1 |
Probabilistic Risk Assessment of Special Protection Systems Operations and Design RefinementHsiao, Tsun-Yu 04 July 2008 (has links)
In order to prevent power system blackout, and enhance system reliability, various forms of special protection systems (SPS) and defense plans have been implemented by utilities around the world. One of the main concerns in the design of an SPS is to assure whether the system could fit with the reliability specification requirements. The failure of SPS to detect the defined conditions and carry out the required actions, or to take unnecessary actions, could lead to serious and costly consequences. Thus, a quantitative reliability assessment for SPS is important and necessary. Using a single point value for the parameter to evaluate the reliability of SPS might give incomplete information about the system reliability due to the uncertainty of reliability model and input data. When a review study suggests that some modifications of the existing scheme are necessary, the sensitivity analysis techniques could provide the tools to do this investigation to identify the most significant components that have essential effects on the reliability of the SPS.
In this dissertation, by incorporating an interval theory, a risk reduction worth importance concept, and a probabilistic risk-based index, a procedure is proposed to conduct parameter uncertainty analysis, identify critical factors in the reliability model, perform probabilistic risk assessments (PRA) and determine a better option for the refinement of the studied SPS decision process logic module. One of the existing SPSs of Taipower systems is used to illustrate the practicability and appropriation of the proposed design refinement procedure.
With the advent of deregulation in the power industry, utilities have experienced a great pressure to fully utilize their current facilities to the maximum level. SPSs are often considered as a cost effective way in achieving this goal. This dissertation also presents a framework for quantitative assessment of the benefits and risks due to SPS implementation. Changes in energy, spinning reserve and customer interruption costs resulting from SPS operations are evaluated and risks of SPS operations and system security are assessed. The proposed methodologies are useful for power system planners and operators to evaluate the value and effectiveness of SPS for the remedy of transmission congestion and reliability problems.
|
2 |
A categoria computável dos espaços coerentes gerados por conjuntos básicos com aplicação em análise real / The computable category of the coherence spaces generated by basic sets with an application in real analysisReiser, Renata Hax Sander January 1997 (has links)
Neste trabalho desenvolve-se um estudo sobre os Espaços Coerentes Gerados por Conjuntos Básicos, dotados de uma estrutura adicional. Por estrutura adicional entende-se uma estrutura algébrica, de ordem pontual, de medidas, topológica e lógica. Estes espaços, denotados por , constituem uma subcategoria dos Espaços Coerentes, cujos objetos, ordenados pela inclusão, são conjuntos coerentes constituídos por subconjuntos do conjunto básico, os quais estão relacionados pela relação de coerência induzida, que estrutura a teia deste espaço. Os morfismos desta categoria são as funções de objetos geradas por funções básicas. As propriedades algébricas e relacionais destas funções básicas, externas ao processo de construção, ao se propagarem, passam a influenciar na verificação das propriedades internas das funções de objetos. Contudo, este trabalho não é um estudo categórico. A metodologia adotada utiliza a linguagem simples e intuitiva da Teoria dos Conjuntos, que possibilita a visualização e a análise dos relacionamentos existentes, não apenas entre os morfismos que envolvem os objetos totais ou parciais desta categoria, mas também das estruturas ou pré-estruturas externas que os formam, representados pelas funções de tokens e funções básicas. Mostra-se que as funções de objetos são totais e bem definidas, alem de serem monótonas e continuas neste espaço. Entretanto a análise da estabilidade, e consequentemente da linearidade esta associada a injetividade das funções básicas. Uma das características mais importantes da construção proposta e o desenvolvimento de um sistema de representação linear para funções localmente lineares, com a definição do espaço coerente A* gerado pelo produto de subteias. Neste espaço, as funções de objetos são lineares e coincidem com os morfismo da categoria dos espaços coerentes. Além disso, mostra-se que A* e isomorfo ao espaço coerente gerado pelo produto direto dos sub-espaços, ПĄ. Desta forma, toda transformação definida para um tipo de dado estruturado a partir de um conjunto básico enumerável tem uma representação linear, constituída pelos morfismos da categoria dos espaços coerentes. A existência da representação linear para as funções elementares garante a existência da representação linear para outras funções derivadas destas. Apresenta-se ainda uma especificação desta construção, introduzindo-se o Espaço Coerente de Intervalos Racionais, IIQ. Na busca de uma aplicação compatível