• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 9
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 34
  • 24
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dispositifs intersousbandes à base de nitrures d’éléments III du proche infrarouge au THz / Intersubband devices based on III-nitrides from near infrared to THz

Sakr, Salam 24 September 2012 (has links)
Les dispositifs intersousbandes à base de nitrures d’éléments III ont des propriétés très intéressantes pour l’optoélectronique et la photonique dans l’infrarouge. Les hétérostructures formées par l’AlN et le GaN ont une discontinuité de potentiel en bande de conduction de 1.75 eV et permettent donc de couvrir les deux extrémités du spectre électromagnétique infrarouge. Ces matériaux sont en outre caractérisés par des temps de relaxation ISB extrêmement courts et sont par conséquent des candidats potentiels pour le développement de composants optoélectroniques ultrarapides aux longueurs d’onde des télécommunications. D’autre part, grâce à l’énergie du phonon LO élevée dans ces matériaux, ces hétérostructures ouvrent la voie vers la réalisation de lasers à cascade quantique THz fonctionnant à la température ambiante. Dans ce contexte, je présente dans une première partie de ma thèse une étude théorique et expérimentale du transport électronique dans des hétérostructures GaN/Al(Ga)N simples comme les diodes tunnel résonnantes (DTRs) et plus complexes comme les multi-puits quantiques. La modélisation du transport quantique dans les DTRs AlGaN/GaN m’a permis de mettre en évidence la dépendance de résonance quantique du signe de la tension appliquée et de la composition des barrières. Du point de vue expérimental, je montre que le comportement électrique instable dans ces dispositifs est dû aux défauts dans le matériau. Dans les structures à multi-puits, je présente la première évidence expérimentale d’un transport tunnel résonnant reproductible. Dans une deuxième partie, je propose et développe plusieurs principes originaux de détecteurs à cascade quantique (QCD)s GaN/AlGaN entre 1 et 2 μm fonctionnant à la température ambiante. Je montre en utilisant des techniques de mesure de spectroscopie femtoseconde qu’ils sont intrinsèquement ultrarapides (picoseconde). Je développe aussi des micro-QCDs qui présentent une bande passante au-delà des 40 GHz. La conception des QCDs à plus grandes longueurs d’onde est discutée. Dans la dernière partie de ce manuscrit, je présente une étude spectroscopique dans le THz de superréseaux à base de GaN. Je montre que l’utilisation de puits quantiques à marche de potentiel permet d’accorder l’absorption ISB dans le THz. Je présente ensuite la première démonstration de l’électroluminescence intersousbande de 2 à 9 THz. / Intersubband devices based on III-nitrides have interesting properties for optoelectronics and photonics applications in the infrared. The heterostructures of these materials have a large conduction band offset of 1.75 eV and therefore allow covering the whole infrared electromagnetic spectral range. Furthermore, these materials are characterized by extremely short ISB relaxation times and are, consequently, potential candidates for the development of ultrafast optoelectronic devices at the fiber optics telecommunication wavelengths for fiber optics or for free space communication. On the other hand, thanks to the large LO phonon energy in these materials, these heterostructures offer the possibility of fabricating compact THz lasers operating at room temperature. In this context, I firstly present in this manuscript a theoretical and an experimental study of the electronic transport in simple AlGaN/GaN heterostructures namely resonant tunneling diodes and more complex structures such as multi-quantum wells based on III-nitrides. The modeling of the transport in RTDs shows the dependency of the current resonances on the sign of the applied voltage as well as the height of the double barrier. I also demonstrate that the experimentally observed electrical instabilities in these devices are due to the defects in the material. In the multiple quantum well structures, I give the first evidence of reproducible resonant tunneling transport. In chapter 3, I propose and develop several principles of quantum cascade detectors in the near infrared between 1 and 2 μm operating at room temperature. I demonstrate, using time-resolved bias-lead monitoring technique, that they are intrinsically very fast (picosecond). I also develop micro - QCD devices that have a -3 dB cut-off frequency beyond 40 GHz. The design of QCDs operating at longer wavelengths is discussed. In the last part of the manuscript, I present a spectroscopic study of GaN superlattices with ISB transitions in the far-infrared. I show that the utilization of step quantum wells allows to tune the ISB absorption frequency to the THz. I finally present the first demonstration of the intersubband electroluminescence from 2 to 9 THz in these structures.
2

Relaxation dynamics in photoexcited semiconductor quantum wells studied by time-resolved photoluminescence

