• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 12
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 77
  • 77
  • 14
  • 14
  • 12
  • 12
  • 11
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The control of mouse primordial germ cell behaviour by growth factors

Cooke, Julie Elaine January 1994 (has links)
No description available.
12

Pharmaceutically relevant protein-protein interactions for controlled drug delivery / Pharmazeutisch relevante Protein-Protein-Wechselwirkung für "Controlled drug delivery"

Werner, Vera January 2015 (has links) (PDF)
Protein-protein interactions play a crucial role in the development of drug delivery devices for the increasingly important biologicals, including antibodies, growth factors and cytokines. The understanding thereof might offer opportunities for tailoring carriers or drug proteins specifically for this purpose and thereby allow controlled delivery to a chosen target. The possible applications range from trigger-dependent release to sustained drug delivery and possibly permanently present stimuli, depending on the anticipated mechanism. Silk fibroin (SF) is a biomaterial that is suitable as a carrier for protein drug delivery devices. It combines processability under mild conditions, good biocompatibility and stabilizing effects on incorporated proteins. As SF is naturally produced by spiders and silkworms, the understanding of this process and its major factors might offer a blueprint for formulation scientists, interested in working with this biopolymer. The natural process of silk spinning covers a fascinating versatility of aggregate states, ranging from colloidal solutions through hydrogels to solid systems. The transition among these states is controlled by a carefully orchestrated process in vivo. Major players within the natural process include the control of spatial pH throughout passage of the silk dope, the composition and type of ions, and fluid flow mechanics within the duct, respectively. The function of these input parameters on the spinning process is reviewed before detailing their impact on the design and manufacture of silk based drug delivery systems (DDS). Examples are reported including the control of hydrogel formation during storage or significant parameters controlling precipitation in the presence of appropriate salts, respectively. The review details the use of silk fibroin to develop liquid, semiliquid or solid DDS with a focus on the control of SF crystallization, particle formation, and drug-SF interaction for tailored drug load. Although we were able to show many examples for SF drug delivery applications and there are many publications about the loading of biologics to SF systems, the mechanism of interaction between both in solution was not yet extensively explored. This is why we made this the subject of our work, as it might allow for direct influence on pharmaceutical parameters, like aggregation and drug load. In order to understand the underlying mechanism for the interaction between SF and positively charged model proteins, we used isothermal titration calorimetry for thermodynamic characterization. This was supported by hydrophobicity analysis and by colloidal characterization methods including static light scattering, nanoparticle tracking analysis and zeta potential measurements. We studied the effects of three Hofmeister salts – NaCl (neutral), NaSCN (chaotropic) and Na2SO4 (cosmotropic) – and the pH on the interaction of SF with the model proteins in dependence of the ratio from one to another. The salts impacted the SF structure by stabilizing (cosmotropic) or destabilizing (chaotropic) the SF micelles, resulting in completely abolished (cosmotropic) or strongly enhanced (chaotropic) interaction. These effects were responsible for different levels of loading and coacervation when varying type of salt and its concentration. Additionally, NaCl and NaSCN were able to prolong the stability of aqueous SF solution during storage at 25°C in a preliminary study. Another approach to influence protein-protein interactions was followed by covalent modification. Interleukin-4 (IL-4) is a cytokine driving macrophages to M2 macrophages, which are known to provide anti-inflammatory effects. The possibility to regulate the polarization of macrophages to this state might be attractive for a variety of diseases, like atherosclerosis, in which macrophages are involved. As these cases demand a long-term treatment, this polarization was supposed to be maintained over time and we were planning to achieve this by keeping IL-4 permanently present in an immobilized way. In order to immobilize it, we genetically introduced an alkyne-carrying, artificial amino acid in the IL-4 sequence. This allowed access to a site-specific click reaction (Cu(I)-catalyzed Huisgen azide-alkyne cycloaddition) with an azide partner. This study was able to set the basis for the project by successful expression and purification of the IL-4 analogue and by proving the availability for the click reaction and maintained bioactivity. The other side of this project was the isolation of human monocytes and the polarization and characterization of human macrophages. The challenge here was that the majority of related research was based on murine macrophages which was not applicable to human cells and the successful work was so far limited to establishing the necessary methods. In conclusion, we were able to show two different methods that allow the influence of protein-protein interactions and thereby the possible tailoring of drug loading. Although the results were very promising for both systems, their applicability in the development of drug delivery devices needs to be shown by further studies. / Die Wechselwirkungen zwischen Proteinen spielen eine entscheidende Rolle in der