com uma abordagem computacional, em especial para Análise Real, mostra-se que, em IIQ, cada função real elementar esta identificada com uma função de objetos linear, definida a partir da correspondente função elementar racional. Dentre as funções que foram analisadas destacam-se: a exponencial, a logarítmica, a potência, a potência estendida, a raiz n-ésima, as funções trigonométricas como seno, cosseno e tangente e suas correspondentes funções inversas, como também a função polinomial. Verificou-se que todas estas funções de objetos são totais, bem definidas, ou pertencem ou possuem uma representação linear na categoria COSP-LIN dos espaços coerentes, alem de serem fechadas para os objetos totais e quasi-totais deste espaço, sendo possível estabelecer o correspondente par-projeção para cada uma delas. / In this work the Coherence Spaces Generated by Basic Sets with additional structure are studied. By additional structure one means an algebraic, topological and logical structure with a punctual order and a measure system. These spaces, indicated by A, are a subcategory of the category of Coherence Spaces, whose objects, ordered by inclusion, are coherent sets formed by the induced web coherence relation. The morphisms of this category are the functions of objects generated by basic functions. The algebraic and relational properties of these basic functions - external to the construction process - are propagated and cause important influences in the verification of the internal properties of the functions of objects However, this research is not a categorical study. The methodology uses the simple and intuitive language of the Set Theory, which allows the visualization and the analysis of the existing relationships, not only among, the morphisms of the total and partial objects of this category, but also among their structures or pre-structures, represented by the functions of tokens and basic functions. It is shown that the functions of objects are total and well defined. They are also monotone and continuous. However the stability and the linearity of the functions of objects depend on the fact if the basic functions are injective or not. One of the most important features of this construction is the development of a linear representation system for the local linear functions, by the definition of a coherence space A*, which is generated by the subweb product. In this space the functions of objects are linear and therefore they are the morphisms of the category of Coherence Spaces. Moreover, it is proved that A* is isomorphic to the coherence space generated by the directed product of the subspaces, denoted by ПĄ . Then, for each transformation defined for a structured data type considering a denumerable basic set there exists its related linear representation. The existence of a linear representation for elementary functions guarantees the existence of a linear representation for others derived functions. As an application of this construction, the Coherence Space of Rational Intervals, denoted by IIQ, is introduced. In order to show an application which is compatible to a computational approach, specially for the real analysis, each elementary real function is identified with a linear function of objects, defined considering the related elementary rational function. Some of the analyzed functions are the exponential, the logarithmic, the power , the extended power, the root, the trigonometric (sine, cosine and tangent and their relates inverses), and the polynomial functions. It is proved that all of these functions of objects are total and well defined. Moreover, either they belong to the category COPS-LIN of the coherence spaces or they have a linear representation in the same category. It is also possible to define a related projection pair for each one of them.
|
3 |
A categoria computável dos espaços coerentes gerados por conjuntos básicos com aplicação em análise real / The computable category of the coherence spaces generated by basic sets with an application in real analysisReiser, Renata Hax Sander January 1997 (has links)
Neste trabalho desenvolve-se um estudo sobre os Espaços Coerentes Gerados por Conjuntos Básicos, dotados de uma estrutura adicional. Por estrutura adicional entende-se uma estrutura algébrica, de ordem pontual, de medidas, topológica e lógica. Estes espaços, denotados por , constituem uma subcategoria dos Espaços Coerentes, cujos objetos, ordenados pela inclusão, são conjuntos coerentes constituídos por subconjuntos do conjunto básico, os quais estão relacionados pela relação de coerência induzida, que estrutura a teia deste espaço. Os morfismos desta categoria são as funções de objetos geradas por funções básicas. As propriedades algébricas e relacionais destas funções básicas, externas ao processo de construção, ao se propagarem, passam a influenciar na verificação das propriedades internas das funções de objetos. Contudo, este trabalho não é um estudo categórico. A metodologia adotada utiliza a linguagem simples e intuitiva da Teoria dos Conjuntos, que possibilita a visualização e a análise dos relacionamentos existentes, não apenas entre os morfismos que envolvem os