• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 283
  • 64
  • 62
  • 29
  • 9
  • 8
  • 7
  • 6
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 600
  • 84
  • 79
  • 68
  • 61
  • 58
  • 57
  • 56
  • 56
  • 55
  • 54
  • 51
  • 49
  • 48
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Scanning Ferromagnetic Resonance Force Microscope Study of the Interface between Y3Fe5O12 and Nonmagnetic Materials

Wu, Guanzhong 10 August 2022 (has links)
No description available.
262

[pt] ESTUDO DA INJEÇÃO DE ÁGUA NA RECUPERAÇÃO MELHORADA DE PETRÓLEO: EFEITO DA SALINIDADE E SURFACTANTE / [en] STUDY OF WATER INJECTION IN ENHANCED OIL RECOVERY: EFFECT OF SALINITY AND SURFACTANT

MILDRE KARINA SILVA SALAS 24 June 2015 (has links)
[pt] As interações óleo/água/rocha podem ter grande influência no deslocamento do óleo em um reservatório. As forças capilares, responsáveis em parte pela retenção de óleo, são um dos parâmetros que podem ser alterados buscando a optimização do processo. Durante um processo de injeção de água, as altas tensões interfaciais água-óleo diminuem a capacidade de escoamento do óleo e deixam altas saturações deste em forma de glóbulos imóveis e desconectados, nas regiões já contatadas pelo fluido injetado. Com a injeção de surfactante, a tensão interfacial diminui e consequentemente as forças necessárias para mobilizar glóbulos de óleo. No entanto, a interação da salinidade com a solução de surfactante pode trazer importantes efeitos no escoamento bifásico dentro do meio poroso. O objetivo deste trabalho é estudar o efeito da salinidade da água e concentração de surfactante em um processo de deslocamento de óleo. Neste estudo, foram realizados testes de deslocamento em amostras de arenito de Bentheimer de alta permeabilidade, para soluções salinas com e sem surfactante não iónico Álcool Laurílico Etoxilado- 8EO (L80), submetidos a uma temperatura de 40 graus celsius. As saturações residuais bem como as permeabilidades efetivas das fases ao final do processo de embebição e drenagem foram medidas para as diferentes soluções aquosas. Os resultados obtidos mostram a variação na eficiência do processo de deslocamento, influenciada principalmente pelo comportamento de fases, a tensão interfacial, concentração de eletrólitos em solução (salinidade), e a formação de emulsão durante o escoamento bifásico no meio poroso. / [en] The interactions oil/water/rock may have strong influence in displacement of the oil in a reservoir. The capillary forces, responsible in part by the trapped oil, is one of the parameters that allow the optimization of water injection processes. During water injection, the high interfacial tension of water-oil decreases the flow capacity of oil and leave high saturations of this phase in the form of immobile and disconnected ganglia, in the regions already contacted by injected water. With the injection of surfactants, the interfacial tension decreases and some of the oil ganglia are mobilized. However, the interaction of salinity with the surfactant solution can bring important effects in the two-phase flow within porous media. The aim of this work is to study the effect of water salinity and concentration of surfactant in oil displacement process. In this study, the displacement tests were performed on Bentheimer sandstone of high permeability, for saline solution with and without non-ionic surfactant Lauryl Alcohol Ethoxylates- 8EO (L80), subjected to a temperature of 40 Celsius degree. The saturation and effective permeability of each phase at the end of imbibition and drainage were determined for the different water solutions. The results obtained show the variation in the efficiency of the displacement process, mainly influenced by the behavior of phases, the interfacial tension, concentration of electrolytes in solution (salinity) and in-situ emulsion formation.
263

Interfacial phenomena in mixed-wet oil reservoirs: 2-phase fluid dynamics and chemo-rheology at pore-scale

