• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 283
  • 64
  • 62
  • 29
  • 9
  • 8
  • 7
  • 6
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 600
  • 84
  • 79
  • 68
  • 61
  • 58
  • 57
  • 56
  • 56
  • 55
  • 54
  • 51
  • 49
  • 48
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

The Antibacterial Activity of Silicone-Polyether Surfactants

Khan, Madiha F. January 2017 (has links)
The increase in microbial resistance to antibiotics underscores the need for novel antibacterial surfaces, particularly for silicone-based implants, because the hydrophobicity of silicones has been linked to undesirable microbial adhesion and biofilm formation. Unfortunately, current strategies for mitigation, such as pretreatment of surfaces with antiseptics/antibiotics, are not consistently effective. In fact, they can facilitate the prevalence of resistant pathogens by exposing bacteria to sublethal concentrations of biocides. Therefore, scientific interest has shifted to preventing initial adhesion (prior to surface colonization) by using surfactants as surface modifiers. Accordingly, Chapter 2 studied the bioactivity of ACR-008 UP (an acrylic-terminated superwetting silicone surfactant) after it was copolymerized in increasing weight percentages with butyl methacrylate (BMA) and/or methyl methacrylate (MMA). Interestingly, copolymers of 20 wt % ACR showed at least 3x less adhesion by Escherichia coli BL21 (E. coli) than any other formulation. This was not a consequence of wettability, which followed a parabolic function with ACR concentration: high contact angles (CA) with sessile water drops were observed at both low (< 20 wt %) and high (> 80 wt %) concentrations of ACR in materials. The CA at 20 wt % ACR was 66°. The lack of E. coli adhesion was ascribed to surfactant-membrane interactions; hence, the antibacterial potential of compounds related to ACR was further probed. Chapter 3, therefore, examines the structure-activity relationships of nonionic silicone polyether surfactants in solution. Azide/alkyne click chemistry was used to prepare a series of eight compounds with consistent hydrophilic tails (8- 44 poly(ethylene glycol) units), but variable hydrophobic heads (branched silicones with 3-10 siloxane linkages, and in two cases phenyl substitutions). The compounds were tested for toxicity at 0.001 w/v %, 2.5 w/v % and their critical micelle concentrations (CMCs), against different concentrations of E. coli in a 3-step assay. Surfactants with smaller head groups had as much as 4x the bioactivity of larger analogues, with the smallest hydrophobe exhibiting potency equivalent to SDS. Smaller PEG chains were similarly associated with higher potency. This data suggests that lower micelle stability, and the theoretically enhanced permeability of smaller silicone head groups in membranes, is linked to antibacterial activity. The results further demonstrate that the simple manipulation of nonionic silicone polyether structures, leads to significant changes in antibacterial action. To ensure similar results were achievable when such surfactants are immobilized on surfaces, 8 compounds with shorter, ethoxysilylpropyl-terminated PEG chains, and branched or linear hydrophobes, were incorporated into a homemade, room temperature vulcanization (RTV) silicone (Chapter 4). The materials, containing 0- 20 wt% surfactants) were then tested for contact killing and cytophobicity against the same E. coli strain. Elastomers modified with 0.5- 1 wt% of (EtO)3Si-PEG- laurate, and separately (EtO)3Si-PEG-tBS, were on average 2x more hydrophilic relative to controls (103°) and differed in their wettability by ~40°, yet both were anti-adhesive; a ~30-fold reduction in adhesion was seen on modified surfaces relative to the control PDMS. Additionally, the (EtO)3Si-PEG-tBS surface demonstrated biocidal behavior, which further highlighted the importance of surfactant chemistry- not just wettability- in observing a specific antibacterial response (if any). Based on the data collated from each Chapter, silicone surfactants seem to have great potential as bioactive agents and warrant further systematic investigations into their mechanisms of action. In so doing, their chemistry may be optimized against different microbes for a variety of applications. In particular, their potential to create non-toxic, cytophobic silicones is particularly encouraging, given the need for anti-adhesive, biofilm preventing material surfaces. / Thesis / Doctor of Philosophy (PhD)
292

Short Term Formation of the Inhibition Layer during Continuous Hot-Dip Galvanizing