Zybell, Sabine 08 December 2015 (has links) (PDF)
Gegenstand der vorliegenden Arbeit ist die Untersuchung der Photoluminenzenzdynamik von Halbleiter-Quantentöpfen (Quantum Wells), die durch Anregung von Intraband-Übergängen mittels resonanter Laserpulse im mittleren Infrarot- und Terahertz-Spektralbereich verändert wird. Diese Zweifarbenexperimente wurden mit Hilfe eines optischen Aufbaus für zeitaufgelöste Photolumineszenzspektroskopie am Großgerät Freie-Elektronen Laser FELBE am Helmholtz-Zentrum Dresden-Rossendorf realisiert. Zeitlich verzögert zur gepulsten optischen Anregung über die Bandlücke wurden Intersubband- oder Intraexziton-Übergänge in den Quantum Wells resonant angeregt. Die dadurch erreichte Ladungsträgerumverteilung zeigt sich in einer deutlichen Verringerung der Photolumineszenzintensität zum Zeitpunkt des zweiten Anregepulses, die im Folgenden als Photolumineszenz-Quenching bezeichnet wird. Zunächst wird die Stärke des Photolumineszenz-Quenchings in Abhängigkeit der Polarisationsrichtung des midinfraroten Laserstrahls ausgewertet. Während die Absorption durch freie Ladungsträger für beide Polarisationsrichtungen nachweisbar ist, wird experimentell gezeigt, dass Intersubbandabsorption nur möglich ist, wenn ein Anteil der anregenden Strahlung senkrecht zur Quantum-Well-Ebene polarisiert ist. Das Photolumineszenzsignal ist überwiegend an der energetischen Position der 1s-Exzitonresonanz unterhalb der Bandkante messbar. Die intraexzitonischen Übergangsenergien in Quantum Wells liegen typischerweise im Terahertzbereich. Unter intraexzitonischer 1s-2p Anregung erscheint auch auf dieser Energieskala ein abrupter Intensitätsverlust in der langsam abklingenden Photolumineszenztransiente. Erstmalig wurde im Photolumineszenzspektrum bei höheren Energien im Abstand der Terahertz-Photonenenergie ein zusätzliches 2s-Photolumineszenzsignal detektiert. Eine detaillierte theoretische Beschreibung dieses Problems durch unsere Kooperationspartner Koch et al. von der Phillips-Universität Marburg zeigt, dass unter intraexzitonischer 1s-2p Anregung eine effziente Coulombstreuung zwischen den nahezu entarteten exzitonischen 2p- und 2s-Zuständen stattfindet. Während der 2p-Zustand optisch dunkel ist, kann die 2s-Population strahlend rekombinieren, was zu dem besagten 2s-Photolumineszenzsignal führt. Die Zeitkonstanten der untersuchten Ladungsträgerdynamik werden durch ein phänomenologisches Modell bestimmt, das die experimentellen Kurven sehr gut abbildet. Es wird ein Ratengleichungsmodell eingeführt, bei dem die involvierten Zustände auf optisch helle und optisch dunkle Besetzungsdichten reduziert werden. Darüber hinaus werden mit einem modifizierten Versuchsaufbau die Terahertz-induzierten Photolumineszenzsignaturen von Magnetoexzitonen untersucht. Die Stärke des 1s-Photolumineszenz-Quenchings ändert sich dabei entsprechend der magnetoexzitonischen Übergänge, die im betrachteten Feldstärkebereich zwischen 0T und 7T liegen. Für Magnetfelder größer als 3T sind keine 2s-Photolumineszenzsignale mehr messbar, da durch das externe magnetische Feld die Entartung der 2p- und 2s-Zustände aufgehoben wird.
3

Nouvelles sources compactes dans le moyen-infrarouge : Lasers à cascade quantique au-delà de 16 microns et LED électroluminescentes en régime de couplage fort. / New semiconductor sources for mid infrared wavelength range : Quantum cascade lasers (QCL) above 16 microns and electroluminescent LED in strong coupling regime.

