• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 3
  • 3
  • Tagged with
  • 19
  • 19
  • 15
  • 11
  • 11
  • 11
  • 10
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of the interleukin-10-GAG interaction using molecular simulation methods

Gehrcke, Jan-Philip 31 March 2015 (has links) (PDF)
Glycosaminoglycans (GAGs) are linear polysaccharides, built of periodically occurring disaccharide units. GAGs are ubiquitous in the extracellular matrix (ECM), where they exhibit multifarious biological activities. This diversity arises from - among others - their ability to interact with and regulate a large number of proteins, such as cytokines, chemokines, and growth factors. As of the huge variety in their chemical configuration, GAGs are further sub-classified into different types (heparin, for instance, is one of these sub-classes). Hence, GAGs are a diverse class of molecules, which surely contributes to the broadness of their spectrum of biological functions. Through varying arrangements of sulfate groups and different types of saccharide units, individual GAG molecules can establish specific atomic contacts to proteins. One of the best-studied examples is antithrombin-heparin, whose biologically relevant interaction requires a specific pentasaccharide sequence. It is valid to assume, however, that various proteins are yet to be discovered whose biological functions are in some way affected by GAGs. In other cases, and this is true for the cytokine interleukin-10 (IL-10), there are already experimental indications for a biologically relevant protein-GAG interaction, but the details are still obscure and the fundamental molecular interaction mechanism has still not been clarified. IL-10 has been shown to bind GAGs. So far, however, no structural detail about IL-10-GAG interaction is known. Function-wise, IL-10 is mainly considered to be immunosuppressive and therefore anti-inflammatory, but it in fact has the pleiotropic ability to influence the immune system in both directions, i.e. it constitutes a complex regulation system on its own. Therefore, the role of GAGs in this system is potentially substantial, but is yet to be clarified. In vitro experiments have yielded indications for GAGs being able to modulate IL-10\'s biological function, and obviously IL-10 and GAGs are simultaneously present in the ECM. This gives rise to the assumption that IL-10-GAG interaction is of biological significance, and that understanding the impact of GAGs on IL-10 biology is important - from the basic research point of view, but also for the development of therapies, potentially involving artificially designed ECMs. A promising approach for obtaining knowledge about the nature of IL-10-GAG interaction is its investigation on the structural level, i.e. the identification and characterization of the molecular interaction mechanisms that govern the IL-10-GAG system. In this PhD project it was my goal to reveal structural and molecular details about IL-10-GAG interaction with theoretical and computational means, and with the help of experiments performed by collaborators in the framework of the Collaborative Research Centre DFG Transregio 67. For achieving this, I developed three methods for the in silico investigation of protein-GAG systems in general and subsequently applied them to the IL-10-GAG system. Parts of that work have been published in scientific journals, as outlined further below. I proposed and validated a systematic approach for predicting GAG binding regions on a given protein, based on the numerical simulation and analysis of its Coulomb potential. One advantage of this method is its intrinsic ability to provide clues about the reliability of the resulting prediction. Application of this approach to IL-10 lead to the observation that its Coulomb attraction for GAGs is significantly weaker than in case of exemplary protein-GAG systems (such as FGF2-heparin). Still, a distinct IL-10-GAG binding region centered on the residues R102, R104, R106, R107 of the human IL-10 sequence was identified. This region can be assumed to play a major role in IL-10-GAG interaction, as described in chapter 3. Molecular docking methods are used to generate binding mode predictions for a given receptor-ligand system. In chapter 4, I clarify the importance of data clustering as an essential step for post-processing docking results and present a clustering methodology optimized for GAG molecules. It allows for a reproducible analysis, enabling systematic comparisons among different docking studies. The approach has become standard procedure in our research group. It has been applied in a variety of studies, and served as an essential tool for studying IL-10-GAG interaction, as described in chapter 3. Motivated by the shortcomings of classical docking approaches, especially with respect to protein-GAG systems, I worked on the development of a molecular dynamics-based docking method with less radical approximations than usually applied in classical docking. The goal was to make the computational model properly account for the special physical properties of GAGs, and to include the effects of receptor flexibility and solvation. The methodology was named Dynamic Molecular Docking (DMD) and published in the Journal of Chemical Information and Modeling-together with a validation study. The subsequent application of DMD in a variety of studies required enormous amounts of computational resources. For tackling this challenge, I established a graphics processing unit-based high-performance computing environment in our research group and developed a software framework for reliably performing DMD studies on this hardware, as well as on other computing resources of the TU Dresden. The investigation of the IL-10-GAG system via DMD was focused on the IL-10-GAG binding region predicted earlier, and made heavy usage of the optimized clustering approach named above. An important result of this endeavor is that IL-10's amino acid residue R107 significantly stands out compared to all other residues and supposedly plays a particularly important role in IL-10-GAG recognition. The collaboration with the NMR laboratory of Prof. Daniel Huster at the Universität Leipzig was fruitful: I post-processed nuclear Overhauser effect data and obtained heparin structure models, which revealed that IL-10-heparin interaction has a measurable impact on the backbone structure of the heparin molecule. These results were published in Glycobiology. In chapter 8, I propose two different scenarios about how GAG-binding to IL-10 might affect its biological function, based on the findings made in this thesis project. In conclusion, a set of methods has been developed, all of which are generically applicable for the investigation of protein-GAG systems. Regarding the IL-10-GAG system, valuable structural insights for increasing the understanding about its molecular mechanisms were derived. These observations pave the way towards unraveling GAG-mediated bioactivity of IL-10, which may then be specifically exploited, for instance in artificial ECMs for improved wound healing.
2

