• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 6
  • 4
  • Tagged with
  • 25
  • 25
  • 25
  • 9
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Structure and Dynamics of the Inter-tropical Convergence zones

Dixit, Vijay Vishal January 2015 (has links) (PDF)
The east-west oriented cloud bands in the tropics are called the Inter-tropical Con-vergence Zones (ITCZ). Till recently, the ITCZ has been assumed to have a simple vertical structure with convergence near the surface boundary layer and divergence near the tropopause. Recent work has shown that the ITCZ can have a complex ver-tical structure with multi-level ows. This complex structure has a profound impact on the mass, momentum and energy budget in the ITCZ. This thesis addresses the factors that govern the shallow meridional circulation that occurs in the ITCZ and the mechanisms that govern the abrupt poleward transition and the gradual poleward migration . The shallow meridional circulation forms when the boundary layer ow that con-verges in the ITCZ, rises above the boundary layer and diverges in the lower tropo-sphere. The ow above the boundary layer is in the direction opposite to the direction of the ow within the boundary layer. Some authors have argued that this is caused by the reversal of pressure gradients just above the boundary layer in response to strong sea surface temperature gradients. This hypothesis neglects the eect of plan-etary rotation on the ow and was found to be insucient to explain the formation of shallow meridional circulation. In the east Pacic ocean, the shallow circulation forms only to the south of the ITCZ when the ITCZ forms away from the equator, while it is absent when the ITCZ forms close to the equator. The aqua-planet simulations of the equatorial and the o-equatorial ITCZ were conducted using Community Atmosphere Model (CAM 3.0). The model used the Eulerian dynamical core with T42 horizontal resolution and 26 levels in vertical. Each simulation was run for 3 years and analysis of last six months was presented. The simulations reproduced the contrast in the vertical structure of the equatorial and o-equatorial ITCZ. The shallow circulation was simulated with-out the reversal of pressure gradients and the SST gradients were weakest when the shallow circulation was simulated. We have proposed a new mechanism for the exis-tence of shallow meridional circulation in the ITCZ. We have argued that, in Earth's atmosphere, the mean horizontal ow generally occurs in the direction perpendicular to the direction of applied pressure gradient due to the action of Coriolis force. If the local rotational eects of the ow (relative vorticity) cancels the action of the Coriolis force, then a ow along the pressure gradient is possible. We demonstrated that this condition was satised only to the south of the ITCZ when it forms away from the equator. The ITCZ is characterized by the maximum mass convergence in the boundary layer. The mass convergence is mainly caused by the deceleration of poleward ow in the boundary layer. When the ITCZ forms close to the equator, the ow in the boundary layer is a resultant of vector addition of three forces, a pressure gradient force in the north-south direction (i.e., the ow towards low pressure), a Coriolis force which acts in the east-west direction( perpendicular to the direction of the ow), and surface friction which opposes the resultant ow. When the ITCZ forms away from the equator a three way balance does not capture the dynamics of ow. As the poleward ow is accelerated towards low pressure, it has to advect a considerable amount of zonal momentum with it which acts to retard the poleward ow. This eect of advection of zonal momentum has to be included in the force balance to obtain an accurate estimate of the ow and associated convergence. The ITCZ acts like a heat engine. The energy is gained near the surface, some energy is transported towards pole while some is utilized in driving the meridional circulation. The rest is rejected near the tropopause. The transport within the troposphere occurs through the vertical or horizontal advection of the energy due to vertical and horizontal motions respectively. Our analysis of the ITCZ suggests that; a large amount of transport occurs through horizontal motions that was neglected in the previous studies. The detailed analysis suggests that the latent energy in the form of mass of water vapor is exported out of the ITCZ at dierent levels in association