Saad, Ahmed Mohamed 10 1900 (has links)
Asphaltenic crude oil is a complex fluid containing various components with different chemical properties. When it comes in contact with water, its polar components adsorb at the oil/water interface, reducing the interfacial tension and eventually developing viscoelastic films. The interfacial films impact emulsion stability and adhere to the oil-bearing reservoirs rocks, altering their wettability and thus hindering oil mobilization. Here, we investigate the formation of crude oil/water interfacial films. We measure both the time-dependent shear and extensional interfacial rheology moduli, and we relate it to the chemical composition of the films, highlighting the role of polar aromatic molecules in film formation. Varying chemical composition of the aqueous phase, we show that the properties of the interfacial films depend not only on the concentration of ionic species in water but also on their chemical nature. In particular, we highlight the role of sulfate salt in promoting interfacial viscoelasticity and in altering the composition of fully developed films. To study the rock/fluid interaction, we fabricate mixed-wet capillaries with angular cross-sections inspired by the naturally occurring primary drainage of pore-filling brine by invading crude oil. After employing our novel coating procedure, we experimentally investigate water invasion in mixed-wet capillaries and compare it with predictions of dynamic and quasi-static (Mayer-Stowe-Princen (MSP)) meniscus-invasion models. None of the dynamic models built for uniformly-wet pores can fully describe our experimental data in mixed-wet capillaries. However, the experimental results agree with predictions of MSP theory. To our knowledge, this is the first direct experimental validation of MSP theory under mixed-wet conditions. We confirm the possibility of spontaneous piston-type imbibition with high ($> 90^{\circ}$) advancing contact angles into mixed-wet pores, given that the contact angle is lowered below a critical value that is a function of pore geometry and residual water saturation. In oil reservoirs, injection of specific brines would be required to change the contact angle to values below the imbibition threshold. Finally, we extend our study and introduce a powerful 3D high-speed laser imaging of dynamic fluid flow in angular capillaries and investigate its capability to capture non-equilibrium shapes of fluid interfaces.
264

Replacement Rates of Initially Hydrocarbon-Filled Microscopic Cavities with Water

Larson, Hans Christian 01 June 2019 (has links)
Wetting behaviors influence many aspects of life and industry from consumer product goods to oil recovery to cosmetics. While the traditional solid-liquid-vapor (SLV) system has been studied for many years now, wetting transitions in the solid-liquid-liquid (SLL) system has remained relatively unexplored. The purpose of this work is to bring light to the wetting transition of the solid-liquid-liquid system and to understand the replacement rates of initially hydrocarbon-filled microscopic cavities with water and the factors affecting these rates. Factors studied were viscosity, density, diffusion related properties, and surface related properties in both hydrocarbon-saturated and hydrocarbon-non-saturated conditions. Cylindrical microscopic cavities were etched in a silicon wafer, filled with various organic solvents dyed with fluorophores, then submerged in water. Through fluorescence microscopy techniques, the transition or replacement rates of the initially hydrocarbon-filled cavities with water in both hydrocarbon-saturated and hydrocarbon-absent water conditions are observed. Among the factors we investigated, namely viscosity, density, surface chemistry, and diffusive flux (composed of solubility and diffusivity), diffuse flux dominated replacement rates in hydrocarbon-absent water conditions. By using hydrocarbon-saturated water, diffusive flux was minimized, allowing for deeper investigation of other factors. In the hydrocarbon-saturated scenario, replacement rates are largely affected by initial fluid motion, specific cavity geometry, and cavity penetration mechanisms. Image analysis reveals the geometry of the oils in the cavities and shows how the transition from hydrocarbon-fully-filled to hydrocarbon-partially-filled states occurs in the SLL system.
265

Investigating the Effect of Thermal Stresses on the Hollow Glass Microsphere/Polyester Composites Interfacial strength by Acoustic Emission Method