Improvement of the Digestibility of Sulfated Hyaluronans by Bovine Testicular Hyaluronidase

Lemnitzer, Katharina, Schiller, Jürgen, Becher, Jana, Möller, Stephanie, Schnabelrauch, Matthias 07 July 2014 (has links) (PDF)
Glycosaminoglycans (GAGs) such as hyaluronan (HA) and chondroitin sulfate (CS) are important, natural polysaccharides which occur in biological (connective) tissues and have various biotechnological and medical applications. Additionally, there is increasing evidence that chemically (over)sulfated GAGs possess promising properties and are useful as implant coatings. Unfortunately, a detailed characterization of these GAGs is challenging: although mass spectrometry (MS) is one of the most powerful tools to elucidate the structures of (poly)saccharides, MS is not applicable to high mass polysaccharides, but characteristic oligosaccharides are needed. These oligosaccharides are normally generated by enzymatic digestion. However, chemically modified (particularly sulfated) GAGs are extremely refractive to enzymatic digestion. This study focuses on the investigation of the digestibility of GAGs with different degrees of sulfation by bovine testicular hyaluronidase (BTH). It will be shown by using an adapted spectrophotometric assay that all investigated GAGs can be basically digested if the reaction conditions are carefully adjusted. However, the oligosaccharide yield correlates reciprocally with the number of sulfate residues per polymer repeating unit. Finally, matrix-laser desorption and ionization (MALDI) MS will be used to study the released oligosaccharides and their sulfation patterns.
3

Investigation of the interleukin-10-GAG interaction using molecular simulation methods

Gehrcke, Jan-Philip 06 March 2015 (has links)
Glycosaminoglycans (GAGs) are linear polysaccharides, built of periodically occurring disaccharide units. GAGs are ubiquitous in the extracellular matrix (ECM), where they exhibit multifarious biological activities. This diversity arises from - among others - their ability to interact with and regulate a large number of proteins, such as cytokines, chemokines, and growth factors. As of the huge variety in their chemical configuration, GAGs are further sub-classified into different types (heparin, for instance, is one of these sub-classes). Hence, GAGs are a diverse class of molecules, which surely contributes to the broadness of their spectrum of biological functions. Through varying arrangements of sulfate groups and different types of saccharide units, individual GAG molecules can establish specific atomic contacts to proteins. One of the best-studied examples is antithrombin-heparin, whose biologically relevant interaction requires a specific pentasaccharide sequence. It is valid to assume, however, that various proteins are yet to be discovered whose biological functions are in some way affected by GAGs. In other cases, and this is true for the cytokine interleukin-10 (IL-10), there are already experimental indications for a biologically relevant protein-GAG interaction, but the details are still obscure and the fundamental molecular interaction mechanism has still not been clarified. IL-10 has been shown to bind GAGs. So far, however, no structural detail about IL-10-GAG interaction is known. Function-wise, IL-10 is mainly considered to be immunosuppressive and therefore anti-inflammatory, but it in fact has the pleiotropic ability to influence the immune system in both directions, i.e. it constitutes a complex regulation system on its own. Therefore, the role of GAGs in this system is potentially substantial, but is yet to be clarified. In vitro experiments have yielded indications for GAGs being able to modulate IL-10\'s biological function, and obviously IL-10 and GAGs are simultaneously present in the ECM. This gives rise to the assumption that IL-10-GAG interaction is of biological significance, and that understanding the impact of GAGs on IL-10 biology is important - from the basic research point of view, but also for the development of therapies, potentially involving artificially designed ECMs. A promising approach for obtaining knowledge about the nature of IL-10-GAG interaction is its investigation on the structural level, i.e. the identification and characterization of the molecular interaction mechanisms that govern the IL-10-GAG system. In this PhD project it was my goal to reveal structural and molecular details about IL-10-GAG interaction with theoretical and computational means, and with the help of experiments performed by collaborators in the framework of the Collaborative Research Centre DFG Transregio 67. For achieving this, I developed three methods for the in silico investigation of protein-GAG systems in general and subsequently applied them to the IL-10-GAG system. Parts of that work have been published in scientific journals, as outlined further below. I proposed and validated a systematic approach for predicting GAG binding regions on a given protein, based on the numerical simulation and analysis of its Coulomb potential. One advantage of this method is its intrinsic ability to provide clues about the reliability of the resulting prediction. Application of this approach to IL-10 lead to the observation that its Coulomb attraction for GAGs is significantly weaker than in case of exemplary protein-GAG systems (such as FGF2-heparin). Still, a distinct IL-10-GAG binding region centered on the residues R102, R104, R106, R107 of the human IL-10 sequence was identified. This region can be assumed to play a major role in IL-10-GAG interaction, as described in chapter 3. Molecular docking methods are used to generate binding mode predictions for a given receptor-ligand system. In chapter 4, I clarify the importance of data clustering as an essential step for post-processing docking results and present a clustering methodology optimized for GAG molecules. It allows for a reproducible analysis, enabling systematic comparisons among different docking studies. The approach has become standard procedure in our research group. It has been applied in a variety of studies, and served as an essential tool for studying IL-10-GAG interaction, as described in chapter 3. Motivated by the shortcomings of classical docking approaches, especially with respect to protein-GAG systems, I worked on the development of a molecular dynamics-based docking method with less radical approximations than usually applied in classical docking. The goal was to make the computational model properly account for the special physical properties of GAGs, and to include the effects of receptor flexibility and solvation. The methodology was named Dynamic Molecular Docking (DMD) and published in the Journal of Chemical Information and Modeling-together with a validation study. The subsequent application of DMD in a variety of studies required enormous amounts of computational resources. For tackling this challenge, I established a graphics processing unit-based high-performance computing environment in our research group and developed a software framework for reliably performing DMD studies on this hardware, as well as on other computing resources of the TU Dresden. The investigation of the IL-10-GAG system via DMD was focused on the IL-10-GAG binding region predicted earlier, and made heavy usage of the optimized clustering approach named above. An important result of this endeavor is that IL-10's amino acid residue R107 significantly stands out compared to all other residues and supposedly plays a particularly important role in IL-10-GAG recognition. The collaboration with the NMR laboratory of Prof. Daniel Huster at the Universität Leipzig was fruitful: I post-processed nuclear Overhauser effect data and obtained heparin structure models, which revealed that IL-10-heparin interaction has a measurable impact on the backbone structure of the heparin molecule. These results were published in Glycobiology. In chapter 8, I propose two different scenarios about how GAG-binding to IL-10 might affect its biological function, based on the findings made in this thesis project. In conclusion, a set of methods has been developed, all of which are generically applicable for the investigation of protein-GAG systems. Regarding the IL-10-GAG system, valuable structural insights for increasing the understanding about its molecular mechanisms were derived. These observations pave the way towards unraveling GAG-mediated bioactivity of IL-10, which may then be specifically exploited, for instance in artificial ECMs for improved wound healing.
4