Entwicklung von Freigabesystemen für die immer wichtiger werdenden Protein-Therapeutika, wie Antikörper, Wachstumsfaktoren und Zytokine. Das Verständnis dieser Mechanismen würde die Möglichkeit eröffnen, sowohl die Träger, als auch die zu verabreichenden Proteine so zu verändern und zu steuern, dass sie auf kontrollierte Weise an einem bestimmten Ort freigesetzt werden. Die Anwendungen hierfür reichen von Trigger gesteuerter Freisetzung, über verzögerte Freigabe bis zur permanenten Präsentation von Stimuli, abhängig davon was für die jeweilige Applikation gewünscht ist. Seidenfibroin (SF) ist ein Biomaterial, welches verschiedene positive Eigenschaften für die Anwendung als Trägermaterial in sich vereint, indem es unter sehr milden Bedingungen verarbeitet werden kann, gut biokompatibel ist und stabilisierend auf eingebettete Proteine wirken kann. Da SF in der Natur von Spinnen und Seidenraupen produziert wird, könnte das Verständnis dieses Prozesses, sowie seiner wichtigsten Faktoren eine Vorlage für die Formulierung dieses Biopolymers geben. Der natürliche Prozess des Seidenspinnens vereint eine faszinierende Vielfalt von Aggregatszuständen, die von kolloidalen Lösungen über Hydrogele bis hin zu festen System reichen. Die Übergänge zwischen diesen Zuständen sind in vivo sehr sorgfältig kontrolliert. Die Hauptfaktoren dieses Prozesses sind der pH-Wert während der Passage der Spinnlösung durch die Drüse, sowie die Art und Zusammensetzung der Ionen und die herrschenden Scherkräfte. Die Funktion dieser einzelnen Faktoren auf den Spinnprozess wurde recherchiert und wird beschrieben, bevor ihr Einfluss auf die Entwicklung und Herstellung von seidenbasierten Freigabesystemen untersucht wird. Es werden Beispiele vorgestellt, die die Kontrolle der Hydrogelbildung während der Lagerung untersuchen oder signifikante Parameter für die kontrollierte Präzipitation in Gegenwart bestimmter Salze zeigen. Der Review betrachtet den Einsatz von Seidenfibroin in der Entwicklung von flüssigen, halbfesten oder festen Freigabesystemen und legt besonderen Fokus auf die Kontrolle der SF Kristallisation, Partikelbildung und Interaktion mit dem Arzneistoff für steuerbare Beladung. Obwohl wir viele Beispiele für die Anwendung von SF in Freigabesystemen zeigen konnten und viele Publikationen die Beladung von Proteinen auf SF-Systeme behandeln, wurde der Mechanismus der Interaktion zwischen beiden bisher nicht detailliert untersucht. Es gibt wenige Studien die einige Aspekte abdecken, aber keines beschäftigte sich spezifisch mit dieser Fragestellung. Darum machen wir dies zum Gegenstand unserer Arbeit, da dies einen direkten Einfluss auf pharmazeutische Parameter, wie Aggregation und Beladung, erlauben würde. Um den zugrundeliegenden Mechanismus der Wechselwirkung zwischen SF und einem positiv geladenen Modellprotein zu verstehen, nutzten wir isotherme Titrationskalorimetrie für eine thermodynamische Charakterisierung. Diese wurde durch kolloidale Charakterisierungsmethoden wie Statische Lichtstreuung, nanoparticle tracking analysis und Zeta-potentialmessungen, sowie Hydrophobitätsbestimmungen unterstützt. Wir untersuchten die Effekte von drei verschiedenen Hofmeister Salzen - NaCl (neutral), NaSCN (chaotrop) und Na2SO4 (kosmotrop) – und des pH Wertes auf die Interaktion von SF mit dem Modellprotein in Abhängigkeit vom Verhältnis der beiden zueinander. Die Salze beeinflussten die SF Struktur, indem sie die SF Mizellen entweder stabilisierten (kosmotrop) oder destabilisierten (chaotrop) und dadurch die Interaktion entweder vollständig unterbanden (kosmotrop) oder verstärkten (chaotrop). Diese Effekte waren verantwortlich für verschiedene Level des Loadings und der Koazervation, wenn Salzart und –konzentration variiert wurden. Außerdem waren NaCl und NaSCN in der Lage die Stabilität einer wässrigen SF-Lösung während der Lagerung bei 25°C zu verlängern. Ein andere Ansatz um die Wechselwirkung zwischen Proteinen zu beinflussen wurde mit kovalenter Modifikation verfolgt. Interleukin-4 (IL-4) ist ein Zytokin und kann Makrophagen zu M2 Makrophagen polarisieren, welche dann anti-inflammatorische Wirkungen haben. Die Möglichkeit diese Polarisation zu regulieren wäre für verschiedene Krankheiten, wie Arteriosklerose, bei denen Makrophagen eine Rolle spielen interessant. Da in diesen Fällen eine Langzeitbehandlung von Nöten ist sollte die Polarisation über die Zeit erhalten bleiben. Wir planten dies durch die Immobilisation von IL-4 zu erreichen, die für eine permanente Präsenz sorgen würde. Um IL-4 zu immobilisieren haben wir eine künstliche Aminosäure in die Sequenz eingeführt, die eine Alkingruppe trägt. Diese ermöglicht den Zugang zu einer Kupfer vermittelten, spezifischen Click-Reaktion (Cu(I)-catalyzed Huisgen azide-alkyne cycloaddition) mit einem Azid-Partner. Diese Studie war in der Lage die Basis für dieses Projekt zu erstellen, indem wir eine erfolgreiche Expression und Aufreinigung des IL-4 Analogons leisten konnten und dieses sowohl erhaltene Bioaktivität als auch Verfügbarkeit für die Clickreaktion zeigte. Die andere Seite dieses Projekts bestand aus der Isolation von humanen Monozyten und der Polarisation und Charakterisierung von humanen Makrophagen. Die Herausforderung hierbei lag darin dass die meiste Forschung auf diesem Gebiet an murinen Makrophagen durchgeführt wurde und dies nicht auf humane Zellen übertragbar war, und die erfolgreiche Arbeit bisher, beschränkte sich auf die Etablierung der nötigen Methoden. Zusammenfassend lässt sich sagen, dass wir in der Lage waren zwei verschiedene Methoden zur Beeinflussung der Protein-Protein Wechselwirkungen und damit der Beladung zu zeigen. Obwohl die Ergebnisse für beide Systeme vielversprechend waren muss ihre Anwendbarkeit in der Entwicklung von Freigabesystemen noch durch weitere Studien belegt werden.
13

