• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 134
  • 44
  • 28
  • 16
  • 8
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 265
  • 152
  • 72
  • 64
  • 43
  • 41
  • 38
  • 26
  • 26
  • 25
  • 22
  • 22
  • 20
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Hybridation et goulots d'étranglements induits par l'activité humaine : génétique des populations, morphométrie et parasitologie appliquées au tilapia envahi et envahissant Oreochromis mossambicus (Teleostei, Cichlidae) / Human-induced hybridization and population bottleneck : population genetics, morphometrics and parasitology applied to the invaded and invasive tilapia Oreochromis mossambicus (Teleostei, Cichlidae)

Firmat, Cyril 04 November 2011 (has links)
Les invasions biologiques sont reconnues comme un facteur évolutif important sur une échelle de temps courte. Elles affectent notamment la structure génétique des populations, les patrons d’évolution phénotypique et la richesse des faunes de parasites associées aux populations envahissantes. Cette étude se propose de quantifier les conséquences d’une invasion biologique suivant ces trois niveaux (génétique, phénotypique et parasitologique) en prenant pour exemple le cas du tilapia du Mozambique Oreochromis mossambicus. Ce cichlidé africain présente un statut remarquable en biologie de la conservation puisqu’il est à la fois (i) l’une des espèces les plus envahissantes au monde car dispersée à l’échelle globale au cours du XXème siècle et (ii) une espèce « quasi-menacée » (UICN) sur son aire native (partie du sud-est de l’Afrique) du fait de son hybridation massive avec d’autres Oreochromis sp. introduits. La démarche générale employée ici est de décrire l’histoire récente des populations à l’aide de marqueurs nucléaires (AFLP) et des séquences de l’ADN mitochondrial (ADNmt), puis de mettre en relation ces résultats génétiques avec la diversité morphologique et la parasitologie des populations. Deux systèmes différents ont été étudiés : Au sein de l’aire native, l’étude se focalise sur le Limpopo inférieur et le sous-bassin de la Changane (Mozambique). Des patrons d’introgression incluant trois espèces en présence sont détectés, mais les hybrides sont peu fréquents et leur expansion limitée. Ces résultats sont de plutôt bonne augure pour la conservation d’O. mossambicus et ils permettent d’identifier deux zones de conservation prioritaires. L’étude des parasites indique une plus grande diversité parasitaire mais de faibles prévalences dans les sites de moindre valeur en conservation, ce qui pourrait favoriser le succès des espèces introduites et de leurs hybrides. Parmi les territoires envahis, les AFLP et l’ADNmt soutiennent une homogénéité générale et une diversité génétique faible, qui sont interprétées comme le résultat d’un fort goulot d’étranglement précédant l’expansion à l’échelle mondiale. Une structure des populations en lien avec la géographie à large échelle (Nouvelle-Calédonie, Guadeloupe, Jamaïque) est cependant détectée. La variation de la forme du corps est également structurée à large échelle géographique, ce en dépit des fortes variations environnementales enregistrées à l’échelle locale. Cela suggère un effet des contraintes génétiques sur la diversification morphologique contemporaine. L’absence de parasites monogènes sur les populations introduites en Nouvelle-Calédonie peut être mise en relation avec un évènement fondateur, et est proposé comme l’un des facteurs ayant pu favoriser le succès de l’espèce. En conclusion, une faible diversité génétique ne contraint vraisemblablement pas un potentiel envahissant élevé et une diversification rapide chez les tilapias. / Biological invasions are recognized as a significant evolutionary factor over short time scales. In particular, their effect is well recorded on the genetic structure of populations, the patterns of phenotypic evolution and the richness of parasite fauna associated to invasive populations. This study aims at quantifying the consequences of a biological invasion according to these three levels (genetical, phenotypical and parasitological) taking as example the Mozambique tilapia Oreochromis mossambicus. This African cichlid is characterized by an unusual conservation status since it is both (i) ranked among the world’s worst invasive species due to its global dispersion during the 20th century and (ii) sorted as “near-threatened” (IUCN) over its native range (a part of south-east Africa) because of massive hybridization with alien introduced Oreochromis species. The approach used in this study imply to describe the recent history of populations using nuclear (AFLP) and mitochondrial DNA (mtDNA) markers, and then to compare this genetic background to results describing the morphological and parasitological diversity of populations. Two different biological systems were studied: 1) Within the native range, the study focuses on the Lower Limpopo and the Changane sub-drainage (Mozambique). Introgression patterns involving the three co-occurring species were detected, but the frequency of hybrid is low and their geographic expansion is limited. These results provided rather good auspices for the conservation of O. mossambicus, and they allowed to identify two zones of high conservation priorities. The parasitological survey reveals high parasite richness and low prevalences among sites of low conservation values. This last pattern could favour the success of alien introduced species and their hybrids. 2) Among the invasive range of O. mossambicus, both AFLP and mtDNA support a strong genetic homogeneity and a low genetic diversity, a pattern interpreted as resulting from a strong population bottleneck preceding the events of global dispersion. A pattern of population structure related to large scale geography (New Caledonia, Guadeloupe, Jamaica) is nevertheless detected. Body shape variation is also primarily structured at large geographical scale, suggesting a role for genetic constrains on contemporary morphological diversification. The total absence of monogenean parasites in the populations of New Caledonia could result from a founding event and is suggested as a potential factor that could have favoured the O. mossambicus’ success. In conclusion, a low genetic diversity does not likely constraint a strong invasive potential and a rapid phenotypic diversification in tilapias.
232

