• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 47
  • 9
  • 6
  • 6
  • 3
  • 1
  • 1
  • Tagged with
  • 144
  • 144
  • 43
  • 31
  • 24
  • 22
  • 20
  • 17
  • 17
  • 16
  • 16
  • 16
  • 15
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Modulation of Bacillus Calmétte Guerin-induced immune evasion

Chan, Mei-po. January 2007 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2008. / Includes bibliographical references (p. 117-147) Also available in print.
22

IgE production regulation via CD23 stalk engagement and cell cycle stimulation /

Caven, Timothy Hays, January 2006 (has links)
Thesis (Ph. D.)--Virginia Commonwealth University, 2006. / Prepared for: Dept. of Microbiology and Immunology. Includes bibliographical references (p. 210-222). Also available online.
23

Klonierung von IL-10 und IL-10-Homologen und Funktionsanalyse in einem Mausmodell der polymikrobiellen Sepsis

Frisch, Kristina. January 2004 (has links) (PDF)
München, Techn. Univ., Diss., 2004.
24

Das Interleukin-10- (IL-10- ) homologe Gen des equinen Herpesvirus Typ 2 (EHV-2) Untersuchungen zur Bedeutung während der akuten und latenten EHV-2-Infektion unter besonderer Berücksichtigung der Expression in vitro und in vivo /

Brackmann, Jens. January 1900 (has links)
Freie Universiẗat, Diss., 2005--Berlin. / Dateiformat: zip, Dateien im PDF-Format. Erscheinungsjahr an der Haupttitelstelle: 2005.
25

Novel insights into the in vivo biology of Interleukin-10

Madan, Rajat 14 July 2009 (has links)
No description available.
26

Induction and characterization of endotoxin tolerance in equine peripheral blood mononuclear cells in vitro

Frellstedt, Linda 10 September 2010 (has links)
Endotoxemia is responsible for severe illness in horses. Individuals can become unresponsive to the endotoxin molecule after an initial exposure; this phenomenon has been called developing a state of "endotoxin tolerance" (ET). ET has been induced in horses in vivo; however, cytokine expression associated with ET has not been investigated. The purpose of this study was to develop and validate a method for inducing ET in equine peripheral blood mononuclear cells (PBMCs) in vitro, and to describe the cytokine profile which is associated with the ET. Blood was collected from 6 healthy horses and PBMCs were isolated. ET was induced by culturing cells with three concentrations of endotoxin given to induce ET, and evaluated after a second dose of endotoxin given to challenge the cells. The relative mRNA expression of IL-10 and IL-12 was measured by use of quantitative PCR. ET was induced in all cells (n=6) exposed to the 2-step endotoxin challenge. In PBMCs treated with 1.0 ng/ml of endotoxin followed by challenge with 10 ng/ml of endotoxin, the relative mRNA expression of IL-10 in tolerized cells was not different from positive control cells. In contrast, the relative mRNA expression of IL-12 in tolerized cells was decreased by 15-fold after the second endotoxin challenge compared with positive control cells. This experiment demonstrated a reliable method for the ex vivo induction of ET in equine PBMCs. A marked suppression of IL-12 production is associated with ET. The production of IL-10 was not altered in ET in our model. / Master of Science
27

Investigation of the interleukin-10-GAG interaction using molecular simulation methods