Interaction of glycosaminoglycans with growth factors and their receptors – implications for biological activity

Köhler, Linda 15 December 2018 (has links)
Die aufgrund des demografischen Wandels steigende Zahl an Patienten mit Knochendefekten, chronischen Wunden und einhergehender Multimorbidität stellt ein großes klinisches und sozioökonomisches Problem dar. Derzeitige etablierte Verfahren zur Behandlung von Knochen- und Hautdefekten weisen zahlreiche Nachteile auf, weshalb die Erforschung innovativer Methoden notwendig ist. Ein vielversprechender Ansatz zur Verbesserung der Wundheilungskapazität ist die Funktionalisierung von Biomaterialien mit Komponenten der extrazellulären Matrix (ECM), die eine Rolle bei der Geweberegeneration spielen. Glykosaminoglykane (GAGs) sind wichtige ECM-Komponenten, von denen bekannt ist, dass sie mit Mediatorproteinen interagieren, wodurch sie deren biologische Aktivität und damit zelluläre Prozesse beeinflussen. Native GAGs, wie Heparansulfat, sind jedoch aufgrund ihrer eingeschränkten Verfügbarkeit, Charge-zu-Charge-Variabilität und ihrer quellenabhängigen biologischen Aktivität nur begrenzt für biomedizinische Anwendungen geeignet. Daher sind chemisch modifizierte Hyaluronsäure (HA)- und Chondroitinsulfat (CS)-Derivate mit definierten Eigenschaften bezüglich des Kohlenhydratrückgrats, sowie des Sulfatierungsgrades und -musters besonders geeignet, um ihre Struktur-Eigenschaftsbeziehung in der Interaktion mit heilungsrelevanten Mediatorproteinen und Zellen zu untersuchen. Ziel der vorliegenden Arbeit war die Untersuchung der zugrundeliegenden molekularen Mechanismen, mit denen GAGs zelluläre Prozesse direkt oder indirekt durch Bindung von Wachstumsfaktoren beeinflussen. Hierbei sollte vor allem gezeigt werden, wie Kohlenhydratrückgrat, Sulfatierungsgrad und -muster der GAG-Derivate die Interaktion und damit die biologische Aktivität des transformierenden Wachstumsfaktors (TGF)-β1, sowie der angiogenen Mediatoren vaskulärer endothelialer Wachstumsfaktor (VEGF)165 und basischer Fibroblasten-Wachstumsfaktor (bFGF) beeinflussen. In vorangegangen Studien wurde gezeigt, dass sulfatierte HA- (sHA) und CS-Derivate stark mit Wachstumsfaktoren, wie den knochenmorphogenetischen Proteinen (BMP)-2/-4 und TGF-β1 wechselwirken. Letzterer wies eine beeinträchtigte Bioaktivität in Gegenwart von hochsulfatierter HA (sHA3) auf. Der zugrundeliegende Mechanismus wurde bisher nicht vollständig aufgeklärt und daher in dieser Arbeit untersucht. Oberflächenplasmonresonanz (SPR)-Untersuchungen mit allen Komponenten des TGF-β1:Rezeptor-Komplexes in Anwesenheit von GAGs zeigten, dass die Vorinkubation von TGF-β1 mit sHA-Derivaten die Bindung von TGF-β1, insbesondere an TGF-β Rezeptor (TβR)-I, aber auch an TβR-II, blockierte. In sequentiellen SPR-Experimenten, welche die in vivo-TGF-β1:Rezeptor-Komplexbildung genauer nachahmen, war jedoch die Rekrutierung von TβR-I zum TβR-II/TGF-β1-Komplex signifikant stärker, wenn der Komplex sHA3 enthielt. GAGs üben somit einen dualen Blockierungsmechanismus auf die TGF-β1:Rezeptor-Komplexbildung aus, wobei die Effekte stark von der Reihenfolge der Bindungsereignisse abhängen. Die hier erstmals untersuchte Bioaktivität von TGF-β1 in Verbindung mit sHA auf Rezeptorebene zeigte eine Abnahme der Phosphorylierung für TβR-I und das TβR-I-regulierte Effektorprotein Smad2 in Gegenwart von sHA3, was auf die Bildung eines inaktiven Signalkomplexes hindeutet. Ebenfalls analysiert wurde die Struktur-Eigenschaftsbeziehung von HA- und CS-Derivaten in ihrer Wechselwirkung mit den wichtigsten angiogenen Wachstumsfaktoren: VEGF165 und bFGF. Ziel war es strukturelle Eigenschaften zu identifizieren, die zu einer Interaktion beitragen und die biologischen Konsequenzen von Wachstumsfaktor/GAG-Interaktion zu ermitteln. Beide Wachstumsfaktoren zeigten eine sulfatierungsabhängige Wechselwirkung mit GAG-Derivaten in der SPR-Bindungsanalyse. Anders als bFGF zeigte VEGF165 außerdem eine klare Präferenz für sHA im Vergleich zu CS-Derivaten, was darauf hindeutet, dass die Wechselwirkung mit diesem Wachstumsfaktor nicht nur vom Sulfatierungsgrad, sondern auch vom Kohlenhydrat-Rückgrat des GAGs beeinflusst wird. sHA-Tetramere waren ausreichend, um mit VEGF165 und bFGF in SPR-Messungen zu interagieren und zeigten, dass die Position der Sulfatierung eine wichtige Rolle bei der Interaktion mit beiden angiogenen Wachstumsfaktoren zu spielen scheint, da die Bindungsstärke des sHA-Tetrasaccharids ohne C6-Sulfatierung des N-Acetylglucosamins (GlcNAc) im Vergleich zu einem ausschließlich an der C6-Position sulfatiertem Derivat geringer war. Interessanterweise war die Bindung von tetramerer persulfatierter HA (psHA) im Vergleich zu einem psHA-Hexamer stärker, was darauf hinweist, dass das Tetrasaccharid in der Lage ist, mit zusätzlichen GAG-Bindungsstellen von VEGF165 und bFGF zu interagieren. Die Bindung von VEGF165 und bFGF an ihre jeweiligen Rezeptoren VEGF Rezeptor (VEGFR)-2 und FGF Rezeptor (FGFR) 1 war vermindert, wenn die Wachstumsfaktoren in SPR-Studien mit sulfatierten GAGs vorinkubiert wurden. Auch hier wurde für VEGF165 ein Einfluss des Kohlenhydratrückgrats nachgewiesen, da die Bindung des Wachstumsfaktors an VEGFR-2 durch sHA-Derivate stärker gehemmt wurde als durch CS-Derivate mit