281 |
New sharing method between the Fixed Satellite Service and the Aeronautical Mobile Satellite Service in the 14.0-14.5 GHz bandSmith, Justin L. 10 February 2003 (has links)
In the US, the 14.0-14.5 GHz band is allocated on a primary basis to the Radio-Navigation and the FSS with a secondary allocation to the LMSS. The Radio-Navigation service is the use of RADAR for navigation. An example of Radio-Navigation is the ground proximity radar used for airplane collision avoidance. FSS stands for the Fixed Satellite Service. In general, an FSS is a satellite network consisting of a geo-stationary satellite and non-movable earth stations on the ground. An example of an FSS is the earth terminals used at gas stations to verify credit cards and centrally track inventory. The 14.0-14.5 GHz band is also allocated on a secondary basis to the LMSS or Land Mobile Satellite Service. This is a satellite network with a satellite and a movable terrestrial non-aeronautical earth station. An example of an LMSS is a system called Omnitracs, which provides a satellite-based data connection for the trucking industry. AMSS stands for the Aeronautical Mobile Satellite Service. An AMSS is an LMSS dedicated only to airplanes.
The CPM or Conference Preparatory Meeting after WRC or World Radio Conference-2000 decided there was an urgent need for technical and regulatory studies covering sharing between the FSS and the AMSS. The requirement for a report on the studies was added to the WRC-2003 agenda. The WRC also stipulated that the studies must demonstrate that sharing between the FSS and the AMSS is feasible enough to allocate AMSS a secondary status in the band. The studies need to be completed before WRC-2003. AMSS contends that sharing is feasible if their service can meet the same PFD limits of the LMSS. Presently, the FCC has licensed the AMSS on an experimental non-interference basis.
The FSS contends that characteristics are needed of the AMSS system and a detailed sharing study be completed to verify sharing is feasible. The FSS believes that sharing may not be feasible if the same transponder is used for AMSS and FSS. The FSS perceives that the AMSS is asking for a super secondary status. Super secondary status implies that the AMSS would only be required to adhere to PFD limits on individual aircraft and not for multiple aircraft in view of a victim FSS receiver. Future studies will clarify this issue.
The issues associated with the sharing analysis are; the modeling of the orbital separation of the satellites, the atmospheric interference into the communication link and the availability of the communication link between the FSS and the AMSS.
The issues associated with modeling of the simulation are the static, verses dynamic modeling environments and developing a dynamic software tool to track airplane movement. This thesis plans to propose a new sharing methodology between the FSS and the AMSS that could be contributed to the WRC-2003 agenda.
Three systems examples were provided at ITU meetings inresponse to the WRC-2003 agenda item. The three systems will abide by the ITU-R S.728 EIRP limits. The three systems indicate that static analysis shows that sharing is feasible involving only one aircraft as the interfere. This is not a reasonable solution for a real time environment because there is only one aircraft used. It is necessary for the link to support multiple aircraft.
The factors that indicate sharing is feasible are: non-harmful interference to the victim and reasonable enough link margin in the interfere system to make it viable. A viable system in the case of aircraft would include high-speed internet and video. The AMSS interfere system cannot propose a power limit that will not allow it to close it's own link.
In order to mitigate the interference, systems can agree to certain interference mitigation techniques. The different techniques are: transmitting power control, geostationary arc avoidance angle and orbital arc separation.
Power control as described above is the centralized control of the interfering antenna into the victim. This is done by simulating the interference environment and pre-scheduling the decreases of the transmitting power. This is a feasible solution except that it decreases the availability and thru-put of the interfere system. This approach can make the system have unrealistic link margins and spotty availability due to the pre-scheduled power control.
Another technique is the geostationary arc avoidance angle. This technique is not applicable since both the AMSS and FSS use geostationary orbits.
The third technique is geostationary separation. This technique requires co-channel systems to maintain a certain orbital spacing between them. FSS systems in certain bands have a minimum of 3 degrees of orbital spacing between co-channel systems. Since the AMSS has 01/25/03 a mobile terrestrial system (aircraft) as part of the link, it requires a higher orbital separation between it and the FSS system. The results of dynamic analysis indicate that this technique is feasible at 10 degree orbital spacing.
