• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 19
  • 19
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Etude du comportement au flambage des coques cylindriques multicouches métal/matériau mousse sous chargements combinés pression interne/cisaillement/flexion / Buckling of multilayered foam aluminum cylindrical shell structure submitted to combined internal pressure/shear/bending loads

Didier, Jérôme 04 July 2014 (has links)
De nombreuses structures spatiales telles que les lanceurs sont équipées d’une mousse de protection thermique. Cette couche de matériau extrêmement léger présente d’excellentes propriétés d’isolation thermique mais des caractéristiques mécaniques très faibles. Il est ici proposé d’analyser le comportement au flambage de ce type de construction où une fine et légère structure, coque cylindrique en aluminium avec un ratio R/t de 665, est recouverte par une épaisse couche de mousse de faible densité. Afin d'évaluer l'effet du comportement au flambage de ce type de coque multicouche, des essais expérimentaux et numériques sont réalisés sur des cylindres faiblement pressurisés soumis à du cisaillement et de la flexion. Ce cas de charge représente la configuration « cas sol », d’un lanceur sur le pas de tir, dans l’attente du lancement, et soumis à des charges mécaniques extrêmes générées par le vent. / Many space structures such as launchers are equipped with a thermal foam protection barrier. This layer, of extremely light material generally exhibits excellent properties of heat insulation but very weak mechanical characteristics. This study is devoted to the analysis of the buckling behavior of this hybrid wall construction where the skin of a very thin light-weight structure, an aluminum cylindrical shell with an R/t ratio of about 665, is coated with a thick layer of foam with a low material density. To gauge the effect on the buckling behavior of this kind of multilayered shells, experimental and numerical tests are conducted on slightly pressurized cylindrical shells submitted to shear load. This load configuration represents the case of a rocket on the launching pad, waiting to be launched, and submitted to mechanical loads induced by the wind.
12

Effects of Architectural Features of Air-Permeable Roof Cladding Materials on Wind-Induced Uplift Loading

Li, Ruilong 23 April 2012 (has links)
Widespread damage to roofing materials (such as tiles and shingles) for low-rise buildings, even for weaker hurricanes, has raised concerns regarding design load provisions and construction practices. Currently the building codes used for designing low-rise building roofs are mainly based on testing results from building models which generally do not simulate the architectural features of roofing materials that may significantly influence the wind-induced pressures. Full-scale experimentation was conducted under high winds to investigate the effects of architectural details of high profile roof tiles and asphalt shingles on net pressures that are often responsible for damage to these roofing materials. Effects on the vulnerability of roofing materials were also studied. Different roof models with bare, tiled, and shingled roof decks were tested. Pressures acting on both top and bottom surfaces of the roofing materials were measured to understand their effects on the net uplift loading. The area-averaged peak pressure coefficients obtained from bare, tiled, and shingled roof decks were compared. In addition, a set of wind tunnel tests on a tiled roof deck model were conducted to verify the effects of tiles’ cavity internal pressure. Both the full-scale and the wind tunnel test results showed that underside pressure of a roof tile could either aggravate or alleviate wind uplift on the tile based on its orientation on the roof with respect to the wind angle of attack. For shingles, the underside pressure could aggravate wind uplift if the shingle is located near the center of the roof deck. Bare deck modeling to estimate design wind uplift on shingled decks may be acceptable for most locations but not for field locations; it could underestimate the uplift on shingles by 30-60%. In addition, some initial quantification of the effects of roofing materials on wind uplift was performed by studying the wind uplift load ratio for tiled versus bare deck and shingled versus bare deck. Vulnerability curves, with and without considering the effects of tiles’ cavity internal pressure, showed significant differences. Aerodynamic load provisions for low-rise buildings’ roofs and their vulnerability can thus be more accurately evaluated by considering the effects of the roofing materials.
13

The Dynamic Analysis of a Composite Overwrapped Gun Barrel with Constrained Viscoelastic Damping Layers Using the Modal Strain Energy Method