vergleichbarem Sulfatierungsgrad. Auch auf die bFGF/FGFR1IIIc-Interaktion hatte die Sulfatierung der C6-Position des GlcNAc von sHA1 einen stärkeren Einfluss als die C4-Sulfatierung des GlcNAc von CS. Im Gegensatz dazu war die Blockierungskapazität von sCS3 und sHA3 jedoch ähnlich. Dies deutet auf einen geringen Einfluss des Kohlenhydratrückgrats, jedoch auf einen großen Einfluss des gesamten Sulfatierungsgrades der GAG-Derivate auf die bFGF-Wechselwirkung mit FGFR1IIIc hin. Tetramere GAGs waren ebenfalls ausreichend, um die VEGF165- und bFGF-Rezeptorbindung zu stören. Mit zunehmendem Sulfatierungsgrad und Länge des Derivats wurde der Blockierungseffekt verstärkt. Die Interaktion von VEGF165 mit sHA3 und die anschließende Blockierung der VEGFR-2-Bindung führte zu einer verminderten Phosphorylierung von VEGFR-2. In einem 3D in vitro-Angiogenese-Assay zeigte sich darüber hinaus eine verminderte VEGF165- bzw. bFGF-vermittelte Sprossung von Endothelzell-Sphäroiden durch hochsulfatierte GAGs. Die Angiogenese wurde jedoch nicht vollständig inhibiert. Interessanterweise induzierten GAG-Derivate unabhängig von den untersuchten angiogenen Wachstumsfaktoren die Sprossung von Endothelzell-Sphäroiden. Es konnte gezeigt werden, dass VEGFR-2 nicht an der proangiogenen Wirkung von sulfatierten GAGs beteiligt ist, während die Blockierung von FGFR1 die proangiogene Wirkung von sCS3 und sHA3 hemmt. GAG-Derivate könnten FGFR1 direkt aktivieren, da in SPR-Experimenten gezeigt wurde, dass sie an den Rezeptor binden. Andererseits könnte der beobachtete Effekt auch auf eine erleichterte Rezeptordimerisierung mit einer anschließenden verstärkten Ligandenbindung oder die Wechselwirkung mit intrazellulären Targets nach GAG-Internalisierung zurückzuführen sein. Dies muss in weiteren Experimenten geklärt werden. Die Ergebnisse weisen auf die Wichtigkeit der Reihenfolge der Bindungsereignisse hin, da die Bindung von GAG-Derivaten an Wachstumsfaktoren, Rezeptoren oder beide Komponenten zu unterschiedlichen zellulären Konsequenzen hinsichtlich der Signalgebung führt. In der vorliegenden Arbeit wurde gezeigt, dass GAG-Derivate unterschiedliche molekulare Mechanismen nutzen, um zelluläre Prozesse direkt oder indirekt über die Bindung von Wachstumsfaktoren zu modulieren und tragen zu einem tieferen Verständnis ihrer Wirkungsweise bei. Dies könnte wiederum eine Abstimmung der Biomaterial-zusammensetzung auf patientenspezifische Bedürfnisse ermöglichen. GAG-haltige Bio-materialien sind vielversprechend für eine Verminderung TGF-β1-gesteuerter lokaler Hautfibrose, da sie die Bioaktivität von TGF-β1 reduzieren. In Bezug auf die inhibitorischen Effekte auf die VEGF165- und bFGF-Signaltransduktion könnten GAGs mit übermäßiger Angiogenese, die bei rheumatoider Arthritis und diabetischer Retinopathie auftritt, interferieren. Ob diese in vitro-Ergebnisse zur Steuerung der biologischen Aktivität von TGF-β1, VEGF165 und bFGF oder zur direkten Stimulation der Angiogenese unabhängig von Wachstumsfaktoren genutzt werden können, muss in vivo validiert werden. / Age-related pathologies, like chronic wounds and impaired fracture healing are a consequence of a longer life expectancy in our aging population and are associated with considerable clinical and socioeconomic burdens. To improve the wound healing capacity of patients, the development of new adaptive biomaterials to selectively control and promote bone and skin regeneration is essential. A promising approach for the design of such biomaterials incorporates elements of the extracellular matrix (ECM) that play a role in tissue regeneration. Glycosaminoglycans (GAGs) are major ECM components known to interact with important mediator proteins, thereby influencing their biological activity and subsequently cellular processes. However, native GAGs like heparan sulfate have a limited utility for biomedical applications due to their restricted availability, batch-to-batch variability and source-dependent biological activity. For this reason, chemically modified hyaluronan (HA) and chondroitin sulfate (CS) derivatives with defined properties regarding the carbohydrate backbone, the degree of sulfation and the sulfation pattern are preferable for studying their structure-function relationship in the interaction with mediator proteins and cells relevant to healing processes. The aim of the present study was to investigate how GAGs influence cellular processes - directly or indirectly by binding growth factors – and particularly how the sugar backbone as well as the sulfation degree and pattern of GAG derivatives influence the interaction and thus the biological activity of transforming growth factor (TGF)-β1, and the angiogenic mediators vascular endothelial growth factor (VEGF)165 and basic fibroblast growth factor (bFGF). Sulfated HA (sHA) and CS derivatives were reported to strongly interact with growth factors like bone morphogenetic proteins (BMP)-2/-4 and transforming growth factor (TGF)-β1. The bioactivity of the latter was impaired in the presence of highly sulfated HA (sHA3), the underlying mechanism of which is so far not fully elucidated. In the present thesis the interaction of all components of the TGF-β1:receptor complex with sHA was examined by surface plasmon resonance (SPR), showing