with the multilevel ows. The equatorial and the o-equatorial ITCZ are dierent because, evaporation is larger in the o-equatorial ITCZ when compared to the equatorial ITCZ. The ITCZ shows a strong sub-seasonal variability in its location in the Indian Ocean and the west Pacic Ocean during boreal summer. There are two favorable locations, one near the equator and another away from the equator, for formation of the ITCZ. The equatorial ITCZ either propagates abruptly or gradually to the o-equatorial location. A detailed analysis of moisture and momentum budget of the simulated abrupt and gradual propagations enabled us to separate the role of thermo-dynamic and dynamic processes. We found that, if the equatorial ITCZ would propa-gate abruptly or gradually to the o-equatorial location is decided by the availability of the water vapor in the boundary layer between the two locations of the ITCZ, i.e., by the thermodynamic processes. But, such a transition to the o-equatorial location is allowed only when the constraints imposed by the re-adjustment in the circulation are satised. In simple terms, these constraints emerge due to two processes. 1. The Earth (lower boundary of the atmosphere) spins at maximum eective radius near the equator. As a result, the atmosphere gains maximum angular momentum near the equator (`zonal momentum' in Cartesian co-ordinates) . The ITCZ is one of the primary avenues to transport the zonal momentum from the lower troposphere to the upper troposphere. When the favorable location of ITCZ is near the equator, the location of ITCZ and the location where atmosphere gains maximum zonal momentum are coincident. The ITCZ and associated meridional circulation transports the zonal momentum upwards which is then transported polewards. As the favorable location of ITCZ moves away from the equator, the two locations are die rent. As a result, the atmospheric ow has to re-adjust so that the zonal momentum is transported from the equator to the favorable location of the ITCZ which then transports it upwards and polewards. In summary, this thesis proposes a new mechanism for the generation of shallow meridional circulation, the abrupt transition and the gradual propagations of the ITCZ.
22

Identificação da influencia do El Niño: oscilação sul e oscilação decenal do Pacífico sobre as geleiras andinas tropicais usando sensoriamento remoto e parâmetros climáticos

Veettil, Bijeesh Kozhikkodan January 2017 (has links)
Nas últimas décadas, particularmente desde a década de 1970, testemunhou-se um rápido recuo das geleiras em várias partes dos Andes tropicais. Uma tendência de aquecimento foi observada na região durante o mesmo período, com um hiato recente desde no início de 2010. No entanto, este hiato pode não ser o principal fator a influenciar as observações de aquecimento e recuo das geleiras em altitudes elevadas nos Andes tropicais. Com o surgimento de imagens de alta resolução espacial e espectral, e de modelos digitais de elevação (MDE) de alta resolução, agora é possível compreender as mudanças multitemporais das geleiras, o que era difícil de realizar utilizando as técnicas tradicionais e os dados de baixa resolução. Neste trabalho foram calculadas as variações da linha de neve das geleiras selecionadas ao longo dos Andes tropicais desde o início de 1980. A linha de neve máxima observada durante a estação seca (inverno austral) nos trópicos pode ser considerada como equivalente à linha de equilíbrio que separa a zona de acumulação da zona de ablação. A fim de reduzir o erro na estimativa da linha de neve foram consideradas somente as geleiras com declividades menores que 20o. Dependendo da região estudada e da presença de cobertura de nuvens, foram selecionadas imagens de várias fontes. As imagens da série Landsat (MSS, TM, ETM+ e OLI), EO1 OLI, ASTER e IRS LISS III foram usadas junto com MDE do ASTER GDEM-v2. Três bandas espectrais (TM5 - infravermelho médio, TM4- infravermelho próximo e TM2 - verde) foram utilizadas para calcular a linha de neve durante a estação seca, aplicando limiares adequados para TM4 e TM2. Os conjuntos de dados meteorológicos de várias fontes também foram analisados para observar as mudanças na precipitação, na temperatura e na umidade que influenciam os parâmetros glaciológicos como: o balanço de massa e a linha de equilíbrio. Geleiras representativas nos trópicos internos e trópicos externos foram consideradas separadamente dentro de um novo quadro, que foi baseado na