Chastanet, Daniel 20 June 2016 (has links)
Le lointain infrarouge (16 µm < λ < 30 µm) est un domaine important pour des applications telles que la détection de large molécules organiques (dont les empreintes d'absorption tombe dans cette gamme de longueur d'onde) et pour la radio-astronomie (oscillateurs locaux pour la détection hétérodyne). Malheureusement, cette fenêtre de transparence atmosphérique, communément appelé la 4eme fenêtre de transparence, est un domaine quasi inexploré.Les LCQ sont des sources de lumière cohérentes, couvrant une gamme allant du moyen infrarouge jusqu'au THz, basées sur l'ingénierie de structures de bandes de matériaux semi-conducteurs. Ils démontrent d'excellentes performances dans le domaine du proche infrarouge mais leur efficacité diminue dans la 4ème fenêtre et au-delà.L'un des buts de cette thèse est le développement d'une nouvelle génération de LCQ capable de couvrir cette zone spectral avec de bonnes performances, en terme de puissance de sortie du dispositif et de température maximale d'opération. Un point clé dans cette optique est l'utilisation d'un nouveau système de matériaux pour ces longueurs d'onde : l'InAs/AlSb. L'avantage de cette solution réside dans sa très faible masse effective : 0,023 m0 (comparée à 0,043 m0 dans les puits d'InGaAs), qui permet d’obtenir un gain plus élevé, résultant dans l'amélioration significative des performances.Une autre approche fondamentalement différente réside dans le régime de couplage fort. L'utilisation d'un temps caractéristique ultra-rapide, associé aux oscillations de Rabi, peut permettre dans un premier temps de réaliser des sources électroluminescentes avec un meilleur rendement quantique (comparé à une transition inter-sous-bandes nue). Les pseudos particules qui découlent du régime de couplage fort dans les transitions inter-sous-bandes (appelés polaritons inter-sous-bandes) peuvent sous certaines limites se comporter comme des bosons. On entrevoit alors la possibilité de réaliser des sources cohérentes basées sur la relaxation d'un condensat polaritonique. / The far infrared (16 µm < λ < 30 µm) is an important area for applications such as detecting wide organic molecules (whose absorption fingerprints falls in this wavelength range) and for radio-astronomy (local oscillator for the heterodyne detection). Unfortunately, the atmospheric transparency window, commonly called the 4th transparency window is almost unexplored.QCL are coherent light sources, covering a range from infrared to THz, based on the engineering of band structures of semiconductors. They have excellent performances in the mid infrared but their effectiveness diminishes in the 4th window and beyond.One aim of this thesis is the development of a new generation of QCL able to cover this spectral region with good performance in terms of output power and maximum operating temperature. A key point in this context is the use of a new material system for these wavelengths: InAs / AlSb. The advantage of this solution is its very small effective mass : 0.023 m0 (compared to 0.043 m0 in the InGaAs wells), which provides a higher gain, resulting in significant performances improvement.Another fundamentally different approach lies in the strong coupling regime. Using an ultra-fast characteristic time associated with Rabi oscillations, can allow the realization of emitting sources with improved quantum efficiency (compared to an bare inter-subband transition). pseudo particles arising from the strong coupling regime in the inter-subband transitions (called polaritons inter-sub-bands) may under certain limits behave as bosons. One then sees the possibility of coherent sources based on the relaxation of a polariton condensate.
4

Relaxation dynamics in photoexcited semiconductor quantum wells studied by time-resolved photoluminescence