Hall, Braydon Day 01 May 2013 (has links)
The effects of a composite overwrapped gun barrel with viscoelastic damping layers are investigated. Interlaminar stresses and constrained layer damping effects are described. The Modal Strain Energy method is developed for measuring the extent to which the barrel is damped. The equations of motion used in the finite element analysis are derived. The transient solution process is outlined. Decisions for selected parameters are discussed. The results of the finite element analyses are presented using the program written in FORTRAN. The static solution is solved with a constant internal pressure resulting in a calculated loss factor from the Modal Strain Energy Method. The transient solution is solved using the Newmark-Beta method and a variable internal pressure. The analyses conclude that strategically placed viscoelastic layers dissipate strain energy more effectively than a thick single viscoelastic layer. The optimal angle for maximizing the coefficient of mutual influence in a composite cylinder is not necessarily the optimal angle when viscoelastic layers are introduced between layers.
14

Non-isothermal characterization of squeezed thin films in the presence of biofluids and suspended ultrafine particles

Khaled, Abdul Rahim Assaad, Mr. January 2003 (has links)
No description available.
15

Contribution à l’étude de flambage des coques cylindriques minces raidies et non-raidies : Vers une optimisation des règles de dimensionnement / Contribution to the study of buckling of stiffened and non-stiffened cylindrical thin shells : Towards optimizing design rules

Tran, Huu Viet 12 September 2018 (has links)
Ce travail de recherche répond aux besoins actuels et futurs dans le domaine de l’Aérospatial de faire évoluer les règles de dimensionnement au flambage des réservoirs structuraux de l’Etage Principal Cryogénique (EPC) des lanceurs. Ces réservoirs, composés de coques cylindriques, peuvent être associés à un faible raidissage en termes de masse ajoutée. L’objectif d’alléger le lanceur pour optimiser la charge utile, conduit au choix de coques constitutives de plus en plus minces, le risque de flambage sous diverses sollicitations est donc d’autant plus accru. Le dimensionnement au flambage de l’EPC est basé principalement sur la norme NASA SP8007 qui date de 1968, et qui semble trop conservative, notamment aux basses pressions. Précisons aussi, que l’EPC est équipé d’une couche de protection thermique (PT) qui n’est pas prise en compte dans le design au vue de sa très faible rigidité de membrane. La contribution de cette couche à la capacité de flambage de la coque est cependant un sujet ouvert. / This research work responds to the current and future requirements in Aerospatiale are to improve the design for buckling of the tanks of the Cryogenic Main Stage (EPC) of the launcher. These tanks are composed of cylindrical shells and can be associated with weak stiffening, which are becoming thinner and therefore more susceptible to a risk of buckling. The buckling design of the EPC based mainly on the NASA SP8007 standard, which is ac-cording to many specialists too preservative, especially under low pressure. Moreover, the EPC is equipped with a thermal protection layer (PT), which is extremely light and has an excellent thermal insulation property but very low mechanical properties. The contribution of this layer to the buckling capacity of a lightly pressurized thin cylindrical shell under var-ious solicitations, therefore, appears to be a major subject.
16