Chen, Lihua January 2006 (has links)
<p> Aluminum is usually added to the zinc bath to form an Fe-Al interfacial layer which retards the formation of a series of Fe-Zn intermetallic compounds during the hot-dip galvanizing process. However, experimentally exploring the inhibition layer formation and obtaining useful experimental data to understand the mechanisms is quite challenging due to short times involved in this process. In this study, a galvanizing simulator was used to perform dipping times as short as O.ls and rapid spot cooling techniques have been applied to stop the reaction between the molten zinc coating and steel substrate as quickly as possible. In addition, the actual reaction time has been precisely calculated through the logged sample time and temperature during the hot-dipping process. The kinetics and formation mechanism of the inhibition layer was characterized using SEM, ICP and EBSD based on the total reaction time. For bath containing 0.2wt% dissolved AI, the results show that FeA13 nucleates and grows during the initial stage of the inhibition layer formation and then Fe2Als forms by a diffusive transformation. The evolution of the interfacial layer formed in a zinc bath with 0.13wt% dissolved AI, including Fe-Aland Fe-Zn intermetallic compounds, was a result of competing reactions. In the initial period, the Fe-Al reaction dominated due to high thermodynamic driving forces. After the zinc concentration reached a critical composition in the substrate grain boundaries, formation of Fe-Zn intermetallic compounds was kinetically favoured. Fe-Zn intermetallic compounds formed due to zinc diffusing to the substrate via short circuit paths and continuously grew by consuming Fe-Al interfacial layer after samples exited the zinc bath due to the limited Al supply. A mathematical model to describe the formation kinetics as a function of temperature for the 0.2wt% Al zinc bath was proposed. It indicated that the development of microstructure of the interfacial layer had significant influence on the effective diffusion coefficient and growth of this layer. However, the model underestimates the AI uptake by the interfacial layer, particularly at higher temperatures. This is thought to be due to the effect of the larger number of triple junctions in the inhibition layer leading to an underestimation of the effective diffusivity. </p> / Thesis / Master of Science (MSc)
293

Characterization and life cycle assessment of geopolymer mortars with masonry units and recycled concrete aggregates assorted from construction and demolition waste

Kul, A., Ozel, B.F., Ozcelikci, E., Gunal, M.F., Ulugol, H., Yildirim, Gurkan, Sahmaran, M. 24 August 2023 (has links)
Yes / Developing a fast, cost-effective, eco-friendly solution to recycle large amounts of construction and demolition waste (CDW) generated from construction industry-related activities and natural disasters is crucial. The present investigation aims to offer a solution for repurposing CDW into building materials suitable for accelerated construction and housing in developing countries and disaster-prone areas. Feasibility of recycled concrete aggregate (RCA) inclusion in geopolymer mortars constituted entirely from CDW (masonry elements) was investigated via an environmental impact-oriented approach by addressing the composition related key parameters. Mechanical performance was evaluated through compressive strength tests, and scanning electron microscope (SEM) imaging with line mapping analyses were carried out to monitor the interfacial transition zone (ITZ) properties. To investigate the environmental impacts of the geopolymer mortars and highlight the advantages over Portland cement-based mortars, a cradle-to-gate life cycle assessment (LCA) was performed. Findings revealed that roof tile (RT)-based geopolymer mortars mainly exhibited better strength performance due to their finer particle size. Mixtures activated with 15 M NaOH solution and cured at 105 °C achieved an average compressive strength above 55 MPa. RCA size was the most influential parameter on compressive strength, and a smaller maximum RCA size significantly increased the compressive strength. Microstructural analyses showed that the ITZ around smaller RCAs was relatively thinner, resulting in better compressive strength results. LCA proved that CDW-based geopolymer mortars provide the same compressive strength with around 60% less CO2 emissions and similar energy consumption compared to Portland cement-based mortars. / This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 894100. The authors also wish to acknowledge the support of the Scientific and Technical Research Council of Turkey (TUBITAK) provided under project: 117M447
294