Trophic niche and detection of the invasive signal crayfish (Pacifastacus leniusculus) in Scotland

Harper, Kirsten Jennifer January 2015 (has links)
Aquatic invasive species are a major threat to native freshwater biodiversity. The North American signal crayfish Pacifastacus leniusculus was introduced to Great Britain during the 1970s and is now widely distributed throughout England, Wales and Scotland. First recorded in Scotland in 1995, P. leniusculus is now established at more than twenty sites. The only other introduced crayfish species present in Scotland is the white-clawed crayfish Austropotamobius pallipes. A. pallipes is restricted to only two locations in Scotland, Loch Croispol and Whitemoss Reservoir. P. leniusculus negatively impacts macrophytes, invertebrates and fish though ecological and physical processes. Additionally, P. leniusculus has displaced A. pallipes throughout much of its native range within Great Britain due to competition and disease. Consequently, the two A. pallipes populations in Scotland have a high conservation value. This PhD study aimed to improve understanding of P. leniusculus invasion success by examining trophic dynamics and to develop methodologies that could improve the detection and control of P. leniusculus populations in Scotland. Stable isotope analysis was used to determine the diet composition, trophic position and whether an ontogenetic dietary shift occurs in the Loch Ken population of P. leniusculus. Bayesian mixing models indicated that P. leniusculus in Loch Ken do exhibit an ontogenetic dietary shift. Additionally, individuals of all sizes occupied the trophic position of a predator in Loch Ken suggesting that invertebrates and fish constitute an important component of P. leniusculus diet. Stable isotope analysis was used once again to compare the isotopic niche width and diet composition of P. leniusculus populations from Loch Ken and A. pallipes populations from Loch Croispol and Whitemoss Reservoir. At the species level, A. pallipes exhibited a larger niche width than that of P. leniusculus. At the population level, the isotopic signatures of the A. pallipes populations were considerably different from each other suggesting an overestimation of A. pallipes’ niche width at species level. Results showed no dietary overlap between species and Bayesian mixing models suggested P. leniusculus and A. pallipes were consuming different resources, indicating there would be no direct competition for food resources if they were to co-occur. A plus-maze study was used to determine if P. leniusculus exhibited a preference for one of four food attractants (Oncorhynchus mykiss, P. leniusculus, beef or vegetation), which could be used to improve trapping efficiency. In the maze system, P. leniusculus exhibited no preference for any food attractant presented. This would suggest that either the maze was not a good model or food attractants would not improve trapping efficiency of P. leniusculus. Additionally, a comparative investigation into the use of gill nets as a method to control P. leniusculus was conducted. Results showed that the net type and the presence of fish entangled in the net influenced the number of P. leniusculus caught. Finally, environmental DNA (eDNA) was used and evaluated for detection of P. leniusculus. A robust quantitative Polymerase Chain Reaction (qPCR) assay and DNA extraction protocol were developed. Using the developed qPCR assay, P. leniusculus eDNA was detected in controlled aquaria conditions but not in environmental water samples collected from the field. Furthermore, the quantities of P. leniusculus eDNA declined in aquaria conditions while individuals were still present suggesting the mechanisms for eDNA release by P. leniusculus are complex. Stable isotope analysis indicates that P. leniusculus exhibit an ontogenetic dietary shift, and in each life stage, P. leniusculus function as an omnivore but occupy the trophic position of a predator. Niche width analysis revealed that the diet of P. leniusculus was less general than that observed in A. pallipes and thus diet of P. leniusculus may not be responsible for invasive success. Food attractants will not enhance trapping efficiency but nets may present a potential new method to control P. leniusculus. Similarly, eDNA presents a promising new method for rapid detection of P. leniusculus. It will not be possible to eradicate P. leniusculus in Scotland but the findings of this PhD may help prevent establishment of new populations. These results should be incorporated into future management strategies for P. leniusculus populations in Scotland and may have broader applications in Great Britain and Europe.
233