Gehrcke, Jan-Philip 06 March 2015 (has links)
Glycosaminoglycans (GAGs) are linear polysaccharides, built of periodically occurring disaccharide units. GAGs are ubiquitous in the extracellular matrix (ECM), where they exhibit multifarious biological activities. This diversity arises from - among others - their ability to interact with and regulate a large number of proteins, such as cytokines, chemokines, and growth factors. As of the huge variety in their chemical configuration, GAGs are further sub-classified into different types (heparin, for instance, is one of these sub-classes). Hence, GAGs are a diverse class of molecules, which surely contributes to the broadness of their spectrum of biological functions. Through varying arrangements of sulfate groups and different types of saccharide units, individual GAG molecules can establish specific atomic contacts to proteins. One of the best-studied examples is antithrombin-heparin, whose biologically relevant interaction requires a specific pentasaccharide sequence. It is valid to assume, however, that various proteins are yet to be discovered whose biological functions are in some way affected by GAGs. In other cases, and this is true for the cytokine interleukin-10 (IL-10), there are already experimental indications for a biologically relevant protein-GAG interaction, but the details are still obscure and the fundamental molecular interaction mechanism has still not been clarified. IL-10 has been shown to bind GAGs. So far, however, no structural detail about IL-10-GAG interaction is known. Function-wise, IL-10 is mainly considered to be immunosuppressive and therefore anti-inflammatory, but it in fact has the pleiotropic ability to influence the immune system in both directions, i.e. it constitutes a complex regulation system on its own. Therefore, the role of GAGs in this system is potentially substantial, but is yet to be clarified. In vitro experiments have yielded indications for GAGs being able to modulate IL-10\'s biological function, and obviously IL-10 and GAGs are simultaneously present in the ECM. This gives rise to the assumption that IL-10-GAG interaction is of biological significance, and that understanding the impact of GAGs on IL-10 biology is important - from the basic research point of view, but also for the development of therapies, potentially involving artificially designed ECMs. A promising approach for obtaining knowledge about the nature of IL-10-GAG interaction is its investigation on the structural level, i.e. the identification and characterization of the molecular interaction mechanisms that govern the IL-10-GAG system. In this PhD project it was my goal to reveal structural and molecular details about IL-10-GAG interaction with theoretical and computational means, and with the help of experiments performed by collaborators in the framework of the Collaborative Research Centre DFG Transregio 67. For achieving this, I developed three methods for the in silico investigation of protein-GAG systems in general and subsequently applied them to the IL-10-GAG system. Parts of that work have been published in scientific journals, as outlined further below. I proposed and validated a systematic approach for predicting GAG binding regions on a given protein, based on the numerical simulation and analysis of its Coulomb potential. One advantage of this method is its intrinsic ability to provide clues about the reliability of the resulting prediction. Application of this approach to IL-10 lead to the observation that its Coulomb attraction for GAGs is significantly weaker than in case of exemplary protein-GAG systems (such as FGF2-heparin). Still, a distinct IL-10-GAG binding region centered on the residues R102, R104, R106, R107 of the human IL-10 sequence was identified. This region can be assumed to play a major role in IL-10-GAG interaction, as described in chapter 3. Molecular docking methods are used to generate binding mode predictions for a given receptor-ligand system. In chapter 4, I clarify the importance of data clustering as an essential step for post-processing docking results and present a clustering methodology optimized for GAG molecules. It allows for a reproducible analysis, enabling systematic comparisons among different docking studies. The approach has become standard procedure in our research group. It has been applied in a variety of studies, and served as an essential tool for studying IL-10-GAG interaction, as described in chapter 3. Motivated by the shortcomings of classical docking approaches, especially with respect to protein-GAG systems, I worked on the development of a molecular dynamics-based docking method with less radical approximations than usually applied in classical docking. The goal was to make the computational model properly account for the special physical properties of GAGs, and to include the effects of receptor flexibility and solvation. The methodology was named Dynamic Molecular Docking (DMD) and published in the Journal of Chemical Information and Modeling-together with a validation study. The subsequent application of DMD in a variety of studies required enormous amounts of computational resources. For tackling this challenge, I established a graphics processing unit-based high-performance computing environment in our research group and developed a software framework for reliably performing DMD studies on this hardware, as well as on other computing resources of the TU Dresden. The investigation of the IL-10-GAG system via DMD was focused on the IL-10-GAG binding region predicted earlier, and made heavy usage of the optimized clustering approach named above. An important result of this endeavor is that IL-10's amino acid residue R107 significantly stands out compared to all other residues and supposedly plays a particularly important role in IL-10-GAG recognition. The collaboration with the NMR laboratory of Prof. Daniel Huster at the Universität Leipzig was fruitful: I post-processed nuclear Overhauser effect data and obtained heparin structure models, which revealed that IL-10-heparin interaction has a measurable impact on the backbone structure of the heparin molecule. These results were published in Glycobiology. In chapter 8, I propose two different scenarios about how GAG-binding to IL-10 might affect its biological function, based on the findings made in this thesis project. In conclusion, a set of methods has been developed, all of which are generically applicable for the investigation of protein-GAG systems. Regarding the IL-10-GAG system, valuable structural insights for increasing the understanding about its molecular mechanisms were derived. These observations pave the way towards unraveling GAG-mediated bioactivity of IL-10, which may then be specifically exploited, for instance in artificial ECMs for improved wound healing.
28