Stat6-vermittelte Genregulation in eukaryontischen Zellen / Stat6 mediated gene regulation in eucariotic cells

Haake, Markus January 2001 (has links) (PDF)
Der Transkriptionsfaktor Stat6 vermittelt zentrale Wirkungen von IL-4 und IL-13, die in der Pathologie atopischer Erkrankungen eine Rolle spielen. Seine Spezifität für diese beiden allergieassoziierten Cytokine ist eine wesentliche Motivation ihn näher zu untersuchen. In dieser Arbeit sollte mehr über die Funktion von Stat6 herausgefunden werden. Außerdem wurden Möglichkeiten untersucht dieses Verhalten zu beinflussen. Einen Schwerpunkt der Arbeit bildete die Regulation des Eotaxin-1-Promotors. Eotaxin-1 ist einer der stärksten Rekrutierungsfaktoren für Eosinophile, die eine zentrale Rolle bei der Immunpathologie allergischer Erkrankungen spielen. Mit Hilfe der Daten konnte eine neue Hypothese zur Regulation des Eotaxin-1-Promotors entwickelt werden. Zum Vergleich wurde mit der Untersuchung des Promotors eines weiteren Chemokins, des MCP-4, begonnen. In Zusammenarbeit mit Dr. Sascha Stolzenberger wurde ein Weg untersucht den Stat6-Signalweg zu hemmen. Dabei wurden mit Hilfe des Antennapedia-Peptides Stat6-Bindepeptide in die Zelle transportiert, um dort über eine kompetitive Hemmung die Signaltransduktion zu unterbinden. Ergebnis dieser Arbeiten ist ein hochspezifischer, aber nur transient wirkender Stat6 Inhibitor. Die Stat6/DNA-Wechselwirkung wurde mit der Magnetobead-Technik untersucht. Dabei werden Promotorfragmente an Magnetkügelchen gekoppelt und unter Ausnutzung der Magnetisierung an die DNA bindende Proteine isoliert und über SDS-PAGE/Immunoblotanalyse untersucht. Mit dem Verfahren konnte die Stat6-Bindung an acht verschiedene Promotoren nachgewiesen werden. In Zusammenarbeit mit der Arbeitsgruppe Pallardy aus Paris wurde die Wechselwirkung von Stat6 mit dem Glucocorticoid-Rezeptor untersucht. Glucocorticoide kontrollieren Entzündungen und Interaktionen des aktivierten Rezeptors mit anderen Proteinen aus der Stat-Familie sind seit längerem bekannt. Wie in dieser Arbeit gezeigt wurde, interagiert Stat6 mit dem Glucocorticoidrezeptor unabhängig von einer Bindung an DNA. Zusätzlich wurde der Mucin-2-Promotor auf Stat6-Regulierung untersucht. Mucine sind wichtige Bestandteile des Schleimes. Verstärkte Schleim-Sekretion ist ein klinisches Symptom asthmatischer Erkrankungen und trägt zur Zerstörung der Lunge bei. Ein potentiell Stat6 reguliertes Fragment aus dem Mucinpromoter wurde mit Hilfe von PCR-Techniken isoliert und in Reportergenvektoren kloniert. / The transcriptionfactor Stat6 mediates central effects of the interleukins (IL)-4 and -13, that play important roles in the pathology of Allergy and Asthma. The specificity of these both Allergy-associated cytokines is a strong motivation to investigate the detailed functions of Stat6 and to search for possibilities to influence the behaviour of this transcriptionfactor. The main focus of this work was the regulation of the Eotaxin-1-promoter. The Eotaxin-1 chemokine is one of the most potent recruiting factors for eosinophils, that play a central role in the immunopathology of allergic diseases. On the basis of these data a new model for the regulation was created. In addition to this the investigation of another chemokine promoter, the MCP-4-promoter, was started. In another part of this work a specific Stat6-binding-peptide to inhibit the IL-4 signaltransduction pathway was established. Using the Antennapedia-carrier-peptide allowed to shuttle Stat6-binding peptides into cells where they prevented Stat6 mediated signalling by competitive inhibition. Thus the Stat6-binding-peptide came out to be a transient Stat6 inhibitor with high specificity. The Stat6/DNA-interaction was investigated by DNA-pull-down assays with magnetobeads. Fragments of different promoters are linked to magnetobeads and by using magnetic forces the DNA binding proteins are isolated. This application was used to show Stat6-binding to 8 different promoters. Another subject of this work was the interaction of Stat6 with the glucocorticoid receptor. It is well known that glucocorticoids control inflammation and that the activated receptor interacts with different proteins of the Stat-family. In collaboration with the group of Marc Pallardy in Paris we were able to show that Stat6 interacts with the glucocorticoid receptor independently of DNA binding. In association with Stat6 the regulation of the Mucin-2-promoter seemed to be an interesting aspect. Mucins are essential components of mucus (slime). Enhanced mucus-secretion is a symptom of asthmatic diseases and contributes to the destruction of the lung. A potentially Stat6 regulated fragment was isolated by PCR-techniques and cloned into reportergene vectors.
14