Manufacture, modelling and characterisation of novel composite tubes

Agwubilo, Ikenna January 2016 (has links)
This thesis primarily focused on the development of novel composite tubes by braiding. The objective was to use hierarchical scale technique, i.e., micro, meso and macro scales, with the transfer of information from one scale to another to develop novel braided composite tubes. This research was conducted and reported in three journal papers. The aim of the first paper was to predict plane elastic properties for E-glass/epoxy braided composite structures at different braid orientations, by analytical and finite element techniques. The lenticular shape has been used to describe the geometry of the tow. Modified lenticular geometric model was developed to improve an existing geometric model, in terms of tow parameters, thereafter, plane elastic properties from Chamis micromechanical model for E-glass fibre and epoxy matrix without any knockdown effects were used as benchmark to develop predictive models, namely; Lekhnitskii's methodology and braided unit cell meso-scale finite element model to account for the effects of tow geometry, undulations/crimp, cross-over and braid orientations on the plane elastic properties of E-glass/epoxy composite. The results showed agreement in trend between the predictive models, Chamis micromechanical model, and a similar existing model. However, the plane elastic properties were knocked down in predictive models by 30% in the E11 direction and 32% in the E22 direction, when compared with Chamis micro-mechanical model for largest ±65° braid angle, among the braid angles, considered. The aim of the second paper was to manufacture E-glass/epoxy braided tubes at different braid orientations by vacuum bag infusion technique, conduct internal pressure tests, and determine the hoop and axial moduli of the infused tubes. Lekhnitskii's methodology was also used to develop plane elastic moduli by experiment using microscopy results, and by calculation. The experimental elastic moduli of the infused tubes and the experimental elastic moduli from Lekhnitskii's methodology were used to compare the predictive elastic moduli for E-glass/epoxy braided structures by Chamis micro-mechanical model, and the braided unit cell meso-scale finite element model. The two were from another paper. Results showed a perfect agreement in trend between the experimental results and the predictive results. However, the values of the experimental results were close but lower than the predicted results. Optical microscopy was performed on braided tube cross-section to evaluate the level of crimp or undulation. This was done by the determination of tow centreline crimp angle and aspect ratio. Results show that when compared with the predicted crimp, there was an agreement in trend, although the experimental results were lower than the predicted. Also, the knockdown factor was evaluated and used to quantify the reduction in experimental elastic moduli when compared with the predicted. Results showed that the absences of crimp in the Chamis model caused a tremendous difference between it, other predicted models and the experiment results. The elastic moduli of Chamis were by far higher than all others, including other predictive models. The purpose of the third paper was to manufacture E-glass/epoxy braided tube at ±31°, ±45°, ±55°, ±65° braid orientations using vacuum bagging and resin infusion technique, to design and manufacture a rig for tube internal pressures experiment, to determine the hoop and axial stress performances of the tubes by internal pressure experiment, to compare experimental results with laminate analysis predictions to evaluate the effect of crimp on the internal pressure performance of the braided tubes. To use E-glass braided tow meso-scale unit cell finite element model to predict the tow critical stresses, and the optimum braided tube architecture, using tube hoop and axial failure stresses or strains. The tubes were manufactured and subjected to internal pressure test (2:1), to failure. Failure mode was by weeping and bursting. Hoop stress was twice the axial stress. The highest value of hoop stress was at the ±65° braid angle, higher than the hoop stresses at the ±31°, ±45°, and ±55 ° braid angles by 50%, 39%, and 28% respectively. Hoop stress increased with increase in braid angle. The experimental results were validated by laminate analysis predictions by Chamis micro-mechanical model and Lekhnitskii's methodology, and the trend of the laminate analysis prediction matched that of the experimental results. However, the predicted values were higher than the experimental results by 21%, 14%, 11%, 10% for the ±31°, ±45°, ±55°, ±65° braid angles for the Chamis micro-mechanical model and 5%, 7%, 7%, 5% for the ±31°, ±45°, ±55°, ±65 braid angles respectively for the Lekhnitskii's model, showing the severe effect of crimp in the experimental tube, mostly when compared with Chamis micro-mechanical model. Braided tow unit cell finite element model prediction, showed that tow axial stresses increased with increase in braid angle, while the tow transverse stresses decreased with increase in braid angle. The predictions showed that the tow critical stresses and the tube optimum braided architecture lie between the ±65° and 90° braid angles. The tow critical stresses are the stresses at which the tow decreasing transverse stress and the tow increasing axial stress causes the tube to fail.
17

[en] EFFECTS OF THE INTERNAL PRESSURE AND TEMPERATURE VARIATIONS ON SEISMIC RESPONSE SPECTRA OF TUBULAR SYSTEMS / [pt] A PRESSÃO INTERNA E A VARIAÇÃO DE TEMPERATURA NOS SISTEMAS DE TUBULAÇÃO E OS ESPECTROS DE RESPOSTA DE PROJETO PARA CARGAS SÍSMICAS