Alien ant invasion on Christmas Island, Indian Ocean : the role of ant-scale associations in the dynamics of supercolonies of the yellow crazy ant, Anoplolepis gracilipes

Abbott, Kirsten L January 2004 (has links)
Abstract not available
234

Modelling the spread of invasive species across heterogeneous landscapes

Pitt, Joel Peter William January 2008 (has links)
Invasive species are well known to cause millions of dollars of economic as well as ecological damage around the world. New Zealand, as an island nation, is fortunate because it has the opportunity to regulate and monitor travel and trade to prevent the establishment of new species. Nevertheless foreign species continue to arrive at the borders and continue to cross them, thus requiring some form of management. The control and management of a new incursion of an invasive species would clearly benefit from predictive tools that might indicate where and how quickly the species is likely to spread after it has established. During the process of spread an invasing species must interact with a complex and heterogeneous environment and the suitability of the habitat in a region determines whether it survives. Many dispersal models ignore such interactions and while they may be interesting theoretical models, they are less useful for practical management of invasive species. The purpose of this study was to create and investigate the behaviour of a spatially explicit model that simulates insect dispersal over realistic landscapes. The spatially explicit model (Modular Dispersal in GIS, MDiG) was designed as am open-source modular framework for dispersal simulation integrated within a GIS. The model modules were designed to model an an approximation of local diffusion, long distance dispersal, growth, and chance population mortality based on the underlying suitability of a region for establishment of a viable population. The spatially explicit model has at its core a dispersal module to simulate long distance dispersal based an underlying probability distribution of dispersal events. This study illustrates how to extract the frequency of long distance dispersal events, as well as their distance, from time stamped occurrence data, to fit a Cauchy probability distribution that comprises the dispersal module. An investigation of the long distance dispersal modules behaviour showed that, in general, it generated predictions of the rate of spread consistent with those of analytical partial differential and integrodifference equations. However, there were some differences. Spread rate was found to be mainly dependent on the measurement technique used to determine the invasion front or boundary, therefore an alternative method to determine the boundary of a population for fat-tailed dispersal kernels is presented. The method is based on the point of greatest change in population density. While previously it was thought that number of foci rather than foci size was more important in stratified dispersal and that finer resolution simulations would spread more quickly, simulations in this study showed that there is an optimal resolution for higher spread rates and rate of area increase. Additionally, much research has suggested that the observed lag at the beginning of an invasion may be due to lack of suitable habitats or low probability of individuals striking the right combination of conditions in a highly heterogeneous environment. This study shows an alternative explanation may simply be fewer dispersal event sources. A case study is described that involved the application of the spatially explicit dispersal model to Argentine ant spread to recreate the invasion history of that species in New Zealand. Argentine ant is a global invasive pest which arrived in New Zealand in 1990 and has since spread to both main islands of New Zealand, primarily through human mediated dispersal. The spatially explicit simulation model and its prediction ability were compared to that of a uniform spread model based on equivalent total area covered. While the uniform spread model gave more accurate predictions of observed occurrences early in the invasion process it was less effective as the invasion progressed. The spatially explicit model predicted areas of high probability of establishment (hot spots) consistent with where populations have been found but accuracy varied between 40-70% depending on the year of the simulation and parameter selection. While the uniform spread model sometimes slightly outperformed or was equivalent to the simulation with respect to accuracy early in the invasion process, it did not show the relative risk of establishment and was less effective later in the invasion when stochastic random events generated by the simulation model were averaged to represent trends in the pattern of spread. Additionally, probabilistic predictions as generated by the spatially explicit model allow the uncertainty of prediction to be characterised and communicated. This thesis demonstrates that heterogeneous spread models can give more insight and detail than one dimensional or homogeneous spread models but that both can be useful at different stages of the invasion process. The importance of compiling appropriate data on dispersal and habitat suitability to aid invasion management has been highlighted. Additionally, a number of important hypotheses that need to be addressed to increase understanding of how species interact with the complex environment, have been identified and discussed.
235