precipitação, umidade e condições de temperatura ao longo da América do Sul. Neste âmbito, os Andes tropicais são classificados em trópicos internos, trópicos externos úmidos do norte, trópicos externos úmidos do sul e os trópicos externos secos. O Vulcão Cotopaxi no Equador (trópicos internos), o Nevado Caullaraju-Pastoruri que é uma geleira na Cordilheira Branca no Peru (trópicos externos úmidos do norte), o Nevado Cololo na Cordilheira Apolobamba na Bolívia (trópicos externos úmidos do sul), o Nevado Coropuna na Cordilheira Ampato no Peru e o Nevado Sajama na Cordilheira Ocidental da Bolívia (trópicos externos secos) são as geleiras representativas de cada grupo consideradas neste estudo. As geleiras tropicais nos trópicos internos, especialmente as situadas perto da Zona de Convergência Intertropicais (ZCIT), são mais vulneráveis a aumentos na temperatura e menos sensíveis a variações na precipitação. Em contraste, as geleiras nos trópicos externos respondem à variabilidade de precipitação muito rapidamente em comparação com a variação de temperatura, particularmente quando se deslocam para as regiões subtropicais. A dependência do balanço de massa sobre as características de sublimação também aumenta a partir dos trópicos internos para os trópicos externos. As condições de aquecimento, com maior umidade, tendem a aumentar a perda de massa por causa do derretimento em vez da sublimação. A elevação da umidade nos trópicos externos pode alterar as geleiras dominadas pela sublimação (nos trópicos externos e subtrópicos) e para as geleiras dominadas por derretimento. Observa-se que as geleiras próximas da ZCIT (trópicos internos e trópicosexternos úmidos do sul) estão recuando mais rapidamente como uma resposta ao aquecimento global, enquanto que as geleiras nos trópicos externos úmidos do norte e trópicos externos secos mostraram recuo relativamente mais lento. Possivelmente isso pode ser devido à ocorrência de fases frias do El Niño - Oscilação Sul (ENOS) conjuntamente com a Oscilação Decenal do Pacífico (ODP). As anomalias observadas nas variáveis meteorológicas seguem os padrões de ODP e as variações anuais de linha de neve seguem eventos de El Niño particularmente na fase ODP quente. No entanto, uma forte correlação entre as variações da linha de neve e dos fenômenos ENOS (e ODP) não está estabelecida. As geleiras do Equador mostram menos retração em resposta à tendência de aquecimento se comparadas às observações feitas por outros pesquisadores na Colômbia e na Venezuela, provavelmente devido à grande altitude das geleiras equatorianas. Em poucas palavras, as geleiras menores e em baixas altitudes nos trópicos internos e trópicos externos úmidos do sul estão desaparecendo mais rapidamente do que outras geleiras nos Andes tropicais. Também se observou neste estudo a existência de uma propriedade direcional no recuo das geleiras, o que não se observou em quaisquer outros estudos recentes. As geleiras nas cordilheiras leste do Peru e da Bolívia, que alimentam muitos rios nos lados leste das cordilheiras orientais, estão recuando do que aquelas geleiras situadas nas encostas ocidentais dos Andes tropicais. / Recent decades, particularly since the late 1970s, witnessed a rapid retreat of glaciers in many parts of the tropical Andes. A warming trend is observed in this region during the same period, with a recent hiatus since the early 2010s. However, this hiatus is observed to have not influenced the retreat of high elevation glaciers in the tropical Andes. Due to the emergence of high spatial and spectral resolution images and high quality digital elevation models (DEM), it is now possible to understand the multi-temporal glacier changes compared with the techniques that existed a few decades before. We calculated the snowline variations of selected glaciers along the tropical Andes since the early 1980s. The maximum snowline observed during the dry season (austral winter) in the tropics can be considered as nearly equivalent to the equilibrium line that separates the accumulation zone from the ablation zone. In order to reduce the error in the estimated snowline, glaciers with slopes < 20o only were considered in this research. Depending on the study region and the presence of cloud cover, images from multiple sources were selected. Landsat series (MSS, TM, ETM+, and OLI), EO1 OLI, ASTER, and IRS LISS III images were used along with digital elevation models (DEM) from ASTER GDEM-v2. Three wavebands (TM5 - Middle Infrared, TM4 - Near