Effects of Interleukin-4 and Interleukin-13 on Bone

Silfverswärd, Carl-Johan January 2008 (has links)
<p>Cytokines play important roles in bone metabolism, participating in the complex interplay necessary for normal bone formation and turnover. The aim of the present thesis was to investigate the effects of two anti-inflammatory cytokines, interleukin-4 (IL-4) and interleukin-13 (IL-13) on bone. </p><p>Influence of pro- and anti-inflammatory cytokines on interleukin-6 (IL-6) formation in cultured human osteoblasts (hOBs) was investigated. IL-4 and IL-13 as well as interleukin-1 (IL-1) and tumour necrosis factor alpha and beta (TNF-α/β) stimulated IL-6 secretion in hOBs. Also, IL-4 and IL-13 synergistically potentiated the effect of IL-1 and TNFs on IL-6 secretion. </p><p>Effects of IL-4 and IL-13 on markers of osteoblastic activity in hOBs were investigated. IL-4 and IL-13 induced a dose-dependent increase in the formation of alkaline phosphatase (ALP) and pro-collagen type I carboxy-peptide (PICP) together with enhanced mineralization rate in hOBs. Formation of osteocalcin (OC) was unaffected. </p><p>The mechanism behind inhibited proliferation by IL-4 and IL-13 in hOBs was investigated. IL-4 and IL-13 caused a dose-dependent increase in DNA-fragmentation together with escalating Caspase-3 activity in hOBs, reflecting induced apoptosis. Osteoblast apoptosis was also confirmed by TNF-α, dexamethasone and by serum starvation.</p><p>The skeletal phenotype of IL-13<sup>-/-</sup>, IL-4<sup>-/-</sup>IL-13<sup>-/-</sup> and WT mice was compared. An altered cortical bone mass was detected in adult male IL-4<sup>-/-</sup>IL-13<sup>-/-</sup> mice. They displayed a reduction in cortical bone mineral content (BMC) secondary to reduced cortical thickness. Mechanical strength of the cortical bone was reduced in level with the reduction detected in BMC. Trabecular bone mineral density (tvBMD) was unaffected. </p><p>Callus formation in IL-4<sup>-/-</sup>IL-13<sup>-/-</sup> and WT male mice was compared. No differences were found concerning radiological healing, biomechanical properties, callus parameters or histology. Heterotopic bone formation in IL-4<sup>-/-</sup>IL-13<sup>-/-</sup> and WT mice was compared using DXBM implants. No differences were found concerning mineralization of implants. Immuno-histology showed inhibition of autonomic nerves and lack of implant vascularization in IL-4<sup>-/-</sup>IL-13<sup>-/-</sup> mice. </p><p>In summery, the two anti-inflammatory cytokines IL-4 and IL-13 influence osteoblast activity and apoptosis <i>in vitro</i>. They also selectively influence cortical bone formation <i>in vivo</i>. These findings suggest a role for IL-4 and IL-13 in osteoblast differentiation, in bone metabolism and in bone formation. </p>
15