Invasion success and impacts of Hieracium lepidulum in a New Zealand tussock grassland and montane forest

Meffin, Ross January 2010 (has links)
Invasive species represent a major concern; they can result in serious ecological and economic losses and are recognised as one of the most serious threats to global species diversity. Plant invasions are of particular concern in New Zealand, which has high proportions of both naturalised and endemic plant species. In this thesis I focussed on the invasive plant Hieracium lepidulum, an exotic weed introduced from Europe to New Zealand prior to 1941. It is invasive in a variety of habitats in the South Island, where it has steadily increased in distribution and abundance over the last 50 years, and is thought to have detrimental impacts on native plant communities. I investigated factors influencing its invasion success and tested for impacts on native plant communities, making extensive use of existing plots into which H. lepidulum was experimentally introduced in 2003. I examined how community richness, turnover, resource availability and propagule pressure of the invader interacted to determine the invasion success of H. lepidulum. Results differed markedly above and below treeline. Above treeline, plots with higher richness and turnover were more invaded; below treeline, plots with higher available light were more invaded. In both habitats, these findings were modified by the influence of propagule pressure; at low propagule pressure, site characteristics were non-significant in explaining invasion success, while at higher propagule pressure these effects became significant. To test for impacts resulting in altered community composition and structure, I looked for changes in community richness, diversity and evenness subsequent to H. lepidulum introduction. As impacts may be more apparent at fine spatial scales, I made measurements at a 5 x 5 cm cell scale in addition to the established 30 x 30 cm plot scale. Plot species richness increased from 2003 to 2009 and a component of this increase was associated with H. lepidulum density. Other relationships between the plant community and H. lepidulum were generally non-significant. Results showed that H. lepidulum has had no negative effects on community richness, evenness or diversity. Despite being able to opportunistically colonise grassland sites with high turnover, and forest sites subject to canopy disturbance, dependant on propagule pressure, it appears H. lepidulum has not impacted community composition or structure.
236

Patterns and processes of exotic plant invasions in Riding Mountain National Park, Manitoba, Canada

Otfinowski, Rafael 10 September 2008 (has links)
Invasive exotic species threaten the biodiversity and function of native ecosystems. Existing models, attempting to predict and control successful invaders, often emphasize isolated stages of in their life history and fail to formalize interactions between exotic species and recipient environments. In order to elucidate key mechanisms in the success of select invaders, I investigated the role of dispersal, establishment, proliferation, and persistence in their threat to natural areas. Focusing on Riding Mountain National Park, Manitoba, Canada, I integrated the native climatic range and biological traits of 251 exotic vascular plants reported inside and outside the park. Based on their climatic range in Europe, 155 among 174 exotic plant species absent from the Park were predicted to establish within its boundaries; among these, 40 clonal perennials were considered the highest threat to the Park’s biodiversity. Focusing on smooth brome (Bromus inermis Leyss.), a Eurasian perennial, threatening the structure and function of native prairies throughout the Great Plains, I extended my research to investigate the role of dispersal, establishment, proliferation, and persistence in characterizing its threat to the endemic diversity of northern fescue prairies, protected within Riding Mountain National Park. Patterns of smooth brome invasions were contingent on the type of propagules dispersed. The shallow dispersal gradient of individual florets combined with the steeper gradient of panicles and spikelets suggested that smooth brome is capable of simultaneously invading along dense fronts as well as by establishing isolated foci. While low correlations between the number of dispersed seeds and their recruitment suggested post-dispersal transport, seedling establishment remained contingent on prairie diversity. Seedling biomass increased with declining plant diversity, however, its impact depended on the availability of soil nitrogen. As a result, disturbed areas, preserving the root function of native plants, resisted smooth brome establishment. Even though low nitrogen contributed to a decline in seedling biomass, physiological integration between ramets facilitated their vegetative proliferation in low resource environments. Despite its rapid establishment and proliferation, smooth brome productivity declined at the center of invading clones. Although field and greenhouse observations failed to implicate soilborne pathogens, reasons for the observed decline remain unresolved. My research demonstrates that while Riding Mountain National Park and other natural areas in western Canada will continue to be impacted by exotic plants, integrating key stages in their life history provides an important conceptual framework in predicting their threat to natural areas and prioritizing management. / October 2008
237