Numerical Simulation of Multi-Phase Core-Shell Molten Metal Drop Oscillations

Sumaria, Kaushal 27 October 2017 (has links) (PDF)
The surface tension of liquid metals is an important and scientifically interesting parameter which affects many metallurgical processes such as casting, welding and melt spinning. Conventional methods for measuring surface tension are difficult to use for molten metals above temperatures of 1000 K. Containerless methods are can be used to measure the surface tension of molten metals above 1000 K. Oscillating drop method is one such method where a levitated droplet is allowed to undergo damped oscillations. Using the Rayleigh’s theory for the oscillation of force-free inviscid spherical droplets, surface tension and viscosity of the sample can be calculated from oscillation frequency and damping respectively. In this thesis, a numerical model is developed in ANSYS Fluent to simulate the oscillations of the molten metal droplet. The Volume of Fluid approach is used for multiphase modelling. The effect of numerical schemes, mesh size, and initialization boundary conditions on the frequency of oscillation and the surface tension of the liquid are studied. The single-phase model predicts the surface tension of zirconium within a range of 13% when compared to the experimental data. The validated single phase model is extended to predict the interfacial tension of a core-shell structured compound drop. We study the effect of the core and shell orientation at the time of flow initialization. The numerical model we developed predicts the interfacial tension between copper and cobalt within the range of 6.5% when compared to the experimental data. The multiphase model fails to provide any conclusive data for interfacial tension between molten iron and slag.
295

Processing and Characterization of Device Solder Interconnection and Module Attachment for Power Electronics Modules

Haque, Ashim Shatil 08 January 2000 (has links)
This research is focused on the processing of an innovative three-dimensional packaging architecture for power electronics building blocks with soldered device interconnections and subsequent characterization of the module's critical interfaces. A low-cost approach termed metal posts interconnected parallel plate structure (MPIPPS) was developed for packaging high-performance modules of power electronics building blocks (PEBB). The new concept implemented direct bonding of copper posts, not wire bonding of fine aluminum wires, to interconnect power devices as well as joining the different circuit planes together. We have demonstrated the feasibility of this packaging approach by constructing PEBB modules (consisting of Insulated Gate Bipolar Transistors (IGBTs), diodes, and a few gate driver elements and passive components). In the 1st phase of module fabrication with IGBTs with Si₃N₄ passivation, we had successfully fabricated packaged devices and modules using the MPIPPS technique. These modules were tested electrically and thermally, and they operated at pulse-switch and high power stages up to 6kW. However, in the 2nd phase of module fabrication with polyimide passivated devices, we experienced significant yield problems due to metallization difficulties of these devices. The under-bump metallurgy scheme for the development of a solderable interface involved sputtering of Ti-Ni-Cu and Cr-Cu, and an electroless deposition of Zn-Ni-Au metallization. The metallization process produced excellent yield in the case of Si₃N₄ passivated devices. However, under the same metallization schemes, devices with a polyimide passivation exhibited inconsistent electrical contact