Effects of Interleukin-4 and Interleukin-13 on Bone

Silfverswärd, Carl-Johan January 2008 (has links)
Cytokines play important roles in bone metabolism, participating in the complex interplay necessary for normal bone formation and turnover. The aim of the present thesis was to investigate the effects of two anti-inflammatory cytokines, interleukin-4 (IL-4) and interleukin-13 (IL-13) on bone. Influence of pro- and anti-inflammatory cytokines on interleukin-6 (IL-6) formation in cultured human osteoblasts (hOBs) was investigated. IL-4 and IL-13 as well as interleukin-1 (IL-1) and tumour necrosis factor alpha and beta (TNF-α/β) stimulated IL-6 secretion in hOBs. Also, IL-4 and IL-13 synergistically potentiated the effect of IL-1 and TNFs on IL-6 secretion. Effects of IL-4 and IL-13 on markers of osteoblastic activity in hOBs were investigated. IL-4 and IL-13 induced a dose-dependent increase in the formation of alkaline phosphatase (ALP) and pro-collagen type I carboxy-peptide (PICP) together with enhanced mineralization rate in hOBs. Formation of osteocalcin (OC) was unaffected. The mechanism behind inhibited proliferation by IL-4 and IL-13 in hOBs was investigated. IL-4 and IL-13 caused a dose-dependent increase in DNA-fragmentation together with escalating Caspase-3 activity in hOBs, reflecting induced apoptosis. Osteoblast apoptosis was also confirmed by TNF-α, dexamethasone and by serum starvation. The skeletal phenotype of IL-13-/-, IL-4-/-IL-13-/- and WT mice was compared. An altered cortical bone mass was detected in adult male IL-4-/-IL-13-/- mice. They displayed a reduction in cortical bone mineral content (BMC) secondary to reduced cortical thickness. Mechanical strength of the cortical bone was reduced in level with the reduction detected in BMC. Trabecular bone mineral density (tvBMD) was unaffected. Callus formation in IL-4-/-IL-13-/- and WT male mice was compared. No differences were found concerning radiological healing, biomechanical properties, callus parameters or histology. Heterotopic bone formation in IL-4-/-IL-13-/- and WT mice was compared using DXBM implants. No differences were found concerning mineralization of implants. Immuno-histology showed inhibition of autonomic nerves and lack of implant vascularization in IL-4-/-IL-13-/- mice. In summery, the two anti-inflammatory cytokines IL-4 and IL-13 influence osteoblast activity and apoptosis in vitro. They also selectively influence cortical bone formation in vivo. These findings suggest a role for IL-4 and IL-13 in osteoblast differentiation, in bone metabolism and in bone formation.
16

Protein structures from NMR data

Smith, Lorna J. January 1992 (has links)
This thesis describes the use of nuclear magnetic resonance techniques to determine the structures of two proteins in solution, hen egg-white lysozyme and human interleukin-4. Using 2D <sup>1</sup>H methods an extensive set of structural data has been collected for hen lysozyme (1158 NOE distance restraints, 68 o and 24 <sub>?1</sub> dihedral angle restraints) and these data have been used in distance geometry-dynamical simulated annealing calculations to determine an ensemble of NMR structures for the protein. The overall Ca RMSD from the average for a set of 16 calculated structures is 1.8 ± 0.2 A but, excluding 14 residues in exposed disordered regions, this value reduces to 1.3 ± 0.2 Å. Regions of secondary structure, and particularly the four a helices, are well defined (Ca RMSD 0.8 ± 0.3 Å for helices). Detailed comparisons of the NMR structures with crystal structures of the protein have shown the close similarity of the main chain fold and the conformation of interior side chains in solution and in crystals. <sup>3</sup>J<sub>aß</sub> coupling constant measurement have indicated, however, that the conformational mobility of the side chains of many surface residues is significantly more pronounced than an individual crystal structure would suggest. For human interleukin-4, a strategy involving <sup>15</sup>N and <sup>13</sup>C labelled recombinant protein together with heteronuclear 3D NMR techniques has been employed to determine the structure of the protein. The work has provided the first structure for this protein, a left-handed four helix bundle with an up-up-down-down connectivity. For an ensemble of 10 final calculated NMR structures there is a Ca RMSD from the average of 1.6 ± 0.4 Å, the definition of the helical core of the protein being particularly good (0.8 ± 0.2 Å). There is, however, some disorder in the long overhand loops of the structure; this reflects the unusually high conformational mobility of these regions. Comparison of the interleukin-4 structure with proteins with related folds, particularly members of the haemopoietic cytokine superfamily, suggests that the fold found here for interleukin-4 may be the adopted structure throughout this cytokine superfamily. In a postscript to this thesis the NMR structure of human interleukin-4 is shown to have a very similar conformation to a crystal structure of the protein which has been solved very recently.
17

Bioinspired drug delivery of interleukin-4 / Bioinspirierte Wirkstofffreisetzung von Interleukin-4