Zybell, Sabine 28 August 2015 (has links)
Gegenstand der vorliegenden Arbeit ist die Untersuchung der Photoluminenzenzdynamik von Halbleiter-Quantentöpfen (Quantum Wells), die durch Anregung von Intraband-Übergängen mittels resonanter Laserpulse im mittleren Infrarot- und Terahertz-Spektralbereich verändert wird. Diese Zweifarbenexperimente wurden mit Hilfe eines optischen Aufbaus für zeitaufgelöste Photolumineszenzspektroskopie am Großgerät Freie-Elektronen Laser FELBE am Helmholtz-Zentrum Dresden-Rossendorf realisiert. Zeitlich verzögert zur gepulsten optischen Anregung über die Bandlücke wurden Intersubband- oder Intraexziton-Übergänge in den Quantum Wells resonant angeregt. Die dadurch erreichte Ladungsträgerumverteilung zeigt sich in einer deutlichen Verringerung der Photolumineszenzintensität zum Zeitpunkt des zweiten Anregepulses, die im Folgenden als Photolumineszenz-Quenching bezeichnet wird. Zunächst wird die Stärke des Photolumineszenz-Quenchings in Abhängigkeit der Polarisationsrichtung des midinfraroten Laserstrahls ausgewertet. Während die Absorption durch freie Ladungsträger für beide Polarisationsrichtungen nachweisbar ist, wird experimentell gezeigt, dass Intersubbandabsorption nur möglich ist, wenn ein Anteil der anregenden Strahlung senkrecht zur Quantum-Well-Ebene polarisiert ist. Das Photolumineszenzsignal ist überwiegend an der energetischen Position der 1s-Exzitonresonanz unterhalb der Bandkante messbar. Die intraexzitonischen Übergangsenergien in Quantum Wells liegen typischerweise im Terahertzbereich. Unter intraexzitonischer 1s-2p Anregung erscheint auch auf dieser Energieskala ein abrupter Intensitätsverlust in der langsam abklingenden Photolumineszenztransiente. Erstmalig wurde im Photolumineszenzspektrum bei höheren Energien im Abstand der Terahertz-Photonenenergie ein zusätzliches 2s-Photolumineszenzsignal detektiert. Eine detaillierte theoretische Beschreibung dieses Problems durch unsere Kooperationspartner Koch et al. von der Phillips-Universität Marburg zeigt, dass unter intraexzitonischer 1s-2p Anregung eine effziente Coulombstreuung zwischen den nahezu entarteten exzitonischen 2p- und 2s-Zuständen stattfindet. Während der 2p-Zustand optisch dunkel ist, kann die 2s-Population strahlend rekombinieren, was zu dem besagten 2s-Photolumineszenzsignal führt. Die Zeitkonstanten der untersuchten Ladungsträgerdynamik werden durch ein phänomenologisches Modell bestimmt, das die experimentellen Kurven sehr gut abbildet. Es wird ein Ratengleichungsmodell eingeführt, bei dem die involvierten Zustände auf optisch helle und optisch dunkle Besetzungsdichten reduziert werden. Darüber hinaus werden mit einem modifizierten Versuchsaufbau die Terahertz-induzierten Photolumineszenzsignaturen von Magnetoexzitonen untersucht. Die Stärke des 1s-Photolumineszenz-Quenchings ändert sich dabei entsprechend der magnetoexzitonischen Übergänge, die im betrachteten Feldstärkebereich zwischen 0T und 7T liegen. Für Magnetfelder größer als 3T sind keine 2s-Photolumineszenzsignale mehr messbar, da durch das externe magnetische Feld die Entartung der 2p- und 2s-Zustände aufgehoben wird.
5

Dispositifs quantiques en régime de couplage ultra-fort lumière-matière pour l'optoélectronique dans le moyen infrarouge

Jouy, Pierre 10 February 2012 (has links) (PDF)
Ce travail porte sur la réalisation de dispositifs quantiques fonctionnant en régime de couplage fort entre une excitation d'un gaz d'électrons dans un puits quantique semiconducteur et un mode de cavité dans le moyen infra- rouge. Les quasi-particules issues de ce couplage lumière-matière sont appelées "polaritons intersousbande". La première partie de ce manuscrit est consacrée à l'étude d'un dis- positif électroluminescent basé sur une structure à cascade quantique in- sérée dans une microcavité planaire. Par une analyse détaillée des spectres d'électroluminescence à différents voltages, je démontre que les états de po- laritons sont peuplés de façon résonante, à une énergie qui dépend du voltage appliqué à la structure. Les résultats expérimentaux sont analysés et in- terprétés à l'aide d'un modèle reliant les spectres d'électroluminescence aux propriétés de l'injecteur de la structure à cascade. Pour augmenter la sélectivité de l'injection et observer ainsi une exaltation de l'émission spontanée, un nouveau type de cavité est développé dans la sec- onde partie de ce travail. Il s'agit d'une cavité basée sur un confinement plas- monique, dans laquelle la lumière est confinée entre deux plans métalliques, dans une épaisseur très inférieure à la longueur d'onde. Le miroir supérieur est façonné en réseau. L'influence des différents paramètres du réseau est étudiée et deux régimes sont mis en évidence: un régime où le mode de cavité se couple à un mode de plasmon de surface et un régime où le mode de cavité ne présente pas de dispersion en énergie. En insérant des puits quantiques dopés dans une cavité de ce deuxième type, les régimes de couplage fort puis de couplage ultra-fort lumière-matière sont démontrés jusqu'à température ambiante. La valeur importante du dédoublement de Rabi et la forte densité d'états polaritoniques obtenues dans ce type de cavité en font un candidat très prometteur pour la réalisation de dispositifs électroluminescents infrarouges de grande efficacité radiative et fonctionnant sans inversion de population.
6

Hétérostructures GaN/Al(Ga)N pour l'optoélectronique infrarouge : orientations polaires et non-polaires / GaN/AlGaN heterostructures for infrared optoelectronics : polar vs nonpolar orientations