The Monte Carlo analysis completed for this thesis simulated the results of four scenarios: co-located, 3 degree, and 5 and 10-degree orbital separation. It can be determined from the results that the interference decreases as the orbital separation increases. These simulations were done based on a 10 aircraft interfere scenario. / Master of Science
|
282 |
Multiuser detection for CDMA systems with convolutional codingYang, Ning 04 March 2009 (has links)
In Code Division Multiple Access (COMA) systems, the multiple access interference limits the capacity of current systems which use a matched filter or correlation receiver. It has been shown by previous research that multiuser detection receivers employing interference cancellation techniques can significantly improve the capacity of COMA systems. Error correction coding is also an important technique for overcoming severe channel degradation. In this project, we investigate the performance of multiuser receivers which use the combination of interference cancellation techniques and error correction codes.
Specifically, we look at the combination of multistage interference cancellation and convolutional coding. Two different combination schemes are proposed and the performance of these two schemes is studied. The first scheme is a partitioned approach where the multistage interference cancellation is in front of the decoder and is performed on the coded data. The second scheme is an integrated approach where the decoded data is used to reconstruct the transmitted signals in order to do interference cancellation.
Both of these two schemes result in significant performance improvement over a receiver using either multistage interference cancellation or convolutional coding techniques only, for a reasonable range of operating points. The first scheme is recommended due to its soft-decision estimation of transmitted signal and implementation considerations. The analytical results for the first scheme are presented. Simulation results for both of these two schemes are obtained and compared. / Master of Science
|
283 |
Separation of the common-mode and the differential-mode conducted electromagnetic interference noiseGuo, Ting 17 January 2009 (has links)
One of the difficulties in solving E:MI problems is the lack of diagnostic tools available. In this thesis work, a tool, called Noise Separator, is developed, which can be used to decipher the differential-mode (DM) noise and the common-mode (CM) noise from the total noise. A noise separator hardware is built and tested. The results show that at least 50 dB rejection to either DM or CM noise is achieved for frequency ranging from 10 KHz to 30 MHz. With the aid of the Noise Separator, EMI filter design is made easier. / Master of Science
|
284 |
Saddlepoint Approximation for Calculating Performance of Spectrum-Sliced WDM SystemsTeotia, Seemant 06 August 1999 (has links)
Spectrum slicing is a novel technique for the implementation of wavelength-division multiplexing (WDM). While conventional WDM systems employ laser diodes operating at discrete wavelengths as carriers for the different data channels that are to be multiplexed, spectrum-sliced systems make use of spectral slices of a broadband noise source for the different data channels, thus being economically attractive.
In spectrum-sliced WDM systems with an optical preamplifier receiver there is an optimum m=BoT (Bo = optical channel bandwidth, T = bit duration) to minimize the average number of photons-per-bit (Np) required at the receiver for a given error probability (Pe). Both the optimum m and the minimum increase as interchannel interference increases. This has been analyzed previously by using the Gaussian approximation, or by assuming that the signals at the decision point are chi-square distributed. Although the chi-square distribution is valid in the case where there is no interference, it is not valid in the presence of interference, since the interference from the neighboring channel has a smaller bandwidth than the signal. In this thesis, a different method is used to analyze this problem. This method is called the Saddlepoint Approximation, and while the exact analysis required determination of the probability density function (pdf) of the received signal, the saddlepoint method makes use of moment generating functions (MGFs) which have a much simpler form and don't require the convolution operations the pdfs require.
The saddlepoint method is validated by comparing results obtained with the chi-square analysis for the no interchannel interference case when a rectangular shaped filter is used. The effect of non-rectangular spectra on receiver sensitivity with the use of the Saddlepoint Approximation is also investigated. After verifying its validity, the method is applied to the interchannel interference case caused by filter overlap. It is shown that for small filter overlap, use of an equivalent chi-square distribution is valid, but when the overlap becomes larger, the performance approaches that calculated using the Gaussian distribution. It is shown that there is an optimum filter overlap to maximize the total system throughput when total bandwidth is constrained. Operating at this optimum, the total system throughput is 135 Gbits/s when the total system bandwidth is 4.4 THz (35 nm) for a Bit Error Rate (BER) of 10e-9. / Master of Science
|
285 |
A Model-Based Approach to Demodulation of Co-Channel MSK SignalsAhmed, Yasir 03 January 2003 (has links)
Co-channel interference limits the capacity of cellular systems, reduces the throughput of wireless local area networks, and is the major hurdle in deployment of high altitude communication platforms. It is also a problem for systems operating in unlicensed bands such as the 2.4 GHz ISM band and for narrowband systems that have been overlaid with spread spectrum systems.