objetos totais ou parciais desta categoria, mas também das estruturas ou pré-estruturas externas que os formam, representados pelas funções de tokens e funções básicas. Mostra-se que as funções de objetos são totais e bem definidas, alem de serem monótonas e continuas neste espaço. Entretanto a análise da estabilidade, e consequentemente da linearidade esta associada a injetividade das funções básicas. Uma das características mais importantes da construção proposta e o desenvolvimento de um sistema de representação linear para funções localmente lineares, com a definição do espaço coerente A* gerado pelo produto de subteias. Neste espaço, as funções de objetos são lineares e coincidem com os morfismo da categoria dos espaços coerentes. Além disso, mostra-se que A* e isomorfo ao espaço coerente gerado pelo produto direto dos sub-espaços, ПĄ. Desta forma, toda transformação definida para um tipo de dado estruturado a partir de um conjunto básico enumerável tem uma representação linear, constituída pelos morfismos da categoria dos espaços coerentes. A existência da representação linear para as funções elementares garante a existência da representação linear para outras funções derivadas destas. Apresenta-se ainda uma especificação desta construção, introduzindo-se o Espaço Coerente de Intervalos Racionais, IIQ. Na busca de uma aplicação compatível com uma abordagem computacional, em especial para Análise Real, mostra-se que, em IIQ, cada função real elementar esta identificada com uma função de objetos linear, definida a partir da correspondente função elementar racional. Dentre as funções que foram analisadas destacam-se: a exponencial, a logarítmica, a potência, a potência estendida, a raiz n-ésima, as funções trigonométricas como seno, cosseno e tangente e suas correspondentes funções inversas, como também a função polinomial. Verificou-se que todas estas funções de objetos são totais, bem definidas, ou pertencem ou possuem uma representação linear na categoria COSP-LIN dos espaços coerentes, alem de serem fechadas para os objetos totais e quasi-totais deste espaço, sendo possível estabelecer o correspondente par-projeção para cada uma delas. / In this work the Coherence Spaces Generated by Basic Sets with additional structure are studied. By additional structure one means an algebraic, topological and logical structure with a punctual order and a measure system. These spaces, indicated by A, are a subcategory of the category of Coherence Spaces, whose objects, ordered by inclusion, are coherent sets formed by the induced web coherence relation. The morphisms of this category are the functions of objects generated by basic functions. The algebraic and relational properties of these basic functions - external to the construction process - are propagated and cause important influences in the verification of the internal properties of the functions of objects However, this research is not a categorical study. The methodology uses the simple and intuitive language of the Set Theory, which allows the visualization and the analysis of the existing relationships, not only among, the morphisms of the total and partial objects of this category, but also among their structures or pre-structures, represented by the functions of tokens and basic functions. It is shown that the functions of objects are total and well defined. They are also monotone and continuous. However the stability and the linearity of the functions of objects depend on the fact if the basic functions are injective or not. One of the most important features of this construction is the development of a linear representation system for the local linear functions, by the definition of a coherence space A*, which is generated by the subweb product. In this space the functions of objects are linear and therefore they are the morphisms of the category of Coherence Spaces. Moreover, it is proved that A* is isomorphic to the coherence space generated by the directed product of the subspaces, denoted by ПĄ . Then, for each transformation defined for a structured data type considering a denumerable basic set there exists its related linear representation. The existence of a linear representation for elementary functions guarantees the existence of a linear representation for others derived functions. As an application of this construction, the Coherence Space of Rational Intervals, denoted by IIQ, is introduced. In order to show an application which is compatible to a computational approach, specially for the real analysis, each elementary real function is identified with a linear function of objects, defined considering the related elementary rational function. Some of the analyzed functions are the exponential, the logarithmic, the power , the extended power, the root, the trigonometric (sine, cosine and tangent and their relates inverses), and the polynomial functions. It is proved that all of these functions of objects are total and well defined. Moreover, either they belong to the category COPS-LIN of the coherence spaces or they have a linear representation in the same category. It is also possible to define a related projection pair for each one of them.