Lim, Caroline Botum 26 June 2017 (has links)
Les transitions intersousbandes (ISB) sont des transitions d’énergie entre des états électroniques dans un puits quantique. Les nanostructures GaN/AlGaN sont prometteuses pour le développement de composants optoélectroniques ISB pouvant couvrir la totalité de la gamme infrarouge. Leur large décalage de bande de conduction (~1.8 eV pour les systèmes GaN/AlN) et temps de vie ISB inférieurs au picoseconde les rendent attractifs pour l’optronique ultra-rapide en régime infrarouge courte longueur d’onde (SWIR, 1-3 µm) et moyenne longueur d’onde (MWIR, 3-8 µm). De plus, la grande énergie de phonon longitudinal-optique du GaN (92 meV, 13 µm) offre la possibilité de développer des composants ISB couvrant la bande 5-10 THz, interdite au GaAs, et opérant à température ambiante.Le travail décrit dans ce manuscrit a eu pour objectif d'améliorer les performances des technologies ISB GaN/AlGaN et de contribuer à une meilleure compréhension des problématiques posées par leur extension à la gamme des THz. D’une part, la photodétection ISB nécessite le dopage n des nanostructures. Dans ce travail de thèse, on étudie le Si et le Ge en tant que dopants de type n potentiels pour le GaN. D’autre part, la présence de champs électriques internes dans la direction de confinement des hétérostructures plan c constitue l’un des principaux défis de la technologie GaN ISB. C'est pourquoi on étudie la possibilité d’utiliser des orientations cristalline non-polaires a ou m alternatives pour obtenir des systèmes opérant sans l’influence de ces champs électriques.Concernant l'étude du Ge et du Si comme dopants potentiels, on montre que l’incorporation de Ge dans des couches mince de GaN n’affecte pas leur morphologie, mosaïcité ni photoluminescence. Les propriétés bande-à-bande des nanostructures GaN/AlGaN plan c étudiées sont indifférentes à la nature du dopant, mais les structures à grand désaccord de maille voient leur qualité structurale améliorée par le dopage Ge. Concernant l’alternative non-polaire, on compare des structures à multi-puits quantiques GaN/AlN plan a et plan m. Les meilleurs résultats en termes de performances structurales et optiques (bande-à-bande et ISB) sont obtenues pour les structures plan m. Elles montrent de l’absorption ISB à température ambiante couvrant la fenêtre SWIR, avec des performances comparables aux structures plan c, mais avec une qualité structurale trop faible pour envisager la fabrication de composants. En incorporant du Ga dans les barrières d’AlN, on réduit de désaccord de maille et donc la densité de fissures. Ces structures plan m montrent de l’absorption ISB à température ambiante dans la gamme MWIR 4.0-4.8 µm, mais présentent toujours des défauts de structure. Finalement, on a étendu l’étude à la gamme lointain infrarouge, en utilisant des barrières d’AlGaN avec une composition bien plus basse en Al. Les structures plan m étudiées présentent une excellente qualité cristalline, sans défauts de structures, et présentent de l’absorption intersousbande à basse température entre 6.3 et 37.4 meV (1.5 et 9 THz). Ce résultat constitue une démonstration expérimentale de la faisabilité de composants GaN opérant dans la bande 5-10 THz, interdite aux technologies GaAs. / Intersubband (ISB) transitions are energy transitions between electronic states in a quantum well. GaN/AlGaN nanostructures have emerged as promising materials for new ISB optoelectronics devices, with the potential to cover the whole infrared spectrum. Their large conduction band offset (~1.8 eV for GaN/AlN) and sub-picosecond ISB recovery times make them appealing for ultrafast photonics devices in the short-wavelength infrared (SWIR, 1-3 µm), and mid-wavelength infrared (MWIR, 3-8 µm) regions. Moreover, the large energy of GaN longitudinal-optical phonon (92 meV, 13 µm) opens prospects for room-temperature ISB devices covering the 5-10 THz band, inaccessible to GaAs.The work described in this thesis has aimed at improving the performance and understanding of the material issues involved in the extension of the GaN/AlGaN ISB technology to the THz range. On the one hand, ISB photodetection requires n-type doping of the active nanostructures. In this work, we explore Si and Ge as potential n-type dopants for GaN. On the other hand, the presence of internal electric fields in the confinement direction of polar c-plane heterostructures constitutes one of the main challenges of the GaN-based ISB technology. In this thesis, we address the use of nonpolar a or m crystallographic orientations as an alternative to operate without the influence of these electric fields.Regarding the use of Si and Ge as n-type dopants for GaN, we show that the use of Ge as a dopant does not affect the morphology, mosaicity and photoluminescence properties of the doped GaN thin films. In the c-plane GaN/AlGaN heterostructures, no effect on the band-to-band properties was observed, but the structures with high lattice mismatch showed better mosaicity when doped with Ge. Regarding the alternative of nonpolar GaN, we compared GaN/AlN multi-quantum wells grown on a and m nonpolar free-standing GaN substrates. The best results in terms of structural and optical (both band-to-band and ISB) performance were obtained for m-plane structures. They showed room-temperature ISB absorption covering the whole SWIR spectrum, with optical performance comparable to polar c-plane structures, in spite of a too low structural quality to consider device processing. By introducing Ga in the AlN barriers, the lattice mismatch of the structure is reduced, leading to lower densities of cracks. Such m-plane structures showed room-temperature ISB absorption tunable in the 4.0-5.8 µm MWIR range, but still with structural defects. Finally, we extended the study to the far-infrared range, using AlGaN barriers with much lower Al content. As a result, the studied m-plane structures displayed an excellent crystalline quality, without extended defects, and showed low-temperature ISB absorption in the 6.3 to 37.4 meV (1.5 to 9 THz) range. This result constitutes an experimental demonstration of the feasibility of GaN devices for the 5-10 THz band, forbidden to GaAs-based technologies.
7