Periplasmic Delivery of Biologically Active Human Interleukin-10 in Escherichia coli via a Sec-Dependent Signal Peptide

Pöhlmann, Christoph, Brandt, Manuela, Mottok, Dorothea S., Zschüttig, Anke, Campbell, John W., Blattner, Frederick R., Frisch, David, Gunzer, Florian 18 March 2014 (has links) (PDF)
Interleukin-10 (IL-10) is a potent anti-inflammatory cytokine, with therapeutic applications in inflammatory bowel disease. For the in situ delivery of IL-10 by Escherichia coli as carrier chassis, a modified transporter was designed with the ability to secrete biologically active IL-10. De novo DNA synthesis comprised a 561-bp fragment encoding the signal sequence of the E. coli outer membrane protein F fused in frame to an E. coli codon-optimized mature human IL-10 gene under control of a T7 promoter. The construct was overexpressed in E. coli laboratory strains, E. coli BL21 (DE3) and E. coli MDS42:T7. The mean concentrations of human IL-10 in the periplasm and culture supernatant of E. coli BL21 (DE3) were 355.8 ± 86.3 and 5.7 ± 1.7 ng/ml, respectively. The molecular mass of the recombinant E. coli-derived human IL-10 was 19 kDa, while under non-reducing conditions the native IL-10 dimer could be demonstrated. Reduction of tumor necrosis factor-α secretion in lipopolysaccharide-stimulated mouse macrophages and detection of the activated form of the transcription factor signal transducer and activator of transcription protein 3 proved the biological activity of the bacteria-produced human IL-10. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
29

Untersuchungen zur Wechselwirkung von Interleukin-10 mit Glykosaminoglykanen mittels NMR-Spektroskopie

Künze, Georg 12 August 2015 (has links) (PDF)
Das Zytokin Interleukin-10 (IL-10) ist ein Schlüsselspieler in der Regulation des Immunsystems mit pro- und anti-inflammatorischen Funktionen. Es spielt eine wichtige Rolle bei der Terminierung und Unterdrückung einer Entzündungsantwort, die ansonsten zu einer bleibenden Schädigung des Gewebes führen kann. Eine Dysregulation von IL-10 ist mit verschiedenen Krankheitsbildern wie chronischen Entzündungen, Autoimmunerkrankungen und Krebs assoziiert. IL-10 wird von einem breiten Spektrum von Zelltypen, darunter hauptsächlich hämatopoetische Zellen, aber auch epitheliale und mesenchymale Zellen, gebildet und in den extrazellulären Raum freigesetzt, wo es mit Komponenten der extrazellulären Matrix in Kontakt kommt. Es ist bekannt, dass IL-10 an Glykosaminoglykane (GAGs) binden kann und dass diese Interaktion seine biologische Aktivität beeinflusst. GAGs sind eine Klasse linearer Polysaccharide der extrazellulären Matrix. Sie bestehen aus wiederholenden Disaccharideinheiten und haben einen hoch negativ geladenen Charakter, welcher durch einen hohen Grad an Sulfatierung in der Zuckerkette zustandekommt. Sie binden eine Vielzahl an Signalproteinen und regulieren deren biologische Funktionen, etwa indem sie Einfluss auf die Rezeptorbindung oder die räumliche Verteilung des Proteins im Gewebe nehmen. Die molekularen Mechanismen, wodurch GAGs die biologische Aktivität von IL-10 beeinflussen, sind bisher unbekannt. Insbesondere ist nichts über die strukturellen Grundlagen der Interaktion bekannt, die Voraussetzung für ihr funktionelles Verständnis sind. In dieser Arbeit wurden daher die Bindungseigenschaften von IL-10 und GAGs sowie der strukturelle Aufbau ihres molekularen Komplexes unter Verwendung von NMR-Spektroskopie in Lösung charakterisiert. Es wurde eine definierte GAG-Bindungsstelle in IL-10 identifiziert und die Bindungsepitope und Bindungsaffinitäten von GAGs bestimmt. Die Ergebnisse dieser Arbeit weisen auf eine wichtige Rolle, die GAGs in der Biologie von IL-10 spielen können, hin – etwa für seine Speicherung im Gewebe oder für die IL-10-Rezeptorbindung.
30