|
4 |
A categoria computável dos espaços coerentes gerados por conjuntos básicos com aplicação em análise real / The computable category of the coherence spaces generated by basic sets with an application in real analysisReiser, Renata Hax Sander January 1997 (has links)
Neste trabalho desenvolve-se um estudo sobre os Espaços Coerentes Gerados por Conjuntos Básicos, dotados de uma estrutura adicional. Por estrutura adicional entende-se uma estrutura algébrica, de ordem pontual, de medidas, topológica e lógica. Estes espaços, denotados por , constituem uma subcategoria dos Espaços Coerentes, cujos objetos, ordenados pela inclusão, são conjuntos coerentes constituídos por subconjuntos do conjunto básico, os quais estão relacionados pela relação de coerência induzida, que estrutura a teia deste espaço. Os morfismos desta categoria são as funções de objetos geradas por funções básicas. As propriedades algébricas e relacionais destas funções básicas, externas ao processo de construção, ao se propagarem, passam a influenciar na verificação das propriedades internas das funções de objetos. Contudo, este trabalho não é um estudo categórico. A metodologia adotada utiliza a linguagem simples e intuitiva da Teoria dos Conjuntos, que possibilita a visualização e a análise dos relacionamentos existentes, não apenas entre os morfismos que envolvem os objetos totais ou parciais desta categoria, mas também das estruturas ou pré-estruturas externas que os formam, representados pelas funções de tokens e funções básicas. Mostra-se que as funções de objetos são totais e bem definidas, alem de serem monótonas e continuas neste espaço. Entretanto a análise da estabilidade, e consequentemente da linearidade esta associada a injetividade das funções básicas. Uma das características mais importantes da construção proposta e o desenvolvimento de um sistema de representação linear para funções localmente lineares, com a definição do espaço coerente A* gerado pelo produto de subteias. Neste espaço, as funções de objetos são lineares e coincidem com os morfismo da categoria dos espaços coerentes. Além disso, mostra-se que A* e isomorfo ao espaço coerente gerado pelo produto direto dos sub-espaços, ПĄ. Desta forma, toda transformação definida para um tipo de dado estruturado a partir de um conjunto básico enumerável tem uma representação linear, constituída pelos morfismos da categoria dos espaços coerentes. A existência da representação linear para as funções elementares garante a existência da representação linear para outras funções derivadas destas. Apresenta-se ainda uma especificação desta construção, introduzindo-se o Espaço Coerente de Intervalos Racionais, IIQ. Na busca de uma aplicação compatível com uma abordagem computacional, em especial para Análise Real, mostra-se que, em IIQ, cada função real elementar esta identificada com uma função de objetos linear, definida a partir da correspondente função elementar racional. Dentre as funções que foram analisadas destacam-se: a exponencial, a logarítmica, a potência, a potência estendida, a raiz n-ésima, as funções trigonométricas como seno, cosseno e tangente e suas correspondentes funções inversas, como também a função polinomial. Verificou-se que todas estas funções de objetos são totais, bem definidas, ou pertencem ou possuem uma representação linear na categoria COSP-LIN dos espaços coerentes, alem de serem fechadas para os objetos totais e quasi-totais deste espaço, sendo possível estabelecer o correspondente par-projeção para cada uma delas. / In this work the Coherence Spaces Generated by Basic Sets with additional structure are studied. By additional structure one means an algebraic, topological and logical structure with a punctual order and a measure system. These spaces, indicated by A, are a subcategory of the category of Coherence Spaces, whose objects, ordered by inclusion, are coherent sets formed by the induced web coherence relation. The morphisms of this category are the functions of objects generated by basic functions. The algebraic and relational properties of these basic functions - external to the construction process - are propagated and cause important influences in the verification of the internal properties of the functions of objects However, this research is not a categorical study. The methodology uses the simple and intuitive language of the Set Theory, which allows the visualization and the analysis of the existing relationships, not only among, the morphisms of the total and partial objects of this category, but also among their structures or pre-structures, represented by the functions of tokens and basic functions. It is shown that the functions of objects are total and well defined. They are also monotone and continuous. However the stability and the linearity of the functions of objects depend on the fact if the basic functions are injective or not. One of the most important features of this construction is the development of a linear representation system for the local linear functions, by the definition of a coherence space A*, which is generated by the subweb product. In this space the functions of objects are linear and therefore they are the morphisms of the category of Coherence Spaces. Moreover, it is proved that A* is isomorphic to the coherence space generated by the directed product of the subspaces, denoted by ПĄ . Then, for each transformation defined for a structured data type considering a denumerable basic set there exists its related linear representation. The existence of a linear representation for elementary functions guarantees the existence of a linear representation for others derived functions. As an application of this construction, the Coherence Space of Rational Intervals, denoted by IIQ, is introduced. In order to show an application which is compatible to a computational approach, specially for the real analysis, each elementary real function is identified with a linear function of objects, defined considering the related elementary rational function. Some of the analyzed functions are the exponential, the logarithmic, the power , the extended power, the root, the trigonometric (sine, cosine and tangent and their relates inverses), and the polynomial functions. It is proved that all of these functions of objects are total and well defined. Moreover, either they belong to the category COPS-LIN of the coherence spaces or they have a linear representation in the same category. It is also possible to define a related projection pair for each one of them.