Terahertz and mid-infrared photodetectors based on intersubband transitions in novel materials systems

Durmaz, Habibe 21 June 2016 (has links)
The terahertz (THz) and mid-infrared (MIR) spectral regions have many potential applications in the industrial, biomedical, and military sectors. Yet, a wide portion of this region of the electromagnetic spectrum (particularly the THz range) is still relatively unexplored, due mainly to the absence of suitable sources and photodetectors, related to the lack of practical semiconductor materials with adequately small band gap energies. Intersubband transitions (ISBTs) between quantized energy states in quantum heterostructures provide tunable wavelengths over a broad spectral range including the THz region, by choosing appropriate layer thicknesses and compositions. This work focuses on the development of THz and MIR Quantum Well Infrared Photodetectors (QWIPs) based on ISBTs in GaN/AlGaN and Si/SiGe heterostructures. Due to their large optical phonon energies, GaN materials allow extending the spectral reach of existing far-infrared photodetectors based on GaAs, and may enable higher-temperature operation. In the area of MIR optoelectronic devices, I have focused on developing QWIPs based on ISBTs in Si/SiGe heterostructures in the form of on strain-engineered nanomembranes. Due to their non-polar nature, these materials are free from reststrahlen absorption and ultrafast resonant electron/phonon scattering, unlike traditional III-V semiconductors. Therefore, Si/SiGe quantum wells (QWs) are also promising candidates for high-temperature high-performance ISB device operation (particularly in the THz region), with the additional advantage of direct integration with CMOS technology. In this thesis work, numerical modeling is used to design the active region of the proposed devices, followed by sample fabrication and characterization based on lock-in step-scan Fourier transform infrared spectroscopy. Three specific QWIP devices have been developed. The first is a III-nitride THz QWIP based on a novel double-step QW design in order to alleviate the material limitations provided by the intrinsic electric fields of GaN/AlGaN heterostructures. Next, I have developed a THz GaN/AlGaN QWIP grown on semi-polar (202 ̅1 ̅) GaN, where the detrimental effects of the internal fields are almost completely eliminated. Finally, I have demonstrated a Si/SiGe MIR QWIP based on a novel fabrication approach, where nanomembrane strain engineering is used to address the materials quality issues normally found in SiGe QWs. Promising photodetector performance is obtained in all cases. / 2017-06-21T00:00:00Z
8

Lasers à cascade quantique moyen infrarouge à base d'InAs / Mid-infrared quantum cascade laser on InAs