In this work we have developed model-based techniques for the demodulation of co-channel MSK signals. It is shown that MSK signals can be written in the linear model form, hence a minimum variance unbiased (MVU) estimator exists that satisfies the Cramer-Rao lower bound (CRLB) with equality. This framework allows us to derive the best estimators for a single-user and a two-user case. These concepts can also be extended to wideband signals and it is shown that the MVU estimator for Direct Sequence Spread Spectrum signals is in fact a decorrelator-based multiuser detector.
However, this simple linear representation does not always exist for continuous phase modulations. Furthermore, these linear estimators require perfect channel state information and phase synchronization at the receiver, which is not always implemented in wireless communication systems. To overcome these shortcomings of the linear estimation techniques, we employed an autoregressive modeling approach. It is well known that the AR model can accurately represent peaks in the spectrum and therefore can be used as a general FM demodulator. It does not require knowledge of the exact signal model or phase synchronization at the receiver. Since it is a non-coherent reception technique, its performance is compared to that of the limiter discriminator. Simulation results have shown that model-based demodulators can give significant gains for certain phase and frequency offsets between the desired signal and an interferer. / Master of Science
|
286 |
Common mode electromagnetic interference attenuation for DC/AC inverters using enhanced sinusoidal frequency modulation techniqueLe, Dinh 10 May 2024 (has links) (PDF)
Common mode (CM) electromagnetic interference (EMI) can compromise electronics systems, interfere with communication systems, and degrade mechanical systems. Multiple inverters can also generate excessive CM EMI that often exceeds individual inverter EMI standards. Due to their weight, volume, cost, and suboptimal performance, active and passive filters and chokes are inefficient as EMI mitigation options. By utilizing frequency modulation (FM) or spread spectrum frequency modulation (SSFM), EMI energy is dispersed. In spite of not requiring expensive, bulky, and heavy filters, these techniques produce significant ripples in output voltages and currents. This dissertation uses enhanced sinusoidal frequency modulation to reduce CM EMI output, bridging the gap between existing EMI solutions: 1) To reduce performance degradation, a state-of-the-art FM topology with duty cycle correction is proposed. Due to large output voltage and current ripples, FM techniques have limited bandwidth and utilization. Duty cycle correction allows for a wider FM bandwidth with better EMI attenuation while minimizing output ripple performance tradeoffs. 2) CM EMI accumulation is a growing concern in power converter networks. Even if each converter complies with EMI regulations, multiple converters may produce CM EMI that exceeds EMI standards in parallel operation. A novel algorithm is proposed to suppress CM EMI in a large-scale network using SFMCW frequency indexing. The algorithm minimizes aggregate EMI by minimizing switching frequency overlap among converters. 3) CM EMI noise in complex systems presents a critical challenge. Since standalone converters are rarely affected by CM EMI phases, they were usually overlooked in most studies until recently. CM currents generated by multiple converters can be added or subtracted based on phase differences. The CM currents in large systems with multiple inverters are distributed randomly, resulting in multiple peaks and nulls. In order to reduce network EMI, a sinusoidal FM technique with phase shift is proposed to attenuate CM EMI on multiple parallel inverters. This method overcomes conventional methods' critical disadvantages, including the need for accurate component characterization and modeling, and reducing CM EMI without additional passive components.