that pre-incubation of TGF-β1 with sHA derivatives blocked the binding of TGF-β1 in particular to TGF-β receptor (TβR)-I, but also to TβR-II. In sequential SPR experiments that mimicked the in vivo TGF-β1:receptor complex formation more closely, however, recruitment of TβR-I to the TβR-II/TGF-β1 complex was significantly stronger if the complex contained sHA3. GAGs thus exert a dual blocking effect on TGF-β1:receptor complex formation, with the effects strongly depending on the order of binding events. The bioactivity of TGF-β1 in conjunction with sHA at the receptor level, which was investigated here for the first time, showed a decrease of phosphorylation for TβR-I and the TβR-I-regulated effector protein Smad2 in the presence of sHA3, indicating of the formation of an inactive signaling complex. Also analyzed was the structure-function relationship of HA and CS derivatives in their interaction with the most important angiogenic growth factors, namely vascular endothelial growth factor (VEGF)165 and basic fibroblast growth factor (bFGF). The aim was both to identify structural properties that contribute to an interaction and to determine the biological consequences of growth factor/GAG interaction. Both growth factors showed a sulfation-dependent interaction with GAG derivatives in SPR binding analysis. Unlike bFGF, VEGF165 also showed a clear preference for sHA compared to CS derivatives, indicating that the interaction with this growth factor is not only impacted by the degree of sulfation but also by the carbohydrate backbone of the GAG. sHA tetramers were sufficient to interact with VEGF165 and bFGF in SPR measurements. The position of sulfation appears to play an important role in the interaction with both angiogenic growth factors, as the binding strength of the sHA tetrasaccharide with no C6-sulfation of the N-acetylglucosamine (GlcNAc) was lower compared to a derivative exclusively sulfated at the C6 position. Interestingly, binding of tetrameric persulfated HA (psHA) was stronger compared to hexameric psHA, indicating that the tetrasaccharide is able to bind to additional regions of VEGF165 and bFGF. Binding of VEGF165 and bFGF to their respective receptors VEGF receptor (VEGFR)-2 and FGF receptor (FGFR) 1 decreased if the growth factors were pre-incubated with sulfated GAGs in SPR studies. For VEGF165, an influence of the carbohydrate backbone was visible again, since the inhibition of growth factor binding to VEGFR-2 by sHA derivatives was stronger than for CS derivatives with comparable degree of sulfation. For bFGF/FGFR1IIIc interaction, sulfation of the C6 position in GlcNAc of low-sulfated sHA had a stronger impact compared to the C4 sulfation in GlcNAc of CS, while blocking capacity of sCS3 and sHA3 was similar. This suggests a minor influence of the carbohydrate backbone on bFGF interaction with FGFR1IIIc in the presence of GAG derivatives, but a major influence of the overall degree of sulfation. Tetrameric GAGs were already sufficient to interfere with VEGF165 and bFGF receptor binding, but the blocking effect was enhanced with increasing sulfation and chain length of the derivative. The interaction of VEGF165 with sHA3 and the subsequent blocking of VEGFR-2 binding led to an impaired phosphorylation of VEGFR-2. Furthermore, the induction of endothelial cell spheroid sprouting mediated via VEGF165 or bFGF was diminished by high sulfated GAGs as displayed in a 3D in vitro angiogenesis assay. However, angiogenesis was not completely abolished. Interestingly, GAG derivatives induced the sprouting of endothelial cell spheroids independent of the studied angiogenic growth factors. It could be shown that VEGFR-2 is not involved in the pro-angiogenic action of sulfated GAGs, while FGFR1 appears to play a role as blocking it inhibited the pro-angiogenic effect of sCS3 and sHA3. GAG derivatives might directly activate FGFR1 as they bound to the receptor in SPR experiments, but the observed effect might also be due to facilitated receptor dimerization with a subsequent enhanced ligand binding, or to an interaction with intracellular targets after GAG internalization; this needs to be clarified in further experiments. Findings point to the importance of the order of binding events, as binding of GAG derivatives to growth factors, receptors or both leads to different cellular outcomes regarding signaling. Results of the present thesis show that GAG derivatives employ different molecular mechanisms to modulate cellular processes – both directly or indirectly via growth factor binding - and contribute to a deeper understanding of their mode of action, which might allow to tune the biomaterial composition to patient-specific needs. GAG-containing biomaterials are promising candidates to interfere with TGF-β1-driven local skin fibrosis, as they reduce the bioactivity of TGF-β1. Concerning the inhibitory effects on VEGF165 and bFGF signaling, an application of GAGs to interfere with the excessive angiogenesis, occurring in rheumatoid arthritis and diabetic retinopathy could be of interest. Whether these in vitro findings can be used to control the biological activity of TGF-β1, VEGF165 and bFGF or to directly stimulate angiogenesis independent of growth factors needs to be validated in vivo.
5