Mousavi Khalkhali, Zeinab January 2016 (has links)
The effect of coatings on the interfacial strength of a hollow glass microsphere/polyester composite and their capacity to endure thermal stresses were studied by mechanical testing and an active Acoustic Emission (AE) method. AE was postulated to provide more local information at or near the glass/polyester interface due to the sensitivity of elastic waves to the rigidity of polymer chains at the glass sphere/polyester interface compared to mechanical testing. Three frequency ranges identified by multivariate statistics yet consolidated for the initial analysis into a band of 140-240 kHz, were found to be changing with the different coated glass filler for different glass content and heating state. Considering the acoustic behavior of the composites containing different levels of glass sphere content (1-10 vol%), a lower concentration (aminoethylamino)-propyl-trimethoxy silane coated glass (AS6), demonstrated the lowest attenuation after heating (associated with higher interfacial strength). As anticipated, the highest attenuation after heating was observed for uncoated glass (16K) due to expectedly weaker associations. Mechanical testing results after heating were consistent with the AE response for AS6 and 16K for this frequency range. Trends in amplitude for the three narrower, frequency ranges of 130-160 kHz, 180-220 kHz and 230-260 kHz were compared against that of 140-240 kHz and very small differences were observed. It was found that the frequency range of 130-60 kHz was more descriptive of the changes of interfacial strength in composites (at 10 vol%), being consistent with the mechanical test results. Considering the AE response at 130-160 kHz and mechanical data, higher concentration (aminoethylamino)-propyl-trimethoxy silane (AS12), better endured thermal stresses compared to other coatings. A smaller trial looked at the effect of moisture aging and subsequent thermal cycling on the glass/polymer interface strength as another method to perturb the interface. Attenuation for the band of 180-260 kHz was studied for aged versus non-aged composites. The commercial coating, L21 demonstrated a better moisture resistance before and after thermal cycling compared to uncoated glass spheres. An improved evaluation of interfacial strength in glass/polyester was expected using AE technique versus mechanical testing due to its higher sensitivity to changes in internal structure, however; no significant improvement compared to mechanical testing was observed, at least based on the analysis technique currently being used. / Thesis / Master of Applied Science (MASc) / Sheet molded compound (SMC) is a polymer material reinforced by fibers providing a combination of light weight and high mechanical properties and is used in automotive industry. Light weight fillers (hollow glass microspheres) are used to obtain further weight reduction; however, addition of these fillers leads to reduced mechanical properties and further problems during painting process known as ‘paint popping’. The former is due to uncertain interfacial state between polymer and fillers and the latter results from different thermal expansion behavior of the polymer and filler materials while the material is exposed to high temperatures for painting process. This research aims to devise a highly sensitive technique and evaluate its suitability compared to mechanical testing for investigation of the origin of aforementioned problems. Acoustic Emission (AE) is a method with high sensitivity to changes in internal structure of the material which is postulated to provide a better insight on material microstructure compared to more commonly used method i.e. mechanical testing. Use of interfacial controlling agents was examined to reduce the problems as a result of introduction of fillers. The effect of using surface modified fillers and the effect of thermal stresses on material was investigated using AE technique. Application of AE method in this study provided a good insight about the changes in material internal structure; however, it did not demonstrate a significant improvement in detecting the origins of studied problems compared to mechanical testing at least based on the analysis technique used in this study.
266

Details of a Study of Interfacial Momentum Transfer in Two-Phase Two-Component Critical Flows

Surgenor, Brian W. 01 1900 (has links)
<p> Preparations for an investigation of interfacial momentum transfer in two-phase two-component critical flows have been completed.</p> <p> The experiments involve the measurement of flow rates, axial pressure profiles, axial and transverse void fraction profiles, and axial wall shear stress profiles of steady-state gas-liquid critical flow in a vertical diverging nozzle. A photographic study is to be initiated to record the flow structure. The results of these experiments will be used to develop constitutive relations for interfacial momentum transfer.</p> <p> An experimental loop capable of circulating a gas-liquid mixture in a vertical test section was modified to suit the requirements of this investigation. The void fraction profiles are measured with a traversing gamma densitometer using a 20 mCi Co57 source. The wall shear stress profiles are obtained using the electrochemical method to measure the mass transfer coefficients of electrodes mounted flush with the test section wall. The liquid phase is an electrolyte and the gaseous phase can be air, nitrogen or freon. The latter is used to better approximate the densities of a steam-water flow.</p> <p> This report describes the required theory, measurement techniques, design and operation of the loop, and the experimental procedures.</p> / Thesis / Master of Engineering (MEngr)
267

Tailored Quasi-Solid-State Lithium-Ion Electrolytes for Low Temperature Operations