|
5 |
Domínios intervalares da matemática computacionalDimuro, Gracaliz Pereira January 1991 (has links)
Fundamentada a importância da utilização da Teoria dos Intervalos em computação científica, é realizada uma revisão da Teoria Clássica dos Intervalos, com críticas sobre as incompatibilidades encontradas como motivos de diversas dificuldades para desenvolvimento da própria teoria e, consequentemente, das Técnicas Intervalares. É desenvolvida uma nova abordagem para a Teoria dos Intervalos de acordo com a Teoria dos Domínios e a proposta de [ACI 89], obtendo-se os Domínios Intervalares da Matemática Computacional. Introduz-se uma topologia (Topologia de Scott) compatível com a idéia de aproximação, gerando uma ordem de informação, isto é, para quaisquer intervalos x e y, diz-se que se x -c y , então y fornece mais (no mínimo tanto quanto) informação, sobre um real r, do que x. Prova-se que esta ordem de informação induz uma topologia To (topologia de Scott) , que é mais adequada para uma teoria computacional que a topologia da Hausdorff introduzida por Moore [MOO 66]. Cada número real r é aproximado por intervalos de extremos racionais, os intervalos de informação, que constituem o espaço de informação II(Q), superando assim a regressão infinita da abordagem clássica. Pode-se dizer que todo real r é o supremo de uma cadeia de intervalos com extremos racionais “encaixados”. Assim, os reais são os elementos totais de um domínio contínuo, chamado de Domínio dos Intervalos Reais Parciais, cuja base é o espaço de informação II (Q). Cada função contínua da Análise Real é o limite de sequências de funções contínuas entre elementos da base do domínio. Toda função contínua nestes domínios constitui uma função monotônica na base e é completamente representada em termos finitos. É introduzida uma quasi-métrica que induz uma topologia compatível com esta abordagem e provê as propriedades quantitativas, além de possibilitar a utilização da noção de sequências, limites etc, sem que se precise recorrer a conceitos mais complexos. Desenvolvem-se uma aritmética, critérios de aproximação e os conceito de intervalo ponto médio, intervalo valor absoluto e intervalo diâmetro, conceitos compatíveis com esta abordagem. São acrescentadas as operações de união, interseção e as unárias. Apresenta-se um amplo estudo sobre a função intervalar e a inclusão de imagens de funções, com ênfase na obtenção de uma extensão intervalar natural contínua. Esta é uma abordagem de lógica construtiva e computacional. / The importance of Interval Theory for scientific computation is emphasized. A review of the Classical Theory is macle, including a discussion about some incompatibities that cause problems in developing interval algorithms. A new approach to the Interval Theory is developed in the light of the Theory of Domains and according to the ideas by Acióly [ACI 89], getting the Interval Domains of Computational Mathematics. It is introduced a topology (Scott Topology), which is associated with the idea of approximation, generating an information order, that is, for any intervals x and y one says that if x -c y, then "the information given by y is better or at least equal than the one given by x". One proves that this information order induces a To topology (Scott's topology) which is more suitable for a computation theory than that of Hausdorff introduced by Moore [MOO 66]. This approach has the advantage of being both of constructive logic and computational. Each real number is approximated by intervals with rational bounds, named information intervals of the Information Space II(Q), eliminating the infinite regression found in the classical approach. One can say that every real a is the supreme of a chain of rational intervals. Then, the real numbers are the total elements of a continuous domain, named the Domain of the Partial Real Intervals, whose basis is the information space II (Q). Each continuous function in the Real Analysis is the limit of sequences of continuous functions among any elements which belong to the base of the domain. In these same domains, each continuous function is monotonic on the base and it is completely represented by finite terms. It is introduced a quasi-metric that leads to a compatible topology and supplies the quantitative properties. An arithmetic, some approximation criteria, the concepts of mean point interval, absolute value interval and width interval are developed and set operations are added. The ideas of interval functions and the inclusion of ranges of functions are also presented, and a continuous natural interval extension is obtained.