Infrared, and TM2 - Green) were used to calculate the dry season snowline, after applying suitable threshold values to TM4 and TM2. Meteorological datasets from multiple sources were also analysed to observe the changes in precipitation, temperature, and humidity that influence key glaciological parameters such as the mass balance and the equilibrium line. Representative glaciers in the inner and the outer tropical Andes were considered separately within a new framework, which is based on the precipitation, humidity, and temperature conditions along the South America. In this framework, tropical Andes are classified in to inner tropics, northern wet outer tropics, southern wet outer tropics, and dry outer tropics. Cotopaxi ice-covered volcano, Ecuador (inner tropics), Nevado Caullaraju-Pastoruri Glacier, Cordillera Blanca, Peru (northern wet outer tropics), Nevado Cololo, Cordillera Apolobamba, Bolivia (southern wet outer tropics), and Nevado Coropuna, Cordillera Ampato Peru and Nevado Sajama, Cordillera Occidental, Bolivia (dry outer tropics) are the representative glaciers in each group considered in this study. Inner tropical glaciers, particularly those situated near the January Intertropical Convergence Zone (ITCZ), are more vulnerable to increases in temperature and these glaciers are less sensitive to variations in precipitation. In contrast, outer tropical glaciers respond to precipitation variability very rapidly in comparison with the temperature variability, particularly when moving towards the subtropics. Mass balance dependency on sublimation characteristics also increases from the inner tropics to the outer tropics. Warming conditions with higher humidity tends to enhance mass loss due to melting rather than sublimation. Increased humidity observed in the outer tropics may change the sublimation dominated glaciers in the outer tropics and subtropics to melting dominated ones in the future. It is observed that the glaciers above and near the January ITCZ (inner tropics and southern wet outer tropics) are retreating faster as a response to global warming, whereas the glaciers in the northern wet outer tropics and dry outer tropics show relatively slower retreat. This can be possibly due to the occurrence of cold phases of El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) together. The observed anomalies in the meteorological variables slightly follow PDO patterns and the variations in annual snowlines follows El Niño events, particularly when in phase with warm PDO. However, a strong correlation between snowline variations and ENSO (and PDO) is not established. Mountain glaciers in Ecuador show less retreat in response to the warming trend compared with observations done by other researchers in Colombia and Venezuela, probably due to very high altitude of the Ecuadorean glaciers. In a nutshell, smaller glaciers at lower altitudes in the inner tropics and the southern wet outer tropics are disappearing faster than other glaciers in the tropical Andes. Another observation made in this study is the directional property of glacier retreat, which was not covered in any other recent studies. Those glaciers on the eastern cordilleras of Peru and Bolivia, which feed many rivers on the eastern sides of the eastern cordilleras, are retreating faster than those glaciers situated on the western sides.
23

Identificação da influencia do El Niño: oscilação sul e oscilação decenal do Pacífico sobre as geleiras andinas tropicais usando sensoriamento remoto e parâmetros climáticos

Veettil, Bijeesh Kozhikkodan January 2017 (has links)
Nas últimas décadas, particularmente desde a década de 1970, testemunhou-se um rápido recuo das geleiras em várias partes dos Andes tropicais. Uma tendência de aquecimento foi observada na região durante o mesmo período, com um hiato recente desde no início de 2010. No entanto, este hiato pode não ser o principal fator a influenciar as observações de aquecimento e recuo das geleiras em altitudes elevadas nos Andes tropicais. Com o surgimento de imagens de alta resolução espacial e espectral, e de modelos digitais de elevação (MDE) de alta resolução, agora é possível compreender as mudanças multitemporais das geleiras, o que era difícil de realizar utilizando as técnicas tradicionais e os dados de baixa resolução. Neste trabalho foram calculadas as variações da linha de neve das geleiras selecionadas ao longo dos Andes tropicais desde o início de 1980. A linha de neve máxima observada durante