Laffaille, Pierre 11 December 2013 (has links)
Les lasers à cascade quantique sont des sources lasers à semiconducteur compactes et capables de délivrer une forte puissance optique sur une large gamme de longueur d'onde dans l'infrarouge. Les QCLs de la filière InP sont les plus établis. Le système de matériaux InAs/AlSb est une solution alternative encore peu développée mais qui, en vertu de ses propriétés, présente des atouts incontestables pour la réalisation de lasers à cascade quantique. Le travail de cette thèse a apporté une meilleure connaissance du système InAs/AlSb et de ses possibilités pour les QCLs, à la fois sur un plan théorique, expérimental et technologique.Nous avons œuvré à l'amélioration des performances des lasers à cascade quantique sur ce système de matériaux, notamment en cherchant à augmenter la température maximum de fonctionnement dans les courtes longueurs d'onde et le lointain infrarouge. Un modèle de transport électronique a été développé. Ce modèle permet de reproduire de manière relativement précise les résultats expérimentaux. Il est un outil utile pour l'amélioration des designs de zone active et, en conséquence, des performances des lasers.La finalité de ces lasers est leur utilisation pour des applications telles que la spectroscopie moléculaire par absorption. Nous avons donc travaillé à les rendre plus adaptés aux besoins de celles-ci, à savoir que leur émission soit monomode, ce que nous avons rendu possible grâce au développement d'une technologie DFB à haut rendement et très reproductible, et qu'ils puissent fonctionner en régime continu, ce qui a été accompli, autour de 9 µm de longueur d'onde d'émission, jusqu'à une température de 255 K en s'appuyant sur un modèle prédictif basé sur une approche analytique.Afin d'atteindre le fonctionnement en régime continu en dessous de 4 µm de longueur d'onde, nous nous sommes penchés sur l'utilisation d'un substrat alternatif en GaSb, qui nous permet de réaliser des claddings conciliant un faible indice de réfaction et de faibles pertes optiques. Nous avons à cette occasion fait la démonstration du premier QCL fonctionnant sur ce substrat, et ce jusqu'à température ambiante à 3,3 µm de longueur d'onde. / Quantum cascade lasers (QCLs) are unipolar semiconductor lasers employing radiative transitions between electron subbands in multiple quantum well structures. QCLs can deliver high optical powers in a large spectral range from mid-IR to THz. The best QCL performances have been achieved using III-V materials that can be grown on InP substrates. The InAs/AlSb material system represents an alternative solution for the elaboration of QCLs. While it is still much less explored compared with the InP family, some properties of these materials are very attractive for the development of QCLs.This thesis contributed to better understanding of the InAs/AlSb system, as well as to physics and technology QCLs based on these materials.Much attention has been paid to the performance improvement of InAs/AlSb QCLs, especially to the increasing of operation temperature of these lasers. A model of electronic transport in such devices, which is in good agreement with obtained experimental data, has been developed. This model has been used for optimization of the QCL design and, in consequence, to the improvement of the lasers performances.The main application of infrared lasers is molecular spectroscopy requiring high spectral purity of the laser emission. To make InAs-based QCLs suitable for spectroscopic applications we have developed a technology of distributed feedback (DFB) lasers for the 3-10 µm range with single frequency emission. Continuous wave (cw) operation of InAs/AlSb QCLs has been achieved for the first time in lasers emitting near 9 µm at temperatures up to 255 K. These lasers have been optimized for cw operation using predictive modeling of heat balance in the device. In order to improve performances of short wavelength InAs/AlSb QCLs emitting below 4 µm we proposed to replace a plasmon enhanced waveguide employing heavily doped InAs and exhibiting strong free carrier absorption by a low loss dielectric waveguide with AlGaSbAs cladding layers. These lasers grown for the first time on GaSb substrates and operated between 2.8 and 3.3 µm demonstrated performances proving the attractiveness of this approach to achieve further progress in InAs/AlSb QCLs.
9

Dispositifs intersousbandes à base de nitrures d’éléments III du proche infrarouge au térahertz / Nitride based intersubband devices working from near infrared to Thz