|
287 |
The stroop color word task as a predictor of proficiency in English speakers learning GermanJohnson, Cheryl I. 01 January 2003 (has links)
J. R. Stroop' s landmark 1935 article about interference in color naming is often used to study bilingualism. Despite the vast amount of research regarding the Stroop effect and bilinguals, a number of issues are still under debate. This research attempts to further the investigation of the Stroop effect by looking at English speakers at various levels of learning German. Specifically, the pattern of interference for beginners, intermediates, and advanced German learners was examined. As expected, it was found that regardless of proficiency level, interference occurred in the monolingual English and German conditions, but interference was more robust in the English monolingual condition. Between languages interference was also observed. The results provide support for Magiste's ( 1984, 1985) language proficiency hypothesis.
|
288 |
A study of the changes in electromagnetic radiation from a microprocessor due to changes in clock cycles and data programsSmith, Randall Wade 01 January 2001 (has links)
Electromagnetic compatibility (EMC) has become increasingly important in present electronic design. Modern high-speed circuitry has earned amplified attention from engineers due to its ability to interfere with neighboring circuitry through electromagnetic interference (EMI). As the operating speed and layout complexity of electronic circuit systems continues to increase, electromagnetic interference (EMI) becomes a serious issue facing circuit designers of the present and future. In this paper, the radiated emissions of a small PCB (including a microprocessor, SRAM, and flash memory) placed within a 1-GHz Crawford TEM (transverse electromagnetic) cell are analyzed. Various programs are executed while the microprocessor runs at different clock speeds. The dissimilarities in the radiated emission spectrums provided by the DUT (device under test) while running various programs at different clock speeds are compared and analyzed. All five programs run by the microprocessor show similar effects when the clock speed is varied. It is demonstrated that when the clock rate of the microprocessor increases, the overall radiation from the system increases. However, varying the software executed by the microprocessor is found to have effects on the emitted radiation pattern. The greatest noise within the radiated emission spectrum is found to come from programs in which the microprocessor communicates with the external SRAM chip. It is also found that the radiation levels for each program executed by the microprocessor change differently as the position of the microprocessor inside the TEM cell is varied. The fast paced lifestyle of modern society has undeniably led to an increase in desire for higher functionality of electronic devices. Whether it is a wireless device, a portable computer, or simply more electronic components inside an automobile, the need for electronics with more capabilities has become a standard in electronic design. However, to increase the function of a digital device, clock frequencies and software have to be altered. It is hoped that this paper will help engineers to take into consideration how changes in clock frequencies and software can affect the radiated EMI within their designs. An engineer's consideration of the effects of EMI within his/her design will help lead to safer, more reliable devices.
|
289 |
OFDM Performance on Aeronautical ChannnelsKamirah, Daniel K. 10 1900 (has links)
ITC/USA 2009 Conference Proceedings / The Forty-Fifth Annual International Telemetering Conference and Technical Exhibition / October 26-29, 2009 / Riviera Hotel & Convention Center, Las Vegas, Nevada / This paper provides an introduction to the Orthogonal Frequency Division Multiplexing (OFDM) scheme which has been proposed for future aeronautical telemetry applications. OFDM offers the potential for high data rates on radio channels with multipath such as aeronautical telemetry channels. This paper provides in introduction to OFDM and demonstrates how orthogonality is maintained over multipath channels by the introduction of a guard band and by the inclusion of a cyclic prefix. The simulation of OFDM in multipath is simulated and performance results are presented that show the degradation of this scheme on a multipath channel with and without the guard band and the cyclic prefix.
|
290 |
INTERFERENCE MITIGATION AND CHANNEL EQUALIZATION FOR ARTM TIER-1 WAVEFORMS USING KALMAN FILTERSaquib, Mohammad, Popescu, Otilia, Popescu, Dimitrie C., Rice, Michael 10 1900 (has links)
ITC/USA 2006 Conference Proceedings / The Forty-Second Annual International Telemetering Conference and Technical Exhibition / October 23-26, 2006 / Town and Country Resort & Convention Center, San Diego, California / In this paper we describe a new method that is applicable to mitigating both multipath
interference and adjacent channel interference (ACI) in aeronautical telemetry applications using
ARTM Tier-1 waveforms. The proposed method uses a linear equalizer that is derived using
Kalman filtering theory, which has been used for channel equalization for high-speed
communication systems. We illustrate the proposed method with numerical examples obtained
from simulations that show the bit error rate performance (BER) for different modulation
schemes.
|
Page generated in 0.0775 seconds