a estação seca (inverno austral) nos trópicos pode ser considerada como equivalente à linha de equilíbrio que separa a zona de acumulação da zona de ablação. A fim de reduzir o erro na estimativa da linha de neve foram consideradas somente as geleiras com declividades menores que 20o. Dependendo da região estudada e da presença de cobertura de nuvens, foram selecionadas imagens de várias fontes. As imagens da série Landsat (MSS, TM, ETM+ e OLI), EO1 OLI, ASTER e IRS LISS III foram usadas junto com MDE do ASTER GDEM-v2. Três bandas espectrais (TM5 - infravermelho médio, TM4- infravermelho próximo e TM2 - verde) foram utilizadas para calcular a linha de neve durante a estação seca, aplicando limiares adequados para TM4 e TM2. Os conjuntos de dados meteorológicos de várias fontes também foram analisados para observar as mudanças na precipitação, na temperatura e na umidade que influenciam os parâmetros glaciológicos como: o balanço de massa e a linha de equilíbrio. Geleiras representativas nos trópicos internos e trópicos externos foram consideradas separadamente dentro de um novo quadro, que foi baseado na precipitação, umidade e condições de temperatura ao longo da América do Sul. Neste âmbito, os Andes tropicais são classificados em trópicos internos, trópicos externos úmidos do norte, trópicos externos úmidos do sul e os trópicos externos secos. O Vulcão Cotopaxi no Equador (trópicos internos), o Nevado Caullaraju-Pastoruri que é uma geleira na Cordilheira Branca no Peru (trópicos externos úmidos do norte), o Nevado Cololo na Cordilheira Apolobamba na Bolívia (trópicos externos úmidos do sul), o Nevado Coropuna na Cordilheira Ampato no Peru e o Nevado Sajama na Cordilheira Ocidental da Bolívia (trópicos externos secos) são as geleiras representativas de cada grupo consideradas neste estudo. As geleiras tropicais nos trópicos internos, especialmente as situadas perto da Zona de Convergência Intertropicais (ZCIT), são mais vulneráveis a aumentos na temperatura e menos sensíveis a variações na precipitação. Em contraste, as geleiras nos trópicos externos respondem à variabilidade de precipitação muito rapidamente em comparação com a variação de temperatura, particularmente quando se deslocam para as regiões subtropicais. A dependência do balanço de massa sobre as características de sublimação também aumenta a partir dos trópicos internos para os trópicos externos. As condições de aquecimento, com maior umidade, tendem a aumentar a perda de massa por causa do derretimento em vez da sublimação. A elevação da umidade nos trópicos externos pode alterar as geleiras dominadas pela sublimação (nos trópicos externos e subtrópicos) e para as geleiras dominadas por derretimento. Observa-se que as geleiras próximas da ZCIT (trópicos internos e trópicosexternos úmidos do sul) estão recuando mais rapidamente como uma resposta ao aquecimento global, enquanto que as geleiras nos trópicos externos úmidos do norte e trópicos externos secos mostraram recuo relativamente mais lento. Possivelmente isso pode ser devido à ocorrência de fases frias do El Niño - Oscilação Sul (ENOS) conjuntamente com a Oscilação Decenal do Pacífico (ODP). As anomalias observadas nas variáveis meteorológicas seguem os padrões de ODP e as variações anuais de linha de neve seguem eventos de El Niño particularmente na fase ODP quente. No entanto, uma forte correlação entre as variações da linha de neve e dos fenômenos ENOS (e ODP) não está estabelecida. As geleiras do Equador mostram menos retração em resposta à tendência de aquecimento se comparadas às observações feitas por outros pesquisadores na Colômbia e na Venezuela, provavelmente devido à grande altitude das geleiras equatorianas. Em poucas palavras, as geleiras menores e em baixas altitudes nos trópicos internos e trópicos externos úmidos do sul estão desaparecendo mais rapidamente do que outras geleiras nos Andes tropicais. Também se observou neste estudo a existência de uma propriedade direcional no recuo das geleiras, o que não se observou em quaisquer outros estudos recentes. As geleiras nas cordilheiras leste do Peru e da Bolívia, que alimentam muitos rios nos lados leste das cordilheiras orientais, estão recuando do que aquelas geleiras situadas nas encostas ocidentais dos Andes tropicais. / Recent decades, particularly since the late 1970s, witnessed a rapid retreat of glaciers in many parts of the tropical Andes. A warming trend is observed in this region during the same period, with a recent hiatus