resistance. We found that organic contaminants such as hydrocarbons remain in the form of thin monolayers on the surface, even in the case of as-received devices from the manufacturer. Moreover, in the case of polyimide passivated devices, plasma cleaning introduced a few carbon constituents on the surface, which was not observed in the case of Si<sub>3</sub>N<sub>4</sub> passivated devices. X-Ray Photoelectron Spectroscopy (XPS) Spectra showed evidence of possible carbon contaminants, such as carbide (~282.9eV) and graphite (~284.3eV) on the surface at binding energies below the binding energy of the hydrocarbon peak (C 1s at 285eV). Whereas above the hydrocarbon peak energy level, carbon-nitrogen compounds, single bond carbon compounds (~285.9eV) and double bond carbon compounds (~288.5eV) were evident. The majority of the carbon composition on the pad surface was associated with hydrocarbons, which were hydrophobic in nature, thus making the device contact pad less wettable. XPS data showed that, after the plasma cleaning process, absorbed monolayers on the Si₃N₄ passivated and polyimide passivated surfaces consisted of different chemical compositions and accordingly, the attraction forces of these absorbed layers are also different, which affects the bonding properties of the subsequent metallization, resulting in different contact resistances. On the other hand, with an electroless Zn-Ni-Au deposition, it was found that the polyimide passivation on the devices degraded due to due alkaline exposure in the plating baths, thus lowering the device breakdown voltage significantly. Furthermore, interfacial thermal resistances of solder preform, solder paste and silver epoxy (between the power module and the heat spreader) were characterized for process optimization. Void content at the resulting interface was found to be dependent on the flux content and flux activity. Solder preform with no-clean flux, reflowed in nitrogen results in the least resistant and minimized void-content interface. It is most likely that the flux added to the preform had a higher fluxing action than the flux contained in the solder paste. On the other hand, the outgassing of the entrapped flux profoundly affects the void formation and a lower void content indicates a lesser amount of trapped flux. In the case of a solder paste, the flux is in direct contact with the surface oxide of the powders and the surface to be soldered. Consequently, during reflow, any residual oxide can be expected to have some flux adhered to it. In the case of solder preform with added flux, the higher activity flux eliminated the oxide more rapidly and more thoroughly, thus leaving fewer spots for the flux to adhere to. Void contents in all cases of nitrogen reflow are consistently lower than the air-reflowed samples. Silver epoxy with a higher thermal conductivity (60W/mK) than Pb-Sn eutectic solder did not produce low-resistance interfaces. We found that thermal conductivity of the interface material is not the most crucial factor in reducing thermal resistance, rather it is the contact thermal resistance of the interfaces, which constitutes the largest part of the total interfacial thermal resistance. Process optimization with applied pressure and nitrogen reflow resulted in a significant lowering of contact resistance (from 0.55°C/W to 0.25°C/W) for the solder preform interfaces. We concluded that contact resistance needs to be duly accounted for in thermal modeling for an accurate representation of an interface; at the same time, the module attachment process must be tailored to reduce contact resistance for improved thermal management. / Ph. D.
296