Quach, Patrick 27 June 2016 (has links)
Les nitrures d’éléments III (III-N) sont des matériaux prometteurs pour la réalisation de dispositifs intersousbandes (ISB) : leur discontinuité de potentiel élevée en bande de conduction (1.75 eV) leur permet de couvrir une grande gamme de longueur d’onde du proche infrarouge jusqu’au Térahertz (THz), et enfin l’énergie élevée de phonon optique (90meV) laisse entrevoir la possibilité de réaliser des sources émettant dans le THz tout en fonctionnant à température ambiante. Mes travaux portent sur les détecteurs à cascade quantique (QCD) et sur les lasers à cascade quantique (QCL) à base de III-N fonctionnant dans le THz.Dans un premier temps, j’expose les concepts, la réalisation et la caractérisation de plusieurs détecteurs à cascade quantique (QCDs) à base de nitrures (AlGaN/GaN) fonctionnant dans le proche IR entre 1 et 2 µm.. Ensuite, je propose la conception de dispositifs devant fonctionner dans le THz. Je commence par décrire les difficultés inhérentes à l’obtention de transitions ISB dans la gamme THz dans les puits de nitrures polaires et je propose une approche pour les contourner. Je détaille après la conception de QCDs devant fonctionner à 5 et 6 THz. Puis, je propose une structure de QCL devant émettre à 2.5 THz.En parallèle, j’ai aussi travaillé sur les oxydes d’éléments VI (II-VI). Ces matériaux possèdent les mêmes avantages que les nitrures d’éléments III. J’ai caractérisé une série d’échantillons épitaxiés contenant des puits de ZnO/ZnMgO. Les mesures attestent de la présence d’une transition ISB et m’ont permis de donner une estimation de la discontinuité en bande de conduction, valeur jusque-là très mal connue. / Nitrides are promising materials for producing intersubband devices (ISB): their high potential discontinuity in conduction band (1.75 eV) allows them to cover a wide wavelength range from near infrared to terahertz (THz), and finally the high energy optical phonon (90 meV) suggests the possibility of producing sources emitting THz while operating at room temperature. My research focuses on quantum cascade detector (QCD) and quantum cascade lasers (QCL) based on III-N operating in the THz.First, I outline the concepts, realization and characterization of several quantum cascade detectors (QCDs) based on nitrides (AlGaN / GaN) operating in near infrared between 1 and 2 microns. Then, I propose design of devices working in the THz range: I describe difficulties inherent in getting ISB transitions in THz fields in polar nitride quantum well. I detail the design of QCDs operating at 5 and 6 THz. Then I worked on QCL operating at 2.5 THz.In parallel, I also worked on VI elements oxides (II-VI). These materials have the same benefits as III nitrides. I characterized a series of samples containing quantum wells ZnO / ZnMgO. Measurements show the presence of ISB transitions and allow me to provide an estimation of the conduction band offset, which value was not well known prior to this work.
10

Infrared Intersubband Transitions in Non-Polar III-Nitrides

Trang Nguyen (12091136) 27 April 2022 (has links)
<p>Infrared intersubband absorption of III-nitride materials has been studied rigorously due to its broad potential applications into optoelectronic devices. III-nitrides have advantages of large conduction band offset, large longitudinal-optical phonon energy, and fast intersubband relaxation time. These special characteristics make nitrides promising materials for intersubband devices in the near-infrared range. However, the existence of challenges from these materials delays the progress towards the realization of high performance nitride intersubband devices. In this document, we discuss the challenges of III-nitrides and our efforts towards high intersubband transitions strength of different nitrides, in particular non-polar m-plane AlGaN/GaN, non-polar m-plane near strain-balanced (In)AlGaN/InGaN, and polar lattice-matched InAlN/GaN. Samples are characterized by multiple methods including atomic force microscopy, high-resolution x-ray diffraction, high-resolution (scanning) transmission electron microscopy, and Fourier transform infrared spectroscopy.</p> <p>Polar c-plane AlGaN/GaN exhibits good agreement between experimental and predicted results for the intersubband transition energy. However, the lattice strain between layers caused by the lattice mismatch between materials leads to a large number of defects, affecting the vertical transport and resulting in low-quality devices. Lattice-matched InAlN/GaN was suggested as an alternative to eliminate this lattice strain, thus providing a better quality material for devices. We discuss the challenges of growing homogeneous InAlN alloys that persist after exploring a wide range of growth conditions. Additionally, the non-polar mplane AlGaN/GaN is also being investigated. Low Al-composition m-plane AlGaN/GaN experimental intersubband absorption shows good agreement with the theoretical results. As the Al composition exceeds 60%, however, the m-plane AlGaN alloy becomes kinetically unstable during plasma-assisted molecular beam epitaxy growth, resulting in unique nanostructures that affect the intersubband transition energy and linewidth. For the first time, we reported the ISBA energy of near strain-balanced non-polar m-plane (In)AlGaN/InGaN heterostructures in the mid-infrared range with narrow linewidths comparable to tdth-half-max published in the literature for non-polar m-plane AlGaN/GaN superlattices. Additionally, we propose polar near lattice-matched Sc0.15Al0.85N/GaN as an alternative to c-plane lattice-matched InAlN/GaN. </p>

Page generated in 0.1068 seconds