Glycosaminoglycan Monosaccharide Blocks Analysis by Quantum Mechanics, Molecular Dynamics, and Nuclear Magnetic Resonance

Samsonov, Sergey A., Theisgen, Stephan, Riemer, Thomas, Huster, Daniel, Pisabarro, M. Teresa 09 July 2014 (has links) (PDF)
Glycosaminoglycans (GAGs) play an important role in many biological processes in the extracellular matrix. In a theoretical approach, structures of monosaccharide building blocks of natural GAGs and their sulfated derivatives were optimized by a B3LYP6311ppdd//B3LYP/ 6-31+G(d) method. The dependence of the observed conformational properties on the applied methodology is described. NMR chemical shifts and proton-proton spin-spin coupling constants were calculated using the GIAO approach and analyzed in terms of the method's accuracy and sensitivity towards the influence of sulfation, O1-methylation, conformations of sugar ring, and ω dihedral angle. The net sulfation of the monosaccharides was found to be correlated with the 1H chemical shifts in the methyl group of the N-acetylated saccharides both theoretically and experimentally. The ω dihedral angle conformation populations of free monosaccharides and monosaccharide blocks within polymeric GAG molecules were calculated by a molecular dynamics approach using the GLYCAM06 force field and compared with the available NMR and quantum mechanical data. Qualitative trends for the impact of sulfation and ring conformation on the chemical shifts and proton-proton spin-spin coupling constants were obtained and discussed in terms of the potential and limitations of the computational methodology used to be complementary to NMR experiments and to assist in experimental data assignment.
6

Sulfated hyaluronan alters fibronectin matrix assembly and promotes osteogenic differentiation of human bone marrow stromal cells