Nestor R Levin (17584008) 10 December 2023 (has links)
<p dir="ltr">The thesis goal was to design a quasi-solid-state battery electrolyte, which was optimized to function at ambient as well as low temperatures. In the first project, an array of quasi-solid-state electrolytes were developed and compared. A series of electrochemical, spectroscopic, and thermal experiments in addition to imaging techniques determined a top performer as well as elucidated possible mechanistic explanations. This systematic study attempted to validate literature conclusions about the failure mechanisms governing batteries (solid-state batteries) at ultralow temperatures, while also offering hypothesis driven additional insight. The optimized electrolyte, which will be deemed as CSPE@2MMeTHF, performed well for several key reasons, traced to the co-solvent used (Me-THF), the salt concentration, and its formation of a stable and suitable cathode-electrolyte interphase. It was able to perform well at 25 °C, and down to -25 °C. The second part of the work, focused on further optimizing the electrolyte by removing a ‘polymer wetting/soaking’ step, removing a ceramic component, and pairing it with a recently discovered anodic electrode material. Given that narrowing the research gap for low temperatures requires both electrolyte and electrode design, it was important to consider this aspect of the problem as well. The cathodic electrode used for the first project, traditionally performs poorly at low temperatures, allowing for a suitable experimental control for the electrolyte. However, the new anodic electrode had two ways of storing lithium ions, as opposed to just one in the former, making it an attractive option for the stated goal of a low-temperature solid-state battery. This second project is akin to a ‘proof-of-concept’ work and there is much more room for further study, especially in preparing a full cell with the aforementioned electrodes cathode (LFP) and anode (NbWO) with the second SPE@51DMMeT electrolyte. In summary, this thesis shows method design to prepare solid-state electrolytes with portion of liquid, two successfully developed electrolyte systems for low temperatures, and a rigorous discussion of factors that affect electrochemical performance. Demonstrated research activities are of great value to defense as the current lithium-ion batteries does not perform well at subzero temperatures.</p>
268

Hierarchical spatiotemporal analyses and the design of all-solid-state lithium-ion batteries / 階層的時空間解析と全固体リチウムイオン電池の設計

Yang, Seunghoon 25 July 2022 (has links)
京都大学 / 新制・課程博士 / 博士(人間・環境学) / 甲第24149号 / 人博第1052号 / 新制||人||246(附属図書館) / 2022||人博||1052(吉田南総合図書館) / 京都大学大学院人間・環境学研究科相関環境学専攻 / (主査)教授 内本 喜晴, 教授 吉田 鉄平, 准教授 松井 敏明, 教授 林 晃敏 / 学位規則第4条第1項該当 / Doctor of Human and Environmental Studies / Kyoto University / DFAM
269

Interfacial dynamics of ferrofluids in Hele-Shaw cells

Zongxin Yu (16618605) 20 July 2023 (has links)
<p>Ferrofluids are remarkable materials composed of magnetic nanoparticles dispersed in a carrier liquid. These suspensions exhibit fluid-like behavior in the absence of a magnetic field, but when exposed to a magnetic field, they can respond and deform into a variety of patterns. This responsive behavior of ferrofluids makes them an excellent material for applications such as drug delivery for targeted therapies and soft robots. In this thesis, we will focus on the interfacial dynamics of ferrofluids in Hele-Shaw cells. The three major objectives of this thesis are: understanding the pattern evolution, unraveling the underlying nonlinear dynamics, and ultimately achieving passive control of ferrofluid interfaces. First, we introduce a novel static magnetic field setup, under which a confined circular ferrofluid droplet will deform and spin steadily like a `gear’, driven by interfacial traveling waves. This study combines sharp-interface numerical simulations with weakly nonlinear theory to explain the wave propagation. Then, to better understand these interfacial traveling waves, we derive a long-wave equation for a ferrofluid thin film subject to an angled magnetic field. Interestingly, the long-wave equation derived, which is a new type of generalized Kuramoto--Sivashinsky equation (KSE), exhibits nonlinear periodic waves as dissipative solitons and reveals fascinating issues about linearly unstable but nonlinearly stable structures, such as transitions between different nonlinear periodic wave states. Next, inspired by the low-dimensional property of the KSE, we simplify the original 2D nonlocal droplet problem using the center manifold method, reducing the shape evolution to an amplitude equation (a single local ODE). We show that the formation of the rotating `gear’ arises from a Hopf bifurcation, which further inspires our work on time-dependent control. By introducing a slowly time-varying magnetic field, we propose strategies to effectively control a ferrofluid droplet's evolution into a targeted shape at a targeted time. The final chapter of this thesis concerns our ongoing research into the interfacial dynamics under the influence of a fast time-varying and rotating magnetic field, which induces a nonsymmetric viscous stress tensor in the ferrofluid, requiring the balance of the angular momentum equation. As a consequence, wave propagation on a ferrofluid interface can be now triggered by magnetic torque. A new thin-film long-wave equation is consistently derived taking magnetic torque into account.</p>
270