|
6 |
Domínios intervalares da matemática computacionalDimuro, Gracaliz Pereira January 1991 (has links)
Fundamentada a importância da utilização da Teoria dos Intervalos em computação científica, é realizada uma revisão da Teoria Clássica dos Intervalos, com críticas sobre as incompatibilidades encontradas como motivos de diversas dificuldades para desenvolvimento da própria teoria e, consequentemente, das Técnicas Intervalares. É desenvolvida uma nova abordagem para a Teoria dos Intervalos de acordo com a Teoria dos Domínios e a proposta de [ACI 89], obtendo-se os Domínios Intervalares da Matemática Computacional. Introduz-se uma topologia (Topologia de Scott) compatível com a idéia de aproximação, gerando uma ordem de informação, isto é, para quaisquer intervalos x e y, diz-se que se x -c y , então y fornece mais (no mínimo tanto quanto) informação, sobre um real r, do que x. Prova-se que esta ordem de informação induz uma topologia To (topologia de Scott) , que é mais adequada para uma teoria computacional que a topologia da Hausdorff introduzida por Moore [MOO 66]. Cada número real r é aproximado por intervalos de extremos racionais, os intervalos de informação, que constituem o espaço de informação II(Q), superando assim a regressão infinita da abordagem clássica. Pode-se dizer que todo real r é o supremo de uma cadeia de intervalos com extremos racionais “encaixados”. Assim, os reais são os elementos totais de um domínio contínuo, chamado de Domínio dos Intervalos Reais Parciais, cuja base é o espaço de informação II (Q). Cada função contínua da Análise Real é o limite de sequências de funções contínuas entre elementos da base do domínio. Toda função contínua nestes domínios constitui uma função monotônica na base e é completamente representada em termos finitos. É introduzida uma quasi-métrica que induz uma topologia compatível com esta abordagem e provê as propriedades quantitativas, além de possibilitar a utilização da noção de sequências, limites etc, sem que se precise recorrer a conceitos mais complexos. Desenvolvem-se uma aritmética, critérios de aproximação e os conceito de intervalo ponto médio, intervalo valor absoluto e intervalo diâmetro, conceitos compatíveis com esta abordagem. São acrescentadas as operações de união, interseção e as unárias. Apresenta-se um amplo estudo sobre a função intervalar e a inclusão de imagens de funções, com ênfase na obtenção de uma extensão intervalar natural contínua. Esta é uma abordagem de lógica construtiva e computacional. / The importance of Interval Theory for scientific computation is emphasized. A review of the Classical Theory is macle, including a discussion about some incompatibities that cause problems in developing interval algorithms. A new approach to the Interval Theory is developed in the light of the Theory of Domains and according to the ideas by Acióly [ACI 89], getting the Interval Domains of Computational Mathematics. It is introduced a topology (Scott Topology), which is associated with the idea of approximation, generating an information order, that is, for any intervals x and y one says that if x -c y, then "the information given by y is better or at least equal than the one given by x". One proves that this information order induces a To topology (Scott's topology) which is more suitable for a computation theory than that of Hausdorff introduced by Moore [MOO 66]. This approach has the advantage of being both of constructive logic and computational. Each real number is approximated by intervals with rational bounds, named information intervals of the Information Space II(Q), eliminating the infinite regression found in the classical approach. One can say that every real a is the supreme of a chain of rational intervals. Then, the real numbers are the total elements of a continuous domain, named the Domain of the Partial Real Intervals, whose basis is the information space II (Q). Each continuous function in the Real Analysis is the limit of sequences of continuous functions among any elements which belong to the base of the domain. In these same domains, each continuous function is monotonic on the base and it is completely represented by finite terms. It is introduced a quasi-metric that leads to a compatible topology and supplies the quantitative properties. An arithmetic, some approximation criteria, the concepts of mean point interval, absolute value interval and width interval are developed and set operations are added. The ideas of interval functions and the inclusion of ranges of functions are also presented, and a continuous natural interval extension is obtained.