Spieler, Valerie January 2021 (has links) (PDF)
Chronic inflammatory diseases such as rheumatoid arthritis, type 2 diabetes and cardiovascular diseases, are associated with the homeostatic imbalance of one of several physiological systems combined with the lack of spontaneous remission, which causes the disease to persevere throughout patients’ lives. The inflammatory response relies mainly on tissue-resident, pro-inflammatory M1 type macrophages and, consequently, a chance for therapeutic intervention lies in driving macrophage polarization towards the anti-inflammatory M2 phenotype. Therefore, anti-inflammatory cytokines that promote M2 polarization, including interleukin-4 (IL4), have promising therapeutic potential. Unfortunately, their systemic use is hampered by a short serum half-life and dose-limiting toxicity. On the way towards cytokine therapies with superior safety and efficacy, this thesis is focused on designing bioresponsive delivery systems for the anti-inflammatory cytokine IL4. Chapter 1 describes how anti-inflammatory cytokines are tightly regulated in chronic, systemic inflammation as in rheumatoid arthritis but also in acute, local inflammation as in myocardial infarction. Both diseases show a characteristic progression during which anti-inflammatory cytokine delivery is of variable benefit. A conventional, passive drug delivery system is unlikely to release the cytokines such that the delivery matches the dynamic course of the (patho-)physiological progress. This chapter presents a blueprint for active drug delivery systems equipped with a 24/7 inflammation detector that continuously senses for matrix metalloproteinases (MMP) as surrogate markers of the disease progress and responds by releasing cytokines into the affected tissues at the right time and place. Because they are silent during phases of low disease activity, bioresponsive depots could be used to treat patients in asymptomatic states, as a preventive measure. The drug delivery system only gets activated during flares of inflammation, which are then immediately suppressed by the released cytokine drug and could prevent the steady damage of subclinical chronic inflammation, and therefore reduce hospitalization rates. In a first proof of concept study on controlled cytokine delivery (chapter 2), we developed IL4-decorated particles aiming at sustained and localized cytokine activity. Genetic code expansion was deployed to generate muteins with the IL4’s lysine 42 replaced by two different unnatural amino acids bearing a side chain suitable for click chemistry modification. The new IL4 muteins were thoroughly characterized to ensure proper folding and full bioactivity. Both muteins showed cell-stimulating ability and binding affinity to IL4 receptor alpha similar to those of wild type IL4. Copper-catalyzed (CuAAC) and strain-promoted (SPAAC) azide–alkyne cycloadditions were used to site-selectively anchor IL4 to agarose particles. These particles had sustained IL4 activity, as demonstrated by the induction of TF-1 cell proliferation and anti-inflammatory M2 polarization of M-CSF-generated human macrophages. This approach of site-directed IL4 anchoring on particles demonstrates that cytokine-functionalized particles can provide sustained and spatially controlled immune-modulating stimuli. The idea of a 24/7 sensing, MMP driven cytokine delivery system, as described in the introductory chapter, was applied in chapter 3. There, we simulated the natural process of cytokine storage in the extracellular matrix (ECM) by using an injectable solution of IL4 for depot formation by enzyme-catalyzed covalent attachment to ECM components such as fibronectin. The immobilized construct is meant to be cleaved from the ECM by matrix-metalloproteinases (MMPs) which are upregulated during flares of inflammation. These two functionalities are facilitated by a peptide containing two sequences: a protease-sensitive peptide linker (PSL) for MMP cleavage and a sequence for covalent attachment by activated human transglutaminase FXIIIa (TGase) included in the injection mix for co-administration. This peptide was site-selectively conjugated to the unnatural amino acid at IL4 position 42 allowing to preserve wild type bioactivity of IL4. In vitro experiments confirmed the anticipated MMP response towards the PSL and TGase-mediated construct attachment to fibronectin of the ECM. Furthermore, the IL4-peptide conjugates were able to reduce inflammation and protect non-load bearing cartilage along with the anterior cruciate ligament from degradation in an osteoarthritis model in rabbits. This represents the first step towards a minimally invasive treatment option using bioresponsive cytokine depots with potential clinical value for inflammatory conditions. One of the challenges with this approach was the production of the cytokine conjugate, with incorporation of the unnatural amino acid into IL4 being the main bottleneck. Therefore, in chapter 4, we designed a simplified version of this depot system by genetically fusing the bifunctional peptide via a flexible peptide spacer to murine IL4. While human IL4 loses its activity upon C-terminal elongation, murine IL4 is not affected by this modification. The produced murine IL4 fusion protein could be effectively bound to in vitro