since the early 2010s. However, this hiatus is observed to have not influenced the retreat of high elevation glaciers in the tropical Andes. Due to the emergence of high spatial and spectral resolution images and high quality digital elevation models (DEM), it is now possible to understand the multi-temporal glacier changes compared with the techniques that existed a few decades before. We calculated the snowline variations of selected glaciers along the tropical Andes since the early 1980s. The maximum snowline observed during the dry season (austral winter) in the tropics can be considered as nearly equivalent to the equilibrium line that separates the accumulation zone from the ablation zone. In order to reduce the error in the estimated snowline, glaciers with slopes < 20o only were considered in this research. Depending on the study region and the presence of cloud cover, images from multiple sources were selected. Landsat series (MSS, TM, ETM+, and OLI), EO1 OLI, ASTER, and IRS LISS III images were used along with digital elevation models (DEM) from ASTER GDEM-v2. Three wavebands (TM5 - Middle Infrared, TM4 - Near Infrared, and TM2 - Green) were used to calculate the dry season snowline, after applying suitable threshold values to TM4 and TM2. Meteorological datasets from multiple sources were also analysed to observe the changes in precipitation, temperature, and humidity that influence key glaciological parameters such as the mass balance and the equilibrium line. Representative glaciers in the inner and the outer tropical Andes were considered separately within a new framework, which is based on the precipitation, humidity, and temperature conditions along the South America. In this framework, tropical Andes are classified in to inner tropics, northern wet outer tropics, southern wet outer tropics, and dry outer tropics. Cotopaxi ice-covered volcano, Ecuador (inner tropics), Nevado Caullaraju-Pastoruri Glacier, Cordillera Blanca, Peru (northern wet outer tropics), Nevado Cololo, Cordillera Apolobamba, Bolivia (southern wet outer tropics), and Nevado Coropuna, Cordillera Ampato Peru and Nevado Sajama, Cordillera Occidental, Bolivia (dry outer tropics) are the representative glaciers in each group considered in this study. Inner tropical glaciers, particularly those situated near the January Intertropical Convergence Zone (ITCZ), are more vulnerable to increases in temperature and these glaciers are less sensitive to variations in precipitation. In contrast, outer tropical glaciers respond to precipitation variability very rapidly in comparison with the temperature variability, particularly when moving towards the subtropics. Mass balance dependency on sublimation characteristics also increases from the inner tropics to the outer tropics. Warming conditions with higher humidity tends to enhance mass loss due to melting rather than sublimation. Increased humidity observed in the outer tropics may change the sublimation dominated glaciers in the outer tropics and subtropics to melting dominated ones in the future. It is observed that the glaciers above and near the January ITCZ (inner tropics and southern wet outer tropics) are retreating faster as a response to global warming, whereas the glaciers in the northern wet outer tropics and dry outer tropics show relatively slower retreat. This can be possibly due to the occurrence of cold phases of El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) together. The observed anomalies in the meteorological variables slightly follow PDO patterns and the variations in annual snowlines follows El Niño events, particularly when in phase with warm PDO. However, a strong correlation between snowline variations and ENSO (and PDO) is not established. Mountain glaciers in Ecuador show less retreat in response to the warming trend compared with observations done by other researchers in Colombia and Venezuela, probably due to very high altitude of the Ecuadorean glaciers. In a nutshell, smaller glaciers at lower altitudes in the inner tropics and the southern wet outer tropics are disappearing faster than other glaciers in the tropical Andes. Another observation made in this study is the directional property of glacier retreat, which was not covered in any other recent studies. Those glaciers on the eastern cordilleras of Peru and Bolivia, which feed many rivers on the eastern sides of the eastern cordilleras, are retreating faster than those glaciers situated on the western sides.