JAIR JOSE DOS SANTOS GOMES 11 July 2005 (has links)
[pt] A análise de estruturas de sistemas secundários sujeitos a cargas sísmicas é um assunto em aberto e especial no projeto de instalações industriais. Dois pontos particulares atraem a atenção dos especialistas no esforço a caminho de um projeto mais realista, abrangente e econômico: a interação das propriedades dinâmicas entre os sistemas principal e secundário e a quantidade de dutilidade do sistema secundário que pode ou deveria ser considerada no projeto. Está muito evidente nesse estágio que a decisão do projetista tem de ser bem assessorada porque dependendo das circunstâncias os resultados finais podem mostrar muitas surpresas. O contexto das experiências nesse assunto, na PUC-Rio, inclui uma série de iniciativas. Entre elas, se pode dar especial menção às seguintes: o estudo e proposta de uma metodologia para desenvolver um espectro de resposta acoplada (Valverde, 1998); o desenvolvimento de um modelo de sistema secundário simplificado: com vários graus de liberdade, linearelástico, formado por elementos tubulares, conexões e suportes com molas (Castañaga, 1998); a introdução do efeito inelástico nos elementos tubulares e suportes do sistema secundário simplificado e definição de um fator de dutilidade global do sistema para relacionar, qualitativa e quantitativamente, o espectro de resposta acoplada do sistema secundário simplificado, sob comportamento elástico e inelástico (Sampaio, 2003). Agora, um outro avanço é incorporado, com o presente estudo, o da influência de cargas estáticas nos elementos devidas à pressão interna e variação de temperatura, nessas relações do espectro de resposta elástica e inelástica. Também é feita uma comparação dos espectros de resposta elástica e inelástica do sistema secundário acoplado e não acoplado. Espectros médios aproximados para a resposta inelástica acoplada do sistema secundário simplificado são também propostos. / [en] The analysis of secondary structure systems to seismic loads is a special and open subject in the design of industrial installations. Two particular points attract specialist attention and effort on the way of a more realist, comprehensive and economical design: the dynamical properties interaction between the secondary and principal systems and the amount of the secondary system ductility which can or should be considered in the design. It is very clear at this stage that the designer decision has to be well advised because depending on circumstances the final results may show very surprising. The context of experiences on this subject, at PUC-Rio, includes a series of initiatives. Among them, one may to give special mention to the following: the study and proposal of a methodology to develop a coupled floor response spectrum (Valverde, 1998); the development of a simplified secondary system model: multidegree, linear-elastic, tubular elements and connexions and spring supports (Castañaga, 1998); the introduction of inelastic action in the tubular elements and supports of the simplified secondary system and the definition of a system overall ductility factor to relate, qualitative and quantitatively, the simplified secondary system coupled response spectrum under elastic and inelastic behavior (Sampaio, 2003). Now, another advancement is enhanced with this study on the influence of element static loads due to internal pressure and temperature variation on these elastic and inelastic response spectrum relationships. Comparison also is made into coupled and uncoupled secondary system elastic and inelastic response spectra. Approximated medium response spectra for the inelastic coupled response of a simplified secondary system are also proposed.
18

Different Approaches to Model Cover-Cracking of RC Structures due to Corrosion

Roshan, Arman January 2018 (has links)
This thesis presents three different approaches to model corrosion-induced crack propagation in reinforced concrete structures. The first approach is solved numerically using finite differences to model the softening behaviour of concrete in tension. The second approach idealizes the concrete cover as either a brittle elastic or an elastoplastic material so that it may be solved using a closed-form solution. Both approaches are based on a thick-walled cylinder (TWC) analogy and consider rust compressibility and rust diffusion into cracks. The third approach uses finite element modelling to validate the application of the TWC and perform a parametric study. The results obtained using each approach are compared against each other as well as against experimental results. The TWC was found to be an appropriate analogy for the geometries and reinforcement configurations considered. Analytical models were found to provide upper and lower limits to the results based on the numerical model. The experimental data found in the literature showed reasonable agreement with predictions from the numerical and elastoplastic models.
19

Fast deep discharging using a controllable load as pretreatment for EV battery recycling : A study on efficacy, speed, and safety / Snabb djupurladdning med en kontrollerbar belastning som förbehandling för återvinning av batterier i elbilar : En studie av effektivitet, hastighet och säkerhet