grown extracellular matrix in presence of TGase. Moreover, the protease-sensitive linker was selectively recognized and cleaved by MMPs, liberating intact and active IL4, although at a slower rate than expected. Murine IL4 offers the advantage to evaluate the bioresponsive cytokine depot in many available mouse models, which was so far not possible with human IL4 due to species selectivity. For murine IL4, the approach was further extended to systemic delivery in chapter 5. To increase the half-life and specifically target disease sites, we engineered a murine IL4 variant conjugated with a folate-bearing PEG chain for targeting of activated macrophages. The bioactive IL4 conjugate had a high serum stability and the PEGylation increased the half-life to 4 h in vivo. Surprisingly, the folate moiety did not improve targeting in an antigen-induced arthritis (AIA) mouse model. IL4-PEG performed better in targeting the inflamed joint, while IL4-PEG-folate showed stronger accumulation in the liver. Fortunately, the modular nature of the IL4 conjugate facilitates convenient adaption of PEG chain length and the targeting moiety to further improve the half-life and localization of the cytokine. In summary, this thesis describes a platform technology for the controlled release of cytokines in response to inflammation. By restricting the release of the therapeutic to the site of inflammation, the benefit-risk ratio of this potent class of biologics can be positively influenced. Future research will help to deepen our understanding of how to perfectly combine cytokine, protease-sensitive linker and immobilization tag or targeting moiety to tackle different diseases. / Chronische Entzündungskrankheiten wie rheumatoide Arthritis, Typ-2-Diabetes oder Herz-Kreislauf-Erkrankungen werden durch das Ungleichgewicht eines von mehreren physiologischen Systemen in Verbindung mit fehlender spontaner Remission verursacht, wodurch die Krankheiten lebenslang bestehen bleiben. Die zugrunde liegenden Entzündungsreaktionen beruhen hauptsächlich auf im Gewebe vorhandenen Makrophagen und deren Polarisation in Richtung des entzündlichen M1-Phänotyps, was gleichzeitig die Möglichkeit einer therapeutischen Intervention bietet. Entzündungshemmende Zytokine, einschließlich Interleukin-4 (IL4), haben ein großes therapeutisches Potenzial, da sie Makrophagen in Richtung des entzündungshemmenden M2-Phänotyps zu polarisieren vermögen. Leider ist ihre systemische Anwendung durch eine kurze Serumhalbwertszeit und dosislimitierende Toxizität eingeschränkt. Auf dem Weg zu Zytokintherapeutika mit verbesserter Sicherheit und Wirksamkeit konzentriert sich diese Arbeit auf die Entwicklung von bioresponsiven Freisetzungssystemen für das entzündungshemmende Zytokin IL4. Kapitel 1 beschreibt, wie entzündungshemmende Zytokine bei chronischen systemischen Entzündungen wie rheumatoider Arthritis im Vergleich zu akuten lokalen Entzündungen wie dem Myokardinfarkt reguliert werden. Beide Erkrankungen zeigen einen charakteristischen Verlauf, währenddessen die Freisetzung von entzündungshemmenden Zytokinen von unterschiedlich großem Nutzen ist. Gewöhnliche, passive Arzneimittelfreisetzungssysteme sind nicht in der Lage, Zytokine in idealer Menge zur optimalen Unterdrückung des dynamischen, (patho-)physiologischen Verlaufs der Krankheit freizusetzen. In diesem Kapitel werden deshalb aktive Arzneimittelfreisetzungssysteme vorgestellt, die mit einer Sensorik für die Entzündung ausgestattet sind, mit der sie kontinuierlich die Konzentration von Matrix-Metalloproteinasen (MMP) als Indikatoren für den Krankheitsverlauf erfassen können. Somit kann das aktive Arzneimittelfreisetzungssystem krankes Gewebe zum richtigen Zeitpunkt und am richtigen Ort mit Zytokinen behandeln. Solche bioresponsiven Depots können zur vorbeugenden Behandlung von asymptomatischen Patienten eingesetzt werden, da sie während Phasen geringer Krankheitsaktivität inaktiv sind. Das Freisetzungssystem wird erst durch Entzündungsschübe aktiviert, die dann sofort durch die freigesetzten Zytokine unterdrückt werden. Dadurch könnte die dauerhafte Schädigung durch subklinische, chronische Entzündung verhindert und als Konsequenz die Hospitalisierungsrate gesenkt werden. In einer ersten Machbarkeitsstudie wurden in Kapitel 2 IL4-dekorierte Partikel mit dem Ziel entwickelt, eine langanhaltende und lokalisierte Zytokinaktivität zu gewährleisten. Dazu wurden IL4-Muteine erzeugt, bei denen das Lysin 42 mittels Erweiterung des genetischen Codes durch zwei verschiedene unnatürliche Aminosäuren ersetzt wurde, die jeweils eine für Klick-Chemie geeignete Seitenkette tragen. Die IL4-Muteine wurden ausführlich charakterisiert, um eine korrekte Faltung und volle Bioaktivität sicherzustellen. Beide Muteine zeigten zellstimulierende Fähigkeit und Bindungsaffinität an IL4-Rezeptor-alpha, die mit der von Wildtyp-IL4 vergleichbar ist. Anschließend wurde kupferkatalysierte (CuAAC) und kupferfreie (SPAAC) Azid-Alkin-Cycloaddition verwendet, um IL4 ortsspezifisch auf Agarosepartikeln zu verankern. Die Partikel waren in der Lage, die IL4-Aktivität über längere Zeit aufrecht zu erhalten, was durch TF-1-Zellproliferation und M2-Polarisation von M-CSF-generierten, humanen Makrophagen gezeigt werden konnte. Dieser Ansatz der ortsspezifischen Verankerung von IL4 