Untersuchungen zur Wechselwirkung von Interleukin-10 mit Glykosaminoglykanen mittels NMR-Spektroskopie

Künze, Georg 04 August 2015 (has links)
Das Zytokin Interleukin-10 (IL-10) ist ein Schlüsselspieler in der Regulation des Immunsystems mit pro- und anti-inflammatorischen Funktionen. Es spielt eine wichtige Rolle bei der Terminierung und Unterdrückung einer Entzündungsantwort, die ansonsten zu einer bleibenden Schädigung des Gewebes führen kann. Eine Dysregulation von IL-10 ist mit verschiedenen Krankheitsbildern wie chronischen Entzündungen, Autoimmunerkrankungen und Krebs assoziiert. IL-10 wird von einem breiten Spektrum von Zelltypen, darunter hauptsächlich hämatopoetische Zellen, aber auch epitheliale und mesenchymale Zellen, gebildet und in den extrazellulären Raum freigesetzt, wo es mit Komponenten der extrazellulären Matrix in Kontakt kommt. Es ist bekannt, dass IL-10 an Glykosaminoglykane (GAGs) binden kann und dass diese Interaktion seine biologische Aktivität beeinflusst. GAGs sind eine Klasse linearer Polysaccharide der extrazellulären Matrix. Sie bestehen aus wiederholenden Disaccharideinheiten und haben einen hoch negativ geladenen Charakter, welcher durch einen hohen Grad an Sulfatierung in der Zuckerkette zustandekommt. Sie binden eine Vielzahl an Signalproteinen und regulieren deren biologische Funktionen, etwa indem sie Einfluss auf die Rezeptorbindung oder die räumliche Verteilung des Proteins im Gewebe nehmen. Die molekularen Mechanismen, wodurch GAGs die biologische Aktivität von IL-10 beeinflussen, sind bisher unbekannt. Insbesondere ist nichts über die strukturellen Grundlagen der Interaktion bekannt, die Voraussetzung für ihr funktionelles Verständnis sind. In dieser Arbeit wurden daher die Bindungseigenschaften von IL-10 und GAGs sowie der strukturelle Aufbau ihres molekularen Komplexes unter Verwendung von NMR-Spektroskopie in Lösung charakterisiert. Es wurde eine definierte GAG-Bindungsstelle in IL-10 identifiziert und die Bindungsepitope und Bindungsaffinitäten von GAGs bestimmt. Die Ergebnisse dieser Arbeit weisen auf eine wichtige Rolle, die GAGs in der Biologie von IL-10 spielen können, hin – etwa für seine Speicherung im Gewebe oder für die IL-10-Rezeptorbindung.

Page generated in 0.0819 seconds