Multiple Wave Scattering and Calculated Effective Stiffness and Wave Properties in Unidirectional Fiber-Reinforced Composites

Liu, Wenlung 05 August 1997 (has links)
Analytic methods of elastic wave scattering in fiber-reinforced composite materials are investigated in this study to calculate the effective static stiffness (axial shear modulus, m) and wave properties (axially shear wave speed, B and attenuation, Y) in composites. For simplicity only out-of-plane shear waves are modeled propagating in a plane transverse to the fiber axis. Statistical averaging of a spatially random distribution of fibers is performed and a simultaneous system of linear equations are obtained from which the effective global wave numbers are numerically calculated. The wave numbers, K=Re(K)+iIm(K), are complex numbers where the real parts are used to compute the effective axial shear static stiffness and wave speed; the imaginary parts are used to compute the effective axial shear wave attenuation in composites. Three major parts of this study are presented. The first part is the discussion of multiple scattering phenomena in a successive-events scattering approach. The successive-events scattering approach is proven to be mathematically exact by comparing the results obtained by the many-bodies-single-event approach. Scattering cross-section is computed and comparison of the first five scattering orders is made. Furthermore, the ubiquitous quasi-crystalline approximation theorem is given a justifiable foundation in the fiber-matrix composite context. The second part is to calculate m, B and Y for fiber-reinforced composites with interfacial layers between fibers and matrix. The material properties of the layers are assumed to be either linearly or exponentially distributed between the fibers and matrix. A concise formula is obtained where parameters can be computed using a computationally easy-to-program determinant of a square matrix. The numerical computations show, among other things, that the smoother (more divisional layers), or thinner, the interfacial region the less damped are the composite materials. Additionally composites with exponential order distribution of the interfacial region are more damped than the linear distribution ones. The third part is to calculate m, B and Y for fiber-reinforced composites with interfacial cracks. The procedures and computational techniques are similar to those in the second part except that the singularity near the crack tip needs the Chebychev function as a series expansion to be adopted in the computation. Both the interfacial layers and interfacial crack cases are analyzed in the low frequency range. The analytic results show that waves in both cases are attenuated and non-dispersive in the low frequency range. The composites with interfacial layers are transversely isotropic, while composites with interfacial cracks are generally transversely anisotropic. / Ph. D.
297

Formation And Growth Mechanisms of a High Temperature Interfacial Layer Between Al and TiO2