|
7 |
Domínios intervalares da matemática computacionalDimuro, Gracaliz Pereira January 1991 (has links)
Fundamentada a importância da utilização da Teoria dos Intervalos em computação científica, é realizada uma revisão da Teoria Clássica dos Intervalos, com críticas sobre as incompatibilidades encontradas como motivos de diversas dificuldades para desenvolvimento da própria teoria e, consequentemente, das Técnicas Intervalares. É desenvolvida uma nova abordagem para a Teoria dos Intervalos de acordo com a Teoria dos Domínios e a proposta de [ACI 89], obtendo-se os Domínios Intervalares da Matemática Computacional. Introduz-se uma topologia (Topologia de Scott) compatível com a idéia de aproximação, gerando uma ordem de informação, isto é, para quaisquer intervalos x e y, diz-se que se x -c y , então y fornece mais (no mínimo tanto quanto) informação, sobre um real r, do que x. Prova-se que esta ordem de informação induz uma topologia To (topologia de Scott) , que é mais adequada para uma teoria computacional que a topologia da Hausdorff introduzida por Moore [MOO 66]. Cada número real r é aproximado por intervalos de extremos racionais, os intervalos de informação, que constituem o espaço de informação II(Q), superando assim a regressão infinita da abordagem clássica. Pode-se dizer que todo real r é o supremo de uma cadeia de intervalos com extremos racionais “encaixados”. Assim, os reais são os elementos totais de um domínio contínuo, chamado de Domínio dos Intervalos Reais Parciais, cuja base é o espaço de informação II (Q). Cada função contínua da Análise Real é o limite de sequências de funções contínuas entre elementos da base do domínio. Toda função contínua nestes domínios constitui uma função monotônica na base e é completamente representada em termos finitos. É introduzida uma quasi-métrica que induz uma topologia compatível com esta abordagem e provê as propriedades quantitativas, além de possibilitar a utilização da noção de sequências, limites etc, sem que se precise recorrer a conceitos mais complexos. Desenvolvem-se uma aritmética, critérios de aproximação e os conceito de intervalo ponto médio, intervalo valor absoluto e intervalo diâmetro, conceitos compatíveis com esta abordagem. São acrescentadas as operações de união, interseção e as unárias. Apresenta-se um amplo estudo sobre a função intervalar e a inclusão de imagens de funções, com ênfase na obtenção de uma extensão intervalar natural contínua. Esta é uma abordagem de lógica construtiva e computacional. / The importance of Interval Theory for scientific computation is emphasized. A review of the Classical Theory is macle, including a discussion about some incompatibities that cause problems in developing interval algorithms. A new approach to the Interval Theory is developed in the light of the Theory of Domains and according to the ideas by Acióly [ACI 89], getting the Interval Domains of Computational Mathematics. It is introduced a topology (Scott Topology), which is associated with the idea of approximation, generating an information order, that is, for any intervals x and y one says that if x -c y, then "the information given by y is better or at least equal than the one given by x". One proves that this information order induces a To topology (Scott's topology) which is more suitable for a computation theory than that of Hausdorff introduced by Moore [MOO 66]. This approach has the advantage of being both of constructive logic and computational. Each real number is approximated by intervals with rational bounds, named information intervals of the Information Space II(Q), eliminating the infinite regression found in the classical approach. One can say that every real a is the supreme of a chain of rational intervals. Then, the real numbers are the total elements of a continuous domain, named the Domain of the Partial Real Intervals, whose basis is the information space II (Q). Each continuous function in the Real Analysis is the limit of sequences of continuous functions among any elements which belong to the base of the domain. In these same domains, each continuous function is monotonic on the base and it is completely represented by finite terms. It is introduced a quasi-metric that leads to a compatible topology and supplies the quantitative properties. An arithmetic, some approximation criteria, the concepts of mean point interval, absolute value interval and width interval are developed and set operations are added. The ideas of interval functions and the inclusion of ranges of functions are also presented, and a continuous natural interval extension is obtained.
|
Page generated in 0.0659 seconds