24

Heat and salinity transport across the Indonesian Archipelago over the last 270,000 years : new insights into the orbital and millennial dynamics of the Indonesian Throughflow and the Intertropical Convergence Zone / Transport de chaleur et de salinité à travers l'archipel indonésien au cours des 270 000 dernières années : nouveaux enregistrements de la dynamique orbitale et millénaire du flux indonésien et de la zone de convergence intertropicale

Pang, Xiaolei 14 October 2019 (has links)
Ce travail avait pour but de reconstituer l'évolution de la température et du δ¹⁸O des eaux de surface et des eaux de la thermocline dans la Warmpool indo-pacifique (IPWP) en combinant la thermométrie Mg / Ca et la mesure des isotopes stables de l'oxygène sur des foraminifères planctoniques de surface et de sub-surface prélevés dans des carottes de sédiments situées dans l'océan Indien tropical oriental. Ce travail a permis de ré-évaluer les effets des différentes méthodes de nettoyage et de la dissolution in situ sur la thermométrie Mg/Ca des foraminifères planctoniques, mettant en évidence la nécessité de corrections différentes suivant les espèces. L’évolution de l’IPWP au cours des 270 000 dernières années a été reconstituée. Les résultats indiquent que le δ¹⁸O des eaux de surface reflètent principalement l'advection latérale plutôt que l'historique des précipitations régionales, et suggèrent que l'hydrologie de surface IPWP est contrôlée par la migration latitudinale de la zone de convergence intertropicale aux échelles de temps orbitales mais aussi en réponse aux événements climatiques abrupts de l'hémisphère nord (eg. événements de Heinrich). Les variations de salinité de surface sont étroitement corrélées aux changements d’export vers l’Atlantique au niveau du Courant des Aiguilles (Sud de l’Afrique). Puis, les changements dans le transport des eaux de la thermocline issues de l’ITF vers l'océan Indien ont été étudiés. Les résultats montrent que le transport était plus faible pendant les glaciations (ie. MIS 6 et 4-2) que pendant les périodes interglaciaires (ie. MIS 7, MIS 5 et Holocène) et exerçaient une influence significative sur les changements de la température de la thermocline dans l'Océan Indien. / This work aimed at reconstructing the late Quaternary evolution of surface and thermocline temperature and ocean surface water δ¹⁸O in the Indo-Pacific Warm Pool by combining Mg/Ca-thermometry and stable oxygen isotope analyses on surface and thermocline-dwelling planktonic foraminifers retrieved from sediment cores in the eastern tropical Indian Ocean. This study allowed to re-evaluate the effects of different cleaning methods and in-situ dissolution on the Mg-thermometry of planktonic foraminifers, evidencing the need for species-dependent corrections. Then, the IPWP evolution over the last 270,000 years has been explored. Results indicate that surface water δ¹⁸O chiefly reflects lateral advection rather than local precipitation history, and suggest that surface IPWP hydrology is controlled by the latitudinal migration of the Intertropical Convergence Zone at orbital timescale as well as during abrupt northern hemisphere climatic events (i.e. Heinrich events). Ocean surface salinity in the IPWP and Agulhas leakage region varied synchronously, implying their teleconnection through oceanic and atmospheric circulation. Moreover, changes in the transport of thermocline water to the Indian Ocean by the Indonesian Throughflow (ITF) have been reconstructed. Results show that thermocline water transport was weaker during glacials (i.e. MIS 6 and 4-2) than during interglacials (MIS 7, MIS 5 and Holocene), and exerted significant influence on Indian Ocean TWT change.
25

Changes in Cross-Equatorial Ocean Heat Transport Impact Regional Climate and Precipitation Sensitivity

Oghenechovwen, Oghenekevwe C. 01 December 2022 (has links)
Do changes in how cross-equatorial energy transport is partitioned between the ocean and atmosphere impact the hemispheric climate response to forcing? To find out, we alter the cross-equatorial ocean heat transport in a state-of-the-art GCM and ascertain how changes in energy transport and its partitioning impact hemispheric climate and precipitation sensitivity following abrupt CO2-doubling. We further evaluate the applicability our results in CMIP6-class ESMs, where AMOC facilitates the northward cross-equatorial ocean heat transport. In our experiments, changes in ocean cross-equatorial energy transport trigger compensating changes in atmospheric energy transport through changes in the Hadley cells and a shift in the Intertropical Convergence Zone. However, the climate sensitivity in each hemisphere is linearly related to the ocean heat transport convergence, not atmospheric energy transport convergence, due to the impact of ocean heating on evaporation and atmospheric specific humidity. Similarly, we also find that ocean heat transport convergence controls the hemispheric precipitation sensitivity through the impact of ocean heating on surface evaporation. This relationship is also evident in CMIP6 models, where we find differences in hemispheric precipitation sensitivity to be related to the Atlantic Meridional Overturning Circulation (AMOC). Changes in the AMOC control hemispheric differences in upper ocean heat content, which then affect how the hydrologic cycle responds to CO2 forcing in each hemisphere. These results suggest that ocean dynamics impact the hemispheric climate response to CO2 forcing, particularly how much regional precipitation changes with warming. / Graduate

Page generated in 0.5276 seconds