Payyapilly, Jairaj Joseph 23 December 2008 (has links)
The product of interaction between Al and TiO2 at elevated temperature has a wide range of applications in refractory, structural and electronics industries (refractory tiles, tank armor, fuel cells, and microelectronic devices). This research attempts to understand the extent of interaction between Al and TiO2 when the reactant surfaces are in contact at elevated temperature and normal atmospheric pressure. The interfacial region between the reactant compounds is examined using analytical techniques; and the formation of TiAl as the interfacial compound is described. The thermodynamics of the Al – Ti – O system is explained as it relates to the particular conditions for the Al – TiO2 reaction research. Thermodynamic principles have been used to demonstrate that the formation of TiAl is favored instead of other TixAly compounds for the set of conditions outlined in this thesis. A study of the mechanism of interactions in the interfacial region can help towards being able to determine the reaction kinetics that lead to the control of microstructure and thus an improvement in the material performance. An appropriate model that describes the formation of TiAl at the interface is described in this study. The formation of TiAl at the interface is a result of the reduction reaction between TiO2 and Al. The O released during the reduction of TiO2 has been investigated and demonstrated to partly remain dissolved in TiAl at the interfacial region. Some O reacts with Al as well to form crystalline Al2O3 in the interfacial layer. / Ph. D.
298

Understanding Electrode-Electrolyte Interfaces with Metal Dissolution and Redeposition Chemistry

Hu, Anyang 18 January 2023 (has links)
The fundamental understanding of the dynamic characteristics of metal dissolution and redeposition behavior at the electrode-electrolyte interface is essential, which provides the basis for the development of advanced energy and conversion devices (such as electrochromic devices, electrocatalysts, and batteries) with superior electrochemical performances. We firstly demonstrate the feasibility of resynthesizing the electrode surface chemistry and tuning the electrochemical reactions at the solid-liquid interface by selectively changing the electrolyte composition and electrochemical cycling conditions. Amorphous TiO2 surface layers can be formed on WO3 electrodes by adding exotic Ti cations to the electrolyte, and slow electrochemical cycling. The dissolution and redeposition of electrodes and surface coatings are intertwined, helping to establish a dissolution-redeposition equilibrium at the interface, which can inhibit metal dissolution, stabilize electrode morphology, and promote electrochemical performance. Since the diffusion layer generated by the dissolution of transition metals is ubiquitous at the electrochemical solid-liquid interface, by combining in situ three-electrode electrochemical reaction cell with advanced spatially resolved synchrotron X-ray fluorescence microscopy and micro-X-ray absorption spectroscopy, we then successfully demonstrate the formation and chemical identification of the diffusion layer. By studying the evolution of diffusion layers(tens of micrometers thick) when using WO3 electrodes in acidic electrolytes, we find that with increasing distance of the dissolved species from the electrode surface, the oxidation state remains largely unchanged, but the local electronic environment of the dissolved W species becomes more distorted. We subsequently report a systematic experimental approach by collecting a series of twodimensional fluorescence images at the electrodes to study electrode dissolution and redeposition under different electrochemical conditions. The results show that (1) metal dissolution and redeposition behaviors greatly evolve under different electrode polarization and electrolyte compositions; (2) metal dissolution and redeposition behaviors are independent of bulk electrolyte pH but depend on interfacial pH; and (3) the accumulation of interfacial dissolved species promotes the formation of polytungstate interfacial networks, which ultimately manifest as temporal heterogeneity of redeposition. Lastly, we provide an in-depth study of the underlying mechanism of electrochemicalcycling induced crystallization at the electrode-electrolyte interface through a combination of advanced synchrotron radiation characterization techniques and an in situ electrochemical reaction setup. We have discovered that (1) foreign cations from the electrolyte engender both tensile and compressive strains inside the crystal; (2) repeated electrode dissolution and redeposition promote crystal growth through a non-classical crystallization pathway of particle attachment, but the initial growth of crystals is inhibited by internal strains; and (3) as the strain accumulates, the crystal rotates or moves, which is the fundamental reason for the dynamic structure evolution of the crystal during electrochemical cycling. To our knowledge, this is the first study of electrochemical-cycling-induced crystallization and its strain evolution. These new findings reveal a previously unknown relationship between crystal growth and its internal strain at the electrode-electrolyte interface. / Doctor of Philosophy / Energy drives the entire economy and human civilization. Energy is needed in every aspect of everyday life, and energy is an essential raw material for making and delivering all the products and services that modern society needs, even though it is invisible to us. Since 2000, the global energy demand has increased tenfold and economic growth has spawned a large number of new energy industries, but billions of people are still in urgent need of clean water, sanitation, nutrition, and medical care. Energy is a key factor in meeting these basic requirements for all of humanity. The increasing global energy demand and the increasing impact of climate change have put enormous pressure on the energy market. Therefore, it is necessary to accelerate the relevant actions of energy transition in the world. Among them, the research and innovation of electrochemical energy storage and conversion technology is a major direction. The electrochemical energy storage and conversion technology heavily relies on the various electrochemical reactions in practical devices such as rechargeable batteries, water electrocatalysts, and energy-saving electrochromic smart windows. Within numerous electrochemical reactions under the application, the solid (electrode)-liquid (electrolyte) interface dominates the most important electrochemical reactions. How to understand thephysicochemical reactions at the interface under electrochemical conditions is of great significance. As a major component of research innovations, this research contributes to the design of rational electrode materials, electrolyte compositions, and more efficient and durable electrochemical performance. From a fundamental perspective, my research enriches the understanding of solid-liquid interface reactions under electrochemical conditions, pointing out that electrode dissolution and redeposition and dynamic structural evolution of solid-liquid interfaces are important for further optimizing electrode material design and improving electrochemical performance.
299

