor, causing the original oil in place to be recovered by an extra 20.97%, after conventional recovery with seawater / O petr?leo ? uma combina??o complexa de v?rias s?ries de hidrocarbonetos, sendo as mais comumente encontradas as parafinicas, naft?nicas e arom?ticas. As recentes mudan?as no cen?rio mundial, as grandes reservas de ?leos pesados, bem como a escassez de descobertas de grandes campos de petr?leo, indicam que em um futuro pr?ximo a recupera??o de ?leo por m?todos convencionais ser? limitada. Para aumentar a efici?ncia do processo de extra??o, faz-se uso dos m?todos avan?ados de recupera??o para agir nos pontos onde o processo convencional mostrou-se pouco eficiente. A inje??o de solu??o de tensoativo, como um m?todo avan?ado de recupera??o mostra-se vantajosa, pois os tensoativos t?m a finalidade de reduzir as tens?es interfaciais entre a ?gua e o ?leo, ampliando a efici?ncia de deslocamento e, conseq?entemente, aumentando o fator de recupera??o. Este trabalho se prop?s a estudar os efeitos dos par?metros que influenciam as solu??es de tensoativos, como: tipo de tensoativo, concentra??o micelar cr?tica e tens?o superficial e interfacial entre os fluidos. As solu??es com ?gua do mar dos tensoativos PAN, PHN e PJN, por apresentarem menores tens?es interfaciais com o petr?leo e maior estabilidade com o aumento da temperatura e salinidade, foram estudadas em um aparato experimental para avalia??o do fator de recupera??o. Os testemunhos de arenito Botucatu foram submetidos a etapas de satura??o com ?gua do mar e petr?leo, recupera??o convencional com ?gua do mar e recupera??o avan?ada com solu??es de tensoativos. Os testemunhos apresentaram porosidade entre 29,6 e 32,0%, com permeabilidade m?dia efetiva ? ?gua de 83 mD. O tensoativo PJN, com concentra??o de 1000% acima da CMC apresentou maior fator de recupera??o, aumentando em 20,97% a recupera??o do ?leo original in place ap?s a recupera??o convencional com ?gua do mar

Page generated in 0.1115 seconds