auf Agarosepartikeln zeigt, dass zytokinfunktionalisierte Partikel anhaltende und räumlich kontrollierte, immunmodulierende Stimuli liefern können. Die Idee eines MMP-gesteuerten Zytokinfreisetzungssystems mit 24/7-Sensorik, das im Einleitungskapitel vorgestellt wurde, wurde in Kapitel 3 umgesetzt. Der natürliche Prozess der Zytokinspeicherung in der extrazellulären Matrix (EZM) wurde mithilfe einer injizierbaren IL4-Lösung zur enzymatischen Depotbildung durch kovalente Bindung an EZM-Komponenten, z. B. Fibronektin, simuliert. Nach der Bindung soll das Konstrukt durch Matrix-Metalloproteinasen (MMPs), die während Entzündungsschüben hochreguliert werden, aus der EZM freigesetzt werden können. Eine Peptidsequenz, die ein Protease-sensitives Verbindungsstück und eine Sequenz, mit der das Zytokin bei gleichzeitiger Injektion von aktivierter menschlicher Transglutaminase FXIIIa (TGase) kovalent auf der EZM immobilisiert wird enthält, wurde ortsspezifisch über eine unnatürliche Aminosäure an Position 42 von IL4 gekoppelt. Dadurch wurde die Bioaktivität von IL4 vollständig erhalten, während das Protease-sensitive Verbindungsstück auf MMPs reagierte und das Konstrukt durch TGase an das Fibronektin der EZM gebunden werden konnte. Die IL4-Peptid-Konjugate waren in einem Osteoarthritis-Modell bei Kaninchen in der Lage, die Entzündung des Kniegelenks zu verringern und den nicht-tragenden Knorpel sowie das vordere Kreuzband vor Degradation zu schützen. Dies ist der erste Schritt in Richtung einer minimalinvasiven Behandlung durch Verwendung von bioresponsiven Zytokindepots mit potenziellem klinischem Nutzen bei Entzündungserkrankungen. Eine der Herausforderungen bei diesem Vorgehen war die Herstellung der Zytokinkonjugate, wobei der Einbau der unnatürlichen Aminosäure in IL4 den größten Engpass darstellte. Deshalb wurde in Kapitel 4 eine vereinfachte Version dieses Depotsystems entworfen, indem das bifunktionelle Peptid über eine flexible Verbindungssequenz mit murinem IL4 genetisch fusioniert wurde. Während humanes IL4 bei C-terminaler Verlängerung an Aktivität verliert, ist murines IL4 durch die Modifikation nicht beeinflusst. Die murinen IL4-Fusionsproteine konnten in Gegenwart von TGase wirksam an in vitro generierte extrazelluläre Matrix gebunden werden. Darüber hinaus wurde das Protease-sensitive Verbindungsstück selektiv von MMPs erkannt und gespalten, wobei intaktes und aktives IL4 freigesetzt wurde, wenn auch mit einer langsameren Rate als erwartet. Murines IL4 bietet die Möglichkeit das bioresponsive Zytokindepot in den vielen verfügbaren Mausmodellen zu testen, was mit humanem IL4 aufgrund der Speziesselektivität nicht möglich ist. Für murines IL4 wurde die Entwicklung in Kapitel 5 auf die systemische Applikation ausgeweitet. Um die Serumhalbwertszeit zu erhöhen und eine Wirkstofflokalisation im entzündeten Gewebe zu erreichen, wurde eine murine IL4-Variante entwickelt, die mit einer Folat-tragenden PEG-Kette konjugiert wurde, um aktivierte M1 Makrophagen zu adressieren. Das bioaktive IL4-Konjugat wies eine hohe Serumstabilität auf und die PEGylierung erhöhte die Halbwertszeit in vivo auf 4 h. Allerdings konnte durch die Konjugation der Folatgruppe an IL4 die Wirkstofflokalisation in einem Mausmodell mit Antigen-induzierter Arthritis (AIA) nicht verbessert werden. IL4-PEG akkumulierte sich stärker im entzündeten Gelenk, während IL4-PEG-Folat eine stärkere Anreicherung in der Leber zeigte. Erfreulicherweise erleichtert der modulare Aufbau des IL4-Konjugats die bequeme Anpassung der PEG-Kettenlänge und der zielorientierten Einheit, um die Halbwertszeit und Lokalisierung des Zytokins weiter zu verbessern. Zusammenfassend beschreibt diese Arbeit eine Plattformtechnologie zur kontrollierten Freisetzung von Zytokinen als Reaktion auf Entzündungen. Durch die Beschränkung der Freisetzung des Therapeutikums auf den Ort der Entzündung kann das Nutzen-Risiko-Verhältnis dieser potenten Klasse von Biologika positiv beeinflusst werden. Zukünftige Forschungen werden dazu beitragen zu verstehen, wie Zytokin, Protease-sensitives Verbindungsstück und Immobilisierungsanhängsel oder etwaige zielorientierte Einheiten zur Bekämpfung verschiedener Krankheiten perfekt kombiniert werden können.
18

Therapeutic effect of Interlenkin-4 and Interleukin-1 receptor antagonist in Actinobacillus pleuropneumoniae challenged pigs /

Khan, Shamila. January 2005 (has links)
Thesis (M. Sc. Vet. Sc.)--Faculty of Veterinary Science, University of Sydney, 2005. / Bibliography: leaves 165-172.
19

Therapeutic effect of Interlenkin-4 and Interleukin-1 receptor antagonist in Actinobacillus pleuropneumoniae challenged pigs

Khan, Shamila. January 2005 (has links)
Thesis (M. Sc. Vet. Sc.)--University of Sydney, 2005. / Title from title screen (viewed 27 May 2008). Submitted in fulfilment of the requirements for the degree of Master of Science in Veterinary Science to the Faculty of Veterinary Science. Includes bibliographical references. Also available in print form.
20

The role of TCR and IL-4R signal integration in Th2 differentiation /

Eisfelder, Bartholomew Joseph. January 2002 (has links)
Thesis (Ph. D.)--University of Chicago, Committee on Immunology, December 2002. / Includes bibliographical references. Also available on the Internet.

Page generated in 0.059 seconds