Three-Phase and Unidirectional Heat Transfer

Edalatpour, Mojtaba 01 November 2022 (has links)
Smart thermal management by which ultra-high heat fluxes (i.e., q''> 100 W/cm²) are dissipated efficiently, is increasingly desirable for many applications in aerospace, electronic packaging, metallurgy, as the existing cooling solutions are highly constrained. For example, the cooling strategy for aircraft must be executed in such a way that will operate independently of orientation while also screen out external heat loads coming from the neighboring electronic boxes and/or external sources. Therefore, it is crucial to develop heat transfer devices which could effectively dump heat away while additionally shield against external heat loads. Thermal diodes, by definition, accomplish this desirable unidirectional heat transfer functionality. Nonetheless, the existing thermal diodes are currently constrained by either a low diodicity (i.e., heat transfer ratio), gravitational dependence, a one-dimensional configuration, or poor durability. Further example for the necessity of smart thermal management would be in firefighting and nuclear reactor safety. Above a critical temperature referred to as the ``Leidenfrost temperature'', the highly effective nucleate boiling is completely replaced by insulating film boiling, causing a dramatic decrease in the essential cooling rate of water pool boiling and spray quenching. In chapter 2, after noting the mechanism and shortcomings of each existing solid-state and phase-change thermal diode, we develop a unique thermal diode, called bridging-droplet thermal diode, which operates independent of orientation, is planar and durable. Our diode is comprised of two opposing copper plates separated by an insulating gasket of micrometric thickness; one plate contains a superhydrophilic wick structure while the other is smooth and hydrophobic. In the forward mode of operation, water evaporates from the heated wicked plate and condenses on the opposing hydrophobic plate. The large contact angle of the dropwise condensate enables bridging across the gap to replenish the wicked evaporator, providing sustained phase-change heat transfer. Conversely, in the reverse mode the heat source is now on the hydrophobic plate, resulting in dryout and excellent thermal insulation across the gap. An orientation-independent heat transfer ratio (i.e. diodicity (η)) of approximately 85 was experimentally measured. In chapter 3, after highlighting that our experimental proof-of-concept discussed in chapter 2, was limited to only a narrow parameter space, we develop a comprehensive thermal circuit model for both the forward and reverse modes of operation to theoretically characterize the bridging-droplet thermal diode over a broad parameter space. Parameters that are varied include the gap height, input heat flux, effective thermal conductivity of the wetted wick structure, height of the wicking micropillars, wettability of the opposing smooth surface, and heat sink temperature. Our findings show that a vapor space height of Hᵥ≈ 250 μm, short and densely packed micropillars, a higher applied heat flux in the forward mode, and a hotter heat sink temperature result in optimal diodicities of η~ 100. In chapter 4, we discuss that the Leidenfrost effect has been a two-phase phenomenon thus far: either an evaporating liquid or a sublimating solid levitates on its vapor. Here, we demonstrate that an ice disk placed on a sufficiently hot surface exhibits a three-phase Leidenfrost effect, where both liquid and vapor films emanate from under the levitating ice. Curiously, the critical Leidenfrost temperature was over three times hotter for ice than for a water drop. As a result, the effective heat flux was an order of magnitude larger when quenching aluminum with ice rather than water over a wide temperature range of 150--550 °C. An analytical model reveals the mechanism for the delayed film boiling: the majority of the surface's heat is conducted across the levitating meltwater film due to its 100 °C temperature differential, leaving little heat for evaporation. In chapter 5, we note that nucleate boiling achieves dissipative heat fluxes as high as q''~ 100 W/cm² and is widely used for power plants, spray quenching metal alloys, desalination, and electronics cooling. However, above a Leidenfrost temperature of about 150 °C for water, an insulating vapor film massively degrades the heat flux by two orders of magnitude. Here, we demonstrate that robust nucleate boiling can be maintained even at temperatures as high as 400 °C by using ice particles in place of water droplets. Ice pellets are periodically released onto a superheated stage and compared to spray quenching at an equivalent mass flow rate. Ice quenching was twice as fast as spray quenching at low superheats, and at large superheats, only ice quenching is successful. Our results demonstrate that ice quenching can maintain groundbreaking heat fluxes of q''~ 100--1,000,W/cm² over a broad range of superheats, far superior than classical spray quenching. / Doctor of Philosophy / Smart thermal management by which enormous heat generated in avionics, electronic packaging, wildfire, etc are removed efficiently, is increasingly desirable as the current cooling solutions are highly constrained. For example, in the context of aircraft, equipment must be cooled down independent of aircraft orientation while also they are shielded from neighboring and/or external heat sources. In firefighting where the temperature of wildfire flames could get beyond 500 °C, dumping large volume of water from aircraft may not be adequate to quench the fire over a reasonable time frame as the liquid water loses its cooling effectiveness above a critical temperature. In chapter 2, after a brief review of existing cooling devices and their corresponding shortcomings commonly used in aircraft and electronic packaging, we develop a unique device for cooling of aircraft which operates independent of aircraft orientation, is durable over time, and can cool down surfaces irrespective of their dimensions. In chapter 3, after highlighting that our proof-of-concept of a new cooling device in chapter 2, was limited to only a finite number of experiments, we theoretically model the operating mechanism of our device to check for the criteria where our device works most efficient. In chapter 4, we discover that by placing an ice disk on a sufficiently hot surface, effective boiling where large amount of heat can be dumped away from the surface to the coolant, is extended to a very large surface temperature. To be specific, liquid water on smooth aluminum loses its cooling efficiency around 150 °C, while cooling the same surface with ice is still effective up to 550 °C. In chapter 5, we report that quenching with ice is twice as fast as quenching with liquid water at low surface temperatures (i.e., 150--300 °C), and at larger surface temperatures (i.e., beyond 300 °C), only ice quenching is successful. Comparing our ice quenching results against current cooling technologies, we note that ice quenching is superior.
300