Vogel, Sarah, Arnoldini, Simon, Möller, Stephanie, Hempel, Ute, Schnabelrauch, Matthias 28 March 2017 (has links) (PDF)
Extracellular matrix (ECM) composition and structural integrity is one of many factors that influence cellular differentiation. Fibronectin (FN) which is in many tissues the most abundant ECM protein forms a unique fibrillary network. FN homes several binding sites for sulfated glycosaminoglycans (sGAG), such as heparin (Hep), which was previously shown to influence FN conformation and protein binding. Synthetically sulfated hyaluronan derivatives (sHA) can serve as model molecules with a well characterized sulfation pattern to study sGAG-FN interaction. Here is shown that the low-sulfated sHA (sHA1) interacts with FN and influences fibril assembly. The interaction of FN fibrils with sHA1 and Hep, but not with non-sulfated HA was visualized by immunofluorescent co-staining. FRET analysis of FN confirmed the presence of more extended fibrils in human bone marrow stromal cells (hBMSC)-derived ECM in response to sHA1 and Hep. Although both sHA1 and Hep affected FN conformation, exclusively sHA1 increased FN protein level and led to thinner fibrils. Further, only sHA1 had a pro-osteogenic effect and enhanced the activity of tissue non-specific alkaline phosphatase. We hypothesize that the sHA1-triggered change in FN assembly influences the entire ECM network and could be the underlying mechanism for the pro-osteogenic effect of sHA1 on hBMSC.
7

Untersuchungen zur Wechselwirkung von Interleukin-10 mit Glykosaminoglykanen mittels NMR-Spektroskopie

Künze, Georg 12 August 2015 (has links) (PDF)
Das Zytokin Interleukin-10 (IL-10) ist ein Schlüsselspieler in der Regulation des Immunsystems mit pro- und anti-inflammatorischen Funktionen. Es spielt eine wichtige Rolle bei der Terminierung und Unterdrückung einer Entzündungsantwort, die ansonsten zu einer bleibenden Schädigung des Gewebes führen kann. Eine Dysregulation von IL-10 ist mit verschiedenen Krankheitsbildern wie chronischen Entzündungen, Autoimmunerkrankungen und Krebs assoziiert. IL-10 wird von einem breiten Spektrum von Zelltypen, darunter hauptsächlich hämatopoetische Zellen, aber auch epitheliale und mesenchymale Zellen, gebildet und in den extrazellulären Raum freigesetzt, wo es mit Komponenten der extrazellulären Matrix in Kontakt kommt. Es ist bekannt, dass IL-10 an Glykosaminoglykane (GAGs) binden kann und dass diese Interaktion seine biologische Aktivität beeinflusst. GAGs sind eine Klasse linearer Polysaccharide der extrazellulären Matrix. Sie bestehen aus wiederholenden Disaccharideinheiten und haben einen hoch negativ geladenen Charakter, welcher durch einen hohen Grad an Sulfatierung in der Zuckerkette zustandekommt. Sie binden eine Vielzahl an Signalproteinen und regulieren deren biologische Funktionen, etwa indem sie Einfluss auf die Rezeptorbindung oder die räumliche Verteilung des Proteins im Gewebe nehmen. Die molekularen Mechanismen, wodurch GAGs die biologische Aktivität von IL-10 beeinflussen, sind bisher unbekannt. Insbesondere ist nichts über die strukturellen Grundlagen der Interaktion bekannt, die Voraussetzung für ihr funktionelles Verständnis sind. In dieser Arbeit wurden daher die Bindungseigenschaften von IL-10 und GAGs sowie der strukturelle Aufbau ihres molekularen Komplexes unter Verwendung von NMR-Spektroskopie in Lösung charakterisiert. Es wurde eine definierte GAG-Bindungsstelle in IL-10 identifiziert und die Bindungsepitope und Bindungsaffinitäten von GAGs bestimmt. Die Ergebnisse dieser Arbeit weisen auf eine wichtige Rolle, die GAGs in der Biologie von IL-10 spielen können, hin – etwa für seine Speicherung im Gewebe oder für die IL-10-Rezeptorbindung.
8

Improvement of the Digestibility of Sulfated Hyaluronans by Bovine Testicular Hyaluronidase: a UV Spectroscopic and Mass Spectrometric Study

Lemnitzer, Katharina, Schiller, Jürgen, Becher, Jana, Möller, Stephanie, Schnabelrauch, Matthias January 2014 (has links)
Glycosaminoglycans (GAGs) such as hyaluronan (HA) and chondroitin sulfate (CS) are important, natural polysaccharides which occur in biological (connective) tissues and have various biotechnological and medical applications. Additionally, there is increasing evidence that chemically (over)sulfated GAGs possess promising properties and are useful as implant coatings. Unfortunately, a detailed characterization of these GAGs is challenging: although mass spectrometry (MS) is one of the most powerful tools to elucidate the structures of (poly)saccharides, MS is not applicable to high mass polysaccharides, but characteristic oligosaccharides are needed. These oligosaccharides are normally generated by enzymatic digestion. However, chemically modified (particularly sulfated) GAGs are extremely refractive to enzymatic digestion. This study focuses on the investigation of the digestibility of GAGs with different degrees of sulfation by bovine testicular hyaluronidase (BTH). It will be shown by using an adapted spectrophotometric assay that all investigated GAGs can be basically digested if the reaction conditions are carefully adjusted. However, the oligosaccharide yield correlates reciprocally with the number of sulfate residues per polymer repeating unit. Finally, matrix-laser desorption and ionization (MALDI) MS will be used to study the released oligosaccharides and their sulfation patterns.
9

Untersuchungen zur Wechselwirkung von Interleukin-10 mit Glykosaminoglykanen mittels NMR-Spektroskopie