Van Genechten, Lucas January 2023 (has links)
In response to the present and projected growth of the EV industry, the development of a large-scale, reliable and efficient lithium-ion battery recycling sector is vital to ensure circularity of the embedded valuable metals and ensure overall sustainability of the technology. One of the main recycling procedures under development is based on hydrometallurgy. As a pretreatment step before lithium-ion batteries can undergo this process, they have to be deactivated to prevent uncontrolled release of the contained electrical energy. This deactivation step is often performed by deep discharging batteries to 0.0 V, instead of the usual lower cut-off around 3.0 V. Usually, deep discharging is performed by connection to resistors or through submersion in a salt solution. However, due to the discharge current derating proportionally to the terminal voltage, this procedure can be quite slow, especially if considerable rebound voltages are to be prevented. This work explores the feasibility of a faster discharge procedure in terms of discharge speed, effectiveness, and safety. The proposed procedure entails deep discharging at constant current using a controllable load, followed by applying an external short-circuit immediately. The C-rate during constant current discharging is varied to study its effects. The short-circuit is applied at a terminal voltage of 0.0 V or 1.0 V. The safety of both process steps is assessed experimentally. The main safety risks that are reviewed are the temperature rise and subsequent risk of thermal runaway, as well as the risk of electrolyte leakage due to pressure increase and swelling. In the experimental work, two types of large format prismatic NMC811 cells are deep discharged starting from an SoC of 0%. The experiments are limited to single cells. It is found that an additional 4% of additional capacity is available in the deep discharging region for a stationary cell at 0% SoC. The risk of thermal runaway is assessed as low based on the temperature measurements and a literature review. To investigate the rise in pressure, the thickness of all cells are measured, and the in situ pressure is measured for three samples. The risk for electrolyte leakage is assessed as low. The rebound voltage and cell thickness are followed up to one week after the discharge procedure. After a short-circuit of 30 minutes, the rebound voltage of all cells is near 2.0 V, but a slightly longer short circuit duration would be necessary to reliably achieve this threshold. The total procedure time is much shorter than those of alternative discharge procedures, while still remaining safe. / Som svar på den nuvarande och förväntade tillväxten inom elbilsindustrin är utvecklingen av en storskalig, tillförlitlig och effektiv återvinningssektor för litiumjonbatterier avgörande för att säkerställa cirkularitet för de inbäddade värdefulla metallerna och säkerställa teknikens övergripande hållbarhet. En av de viktigaste återvinningsmetoderna som är under utveckling baseras på hydrometallurgi. Som ett förbehandlingssteg innan litiumjonbatterier kan genomgå denna process måste de avaktiveras för att förhindra okontrollerad frisättning av den elektriska energi som de innehåller. Detta deaktiveringssteg utförs ofta genom djupurladdning av batterierna till 0.0 V, istället för den vanliga lägre gränsen runt 3.0 V. Vanligtvis utförs djupurladdning genom anslutning till resistorer eller genom nedsänkning i en saltlösning. Eftersom urladdningsströmmen avtar proportionellt mot terminalspänningen kan denna procedur dock vara ganska långsam, särskilt om man vill förhindra stora återkopplingsspänningar. I detta arbete undersöks genomförbarheten av en snabbare urladdningsprocedur när det gäller urladdningshastighet, effektivitet och säkerhet. Det föreslagna förfarandet innebär djupurladdning vid konstant ström med en kontrollerbar belastning, följt av omedelbar applicering av en extern kortslutning. C-hastigheten under urladdning med konstant ström varieras för att studera dess effekter. Kortslutningen appliceras vid en terminalspänning på 0.0 V eller 1.0 V. Säkerheten för båda processtegen bedöms experimentellt. De huvudsakliga säkerhetsriskerna som granskas är temperaturökningen och den efterföljande risken för termisk rusning, samt risken för elektrolytläckage på grund av tryckökning och svullnad. I det experimentella arbetet djupurladdas två typer av prismatiska NMC811-celler i storformat från en SoC på 0%. Experimenten är begränsade till enstaka celler. Det visade sig att ytterligare 4% kapacitet finns tillgänglig i djupurladdningsområdet för en stationär cell vid 0% SoC. Risken för termisk urladdning bedöms som låg baserat på temperaturmätningarna och en litteraturgenomgång. För att undersöka tryckökningen mäts tjockleken på alla celler och in situ-trycket mäts för tre prover. Risken för elektrolytläckage bedöms som låg. Återkopplingsspänningen och cellernas tjocklek följs upp upp till en vecka efter urladdningsproceduren. Efter en kortslutning på 30 minuter är returspänningen för alla celler nära 2.0 V, men en något längre kortslutningstid skulle vara nödvändig för att tillförlitligt uppnå detta tröskelvärde. Den totala tiden för proceduren är mycket kortare än för alternativa urladdningsprocedurer, samtidigt som den fortfarande är säker.

Page generated in 0.5249 seconds