Exploiting Interfacial Phenomena to Expel Matter from its Substrate

Mukherjee, Ranit 02 September 2021 (has links)
Spontaneous expulsion of various forms and types of matter from their solid substrates has always been an integral part of interfacial physics problems. A thorough understanding of such interactions between a solid surface and different soft materials not only expands our theoretical knowledge, but also has applications in self-cleaning, omniphobic surfaces and phase-change heat transfer. Although there is a renewed interest in the design of robust functional surfaces which can passively remove highly viscous liquids or dew, or retard ice accretion or frost formation, the physics of several dewetting and/or deicing mechanisms are yet to be fully understood. Even though we know how jumping-droplet condensation offers significantly better heat transfer performance than regular dropwise condensation and can liberate foreign particles, fundamental questions on the effect of surface orientation on jumping-droplet condensation or how it helps in large-scale fungal disease epidemic in plants are still unanswered. Thus, we first try to fill the knowledge gap in jumping-droplet condensation by characterizing their orientation-dependence and their role in a large-scale pathogenic rust disease dissemination among wheat. Unfortunately, understanding of such dewetting mechanisms does not necessarily translates to prevention or removal of ice and frost on subzero surfaces. Use of superhydrophobic structures or hygroscopic materials to retard the growth of frost was found to be limiting. Therefore the search for an efficient, inexpensive, and environmentally favorable anti-icing or de-icing mechanism is still underway. Here we give a framework for making a novel de-icing construct by analyzing a peculiar jumping frost phenomena where frost particles spontaneously jump off the surface when a polar liquid is brought above. Lastly, we demonstrate a simple and cost-effective technique to design a slippery liquid-infused surface from low-density hydrocarbon-based polymers, which is able to effectively remove a wide variety of soft materials. The main all-encompassing theme of this dissertation is to enhance our understanding of several dewetting phenomena, which might enable better design and/or mitigation strategies to control the expulsion of various forms of matter from a wide variety of surfaces. / Doctor of Philosophy / A few years back, a laundry detergent company in India came up with a famous ad campaign; it showed kids coming home from school with dirt all over their clothes to face the wrath of their parents. Rather than casually disparaging their mischievousness, the ad would make us think with their tagline: "Agar daag (Lit. stain, Fig. mess) lagne se kuch achha hota hain, toh daag achhe hain na? (Fig. If something good comes out of a mess, is it a mess?)". While this presents to us an excellent philosophical conundrum, in reality, we always find ways to get rid of foreign materials from surfaces of everyday use. Using water or dirt-repellent coatings on our shoes/clothes/car windshields or in worst case, spending hours trying to clean frost off our cars is something we are all familiar with. Finding innovative ways to remove unwanted materials from surfaces is not limited to humans, but also exhibited by various natural organisms. The excellent water repellency of lotus leaves, antifogging abilities of mosquito eyes or cicada wings, and slipperiness of pitcher plants are just few examples of natural self-cleaning surfaces designed to keep foreign materials or dew droplets off the surface. Sometimes we take a leaf or two out of these natural designs to help our cause. Surfaces with extreme water repellency are called superhydrophobic (hydro: water, phobos: fear). For a long time, gravity was considered to be the only passive droplet removal mechanism on these surfaces. About ten years ago, researchers found out that when two or more small dew droplets come together on these surfaces, they jump off the surface. Compared to the gravity removal, much smaller droplets can be removed via this method resulting in better anti-fogging qualities and heat transfer performance on the surface. As the jumping droplet event itself is independent of gravity, it was long assumed that the performance of these surfaces would not be dependent on their orientation. These jumped droplets can also take off with contaminating particles by partially or fully engulfing them. A recent study has brilliantly showed how rust spores are liberated from the superhydrophobic wheat leaves via jumping dew droplets. This fundamentally new mode of pathogen transport is yet to be fully understood at the same scale as we know wind or rain-induced fungal spore transport. In this work, we try to fill the knowledge gap by answering questions such as whether the surfaces with the abilities of gravity-independent jumping-induced droplet removal ironically fail to gravity and how far can spore(s) travel engulfed in a jumped droplet. But it is not just water droplets (or particles collected by water droplets) on a surface that we want to get rid off. The solid phase of water, i.e., ice or frost, when formed on regular surfaces, is actually harder to remove. The common ice-preventing surfaces are generally unable to stop complete frost formation and forces us to use salt or other moisture attracting chemicals to remove ice from a surface, knowing very well what is the economic and environmental cost of these chemicals. Here, we have introduced a novel de-icing mechanism by holding only a drop of water over a sheet of frost. The simplicity of our experimental setup may remind you the home physics experiments we all did in our childhood. We finish our discussion by designing a slippery surface from regular polymer films used in food packaging. Although the idea behind these slippery surfaces has been around since 2011, polyethylene films have never been used to make such surfaces before. Here, we show through extensive characterization that by choosing a suitable lubricating oil and a polyethylene-based film, we can finally get all of our ketchup to slide out of their packets, without struggle. If the future design of superhydrophobic condensers, de-icing constructs, or slippery surfaces benefit from the work reported here, may be I can finally say with certainty, "Daag Achhe Hain (Dirt is good.)."

Page generated in 0.0939 seconds