Künze, Georg 04 August 2015 (has links)
Das Zytokin Interleukin-10 (IL-10) ist ein Schlüsselspieler in der Regulation des Immunsystems mit pro- und anti-inflammatorischen Funktionen. Es spielt eine wichtige Rolle bei der Terminierung und Unterdrückung einer Entzündungsantwort, die ansonsten zu einer bleibenden Schädigung des Gewebes führen kann. Eine Dysregulation von IL-10 ist mit verschiedenen Krankheitsbildern wie chronischen Entzündungen, Autoimmunerkrankungen und Krebs assoziiert. IL-10 wird von einem breiten Spektrum von Zelltypen, darunter hauptsächlich hämatopoetische Zellen, aber auch epitheliale und mesenchymale Zellen, gebildet und in den extrazellulären Raum freigesetzt, wo es mit Komponenten der extrazellulären Matrix in Kontakt kommt. Es ist bekannt, dass IL-10 an Glykosaminoglykane (GAGs) binden kann und dass diese Interaktion seine biologische Aktivität beeinflusst. GAGs sind eine Klasse linearer Polysaccharide der extrazellulären Matrix. Sie bestehen aus wiederholenden Disaccharideinheiten und haben einen hoch negativ geladenen Charakter, welcher durch einen hohen Grad an Sulfatierung in der Zuckerkette zustandekommt. Sie binden eine Vielzahl an Signalproteinen und regulieren deren biologische Funktionen, etwa indem sie Einfluss auf die Rezeptorbindung oder die räumliche Verteilung des Proteins im Gewebe nehmen. Die molekularen Mechanismen, wodurch GAGs die biologische Aktivität von IL-10 beeinflussen, sind bisher unbekannt. Insbesondere ist nichts über die strukturellen Grundlagen der Interaktion bekannt, die Voraussetzung für ihr funktionelles Verständnis sind. In dieser Arbeit wurden daher die Bindungseigenschaften von IL-10 und GAGs sowie der strukturelle Aufbau ihres molekularen Komplexes unter Verwendung von NMR-Spektroskopie in Lösung charakterisiert. Es wurde eine definierte GAG-Bindungsstelle in IL-10 identifiziert und die Bindungsepitope und Bindungsaffinitäten von GAGs bestimmt. Die Ergebnisse dieser Arbeit weisen auf eine wichtige Rolle, die GAGs in der Biologie von IL-10 spielen können, hin – etwa für seine Speicherung im Gewebe oder für die IL-10-Rezeptorbindung.
10

Polyhydroxybutyrate als Scaffoldmaterial für das Tissue Engineering von Knochen

Wollenweber, Marcus 27 August 2012 (has links) (PDF)
In drei inhaltlich abgeschlossen Teilen werden Fragestellungen bearbeitet, die sich mit dem Einsatz von Polyhydroxybutyraten als Scaffoldmaterialien für das Tissue Engioneering von Knochen beschäftigen. Zunächst wird ein Prozess optimiert, in dem mittels Verpressen und Auslösen von Platzhaltern (Porogen) poröse Träger (Scaffolds) aus Poly-3-hydroxybuttersäure (P3HB) sowie aus P3co4HB hergestellt werden. Diese Scaffolds werden in der Folge mechanisch und strukturell charakterisiert, wobei Druckfestigkeit, Dauerfestigkeit und Viskoelastizität untersucht werden. Im Ergebnis finden sich mehrere Kandidaten, die für die weitere Testung im Tierversuch in Frage kommen. Weiter wird das Abbauverhalten von schmelzgeponnenen P3HB-Fäden untersucht. Dabei wird ein beschleunigtes Modellsystem gewählt, das noch möglichst nahe am physiologischen Fall aber ohne biologisch aktive Komponente (zB. Enzyme) definiert wurde. Die Charakterisierung bedient sich hier der Gelpermeationschromatographie (GPC), des gasgestützten Elektronenrastermikroskops (ESEM), der differentiellen Thermoanalyse (DSC) und der Rasterkraftmikroskopie. Als Ergebnis zeichnete sich ab, dass neben der hydrolytischen Degradation im Gegensatz zu PHB mit kleinerer spezifischer Oberfläche bei den Fäden auch Erosion zum Abbau beiträgt. Eine partikuläre Freisetzung wird nicht beobachtet. Im dritten Teil werden textile Scaffolds aus P3HB mit einer künstlichen extrazellulären Matrix aus Chondroitinsulfaten (CS) und Kollagen versehen. Dem CS kann hier ein positiver Einfluss auf die osteogene Differenzierung von humanen mesenchymalen Stammzellen (hMSC) nachgewiesen werden. Dies wird zum einen durch die verstärkte Expression der alkalischen Phosphatase (ALP) sowie durch die Hochregulation von Proteinen ersichtlich, die bei der osteogenen Differenzierung essentiell sind. In wenigen Gene-Arrays lässt sich ebenfalls erkennen, dass die osteogene Differenzierung durch CS positiv beeinflusst wird. Insbesondere frühe Marker wie ZBTB16 und IGFBPs werden hier identifiziert. Basierend auf den Teilergebnissen wird am Ende ein Beitrag geliefert, der das Tissue Engineering insbesondere für überkritische Röhrenknochendefekte als Methode interessant erscheinen lässt. Dabei werden mechanische Lasten durch konventionelle Fixateure aufgenommen und der Defektraum durch den mehrfachen Einsatz von bio-funktionalisierten flachen Scaffolds gefüllt.

Page generated in 0.0555 seconds