INVESTIGATING INTERFACIAL FERROMAGNETISM IN OXIDE HETEROSTRUCTURES USING ADVANCED X-RAY SPECTROSCOPIC AND SCATTERING TECHNIQUES

Paudel, Jay, 0000-0002-3173-3018 12 1900 (has links)
In this dissertation, we utilized a wide range of complementary synchrotron-based X-ray spectroscopic and scattering techniques, notably X-ray absorption spectroscopy (XAS), hard X-ray photoelectron spectroscopy (HAXPES), standing-wave X-ray photoelectron spectroscopy (SW-XPS), and X-ray resonant magnetic reflectometry (XRMR), to understand and control the phenomenon of emergent interfacial ferromagnetism in strongly-correlated oxide heterostructures. This field holds great promise for the development of next-generation spintronic devices. In the heterostructures we investigated, neither of the parent oxide layers exhibits inherent ferromagnetism. Yet, when these layers are combined in an epitaxial film stack, charge-transfer phenomena give rise to an emergent ferromagnetic state at the interface. Throughout my graduate studies, I focused on studying such charge-transfer phenomena as the driving force for stabilizing interfacial ferromagnetism. This dissertation is structured around two main projects. The first project delves into the intriguing possibility of tuning the emergent interfacial ferromagnetism. More specifically, we investigated the mechanisms for suppressing interfacial charge transfer to gain control over and manipulate this magnetic phenomenon. In our second project, we explored a different facet of interfacial ferromagnetism, focusing on the origins of the imbalance in the magnitudes of the magnetic moment between the top and bottom interfaces in the same layer. Our investigation aimed to uncover the possible causes of this imbalance, ultimately leading us to scrutinize the role of defect states in this magnetic asymmetry. In the first part of this dissertation, we investigated the thickness-dependent metal-insulator transition within LaNiO3 and how it impacts the electronic and magnetic states at the interface between LaNiO3 and CaMnO3. We present a direct observation of a reduced effective valence state in the interfacial Mn cations. This reduction is most pronounced in the metallic LaNiO3/CaMnO3 superlattice, where the above-critical LaNiO3 thickness of 6-unit cells triggers this phenomenon, facilitated by the charge transfer of the itinerant Ni 3d eg electrons into the interfacial CaMnO3 layer. In contrast, when we examine the insulating superlattice with a LaNiO3 thickness below the critical value (2-unit cells), we observe a homogeneous effective valence state of Mn throughout the CaMnO3 layers. This homogeneity is attributed to the suppression of charge transfer across the interface. The second part of this dissertation delves deeply into the complexities of interfacial magnetism within the CaMnO3/CaRuO3 superlattices. Our experimental investigation unveiled an unexpected asymmetry in the strength of magnetism at these interfaces. Our findings suggest that within the superlattice CaMnO3/CaRuO3, the lower interface (CaRuO3/CaMnO3) exhibits a weaker magnetic moment when compared to the upper interface (CaMnO3/CaRuO3). This observation, supported by XRMR and XAS experimental data, was further clarified by first-principles density functional theory (DFT) calculations. Our calculations suggest that the observed magnetic asymmetry may be linked to the presence of oxygen vacancies at the interfaces. Our study significantly contributes to our understanding of interfacial ferromagnetism, potentially paving the way for controlling and manipulating this emergent property. This may be achieved by utilizing engineered defect states, offering exciting prospects for applications in the field of spintronics devices. / Physics

Page generated in 0.067 seconds