Plant-herbivore interactions : consequences for the structure of freshwater communities and exotic plant invasions

Parker, John D. 12 1900 (has links)
Invasive exotic species threaten native biodiversity, alter ecosystem structure and function, and annually cost over $100 billion in the US alone. Determining the ecological traits and interactions that affect invasion success are thus critical for predicting, preventing, and mitigating the negative effects of biological invasions. Native herbivores are widely assumed to facilitate exotic plant invasions by preferentially consuming native plants and avoiding exotic plants. Here, I use freshwater plant communities scattered broadly across the Southeastern U.S. to show that herbivory is an important force driving the ecology and evolution of freshwater systems. However, native consumers often preferentially consume rather than avoid exotic over native plants. Analyses of 3 terrestrial datasets showed similar patterns, with native herbivores generally preferring exotic plants. Thus, exotic plants appear defensively nave against these evolutionarily novel consumers, and exotic plants may escape their coevolved, specialist herbivores only to be preferentially consumed by the native generalist herbivores in their new ranges. In further support of this hypothesis, a meta-analysis of 71 manipulative field studies including over 100 exotic plant species and 400 native plant species from terrestrial, aquatic, and marine systems revealed that native herbivores strongly suppressed exotic plants, while exotic herbivores enhanced the abundance and species richness of exotic plants by suppressing native plants. Both outcomes are consistent with the hypothesis that prey are susceptible to evolutionarily novel consumers. Thus, native herbivores provide biotic resistance to plant invasions, but the widespread replacement of native with exotic herbivores eliminates this ecosystem service, facilitates plant invasions, and triggers an invasional meltdown. Consequently, rather than thriving because they escape their co-evolved specialist herbivores, exotic plants may thrive because their co-evolved generalist herbivores have stronger negative effects on evolutionarily nave, native plants.
238

Examining brook trout invasion into bull trout streams of the Canadian Rockies

Warnock, Will G January 2012 (has links)
Brook trout invasion into bull trout streams is variable, and likely influenced by a suite of biotic and abiotic factors. Field observations revealed that brook trout dominated the fish community over bull trout in warmer sites that had undercut banks; in contrast, bull trout dominated in colder sites that had a high amount of large substrate cover, and where alternate non-native species were present. Laboratory studies of competition between the two species revealed that bull trout use a scramble foraging tactic, whereas brook trout use a territorial tactic. Bull trout outcompeted brook trout when fish density was low and habitat complexity was high, as this scenario reduced the effectiveness of the aggressive territorial foraging strategy of brook trout. Bull trout from a migratory population competed more successfully against brook trout and had higher rates of oxygen consumption than those from a resident population. This combined field-lab study points to some of the abiotic and biotic factors that affect competition between the two species, and may influence the outcome of brook trout invasion into bull trout streams. / xiv, 184 leaves : ill. ; 29 cm
239

Patterns and processes of exotic plant invasions in Riding Mountain National Park, Manitoba, Canada

Otfinowski, Rafael 10 September 2008 (has links)
Invasive exotic species threaten the biodiversity and function of native ecosystems. Existing models, attempting to predict and control successful invaders, often emphasize isolated stages of in their life history and fail to formalize interactions between exotic species and recipient environments. In order to elucidate key mechanisms in the success of select invaders, I investigated the role of dispersal, establishment, proliferation, and persistence in their threat to natural areas. Focusing on Riding Mountain National Park, Manitoba, Canada, I integrated the native climatic range and biological traits of 251 exotic vascular plants reported inside and outside the park. Based on their climatic range in Europe, 155 among 174 exotic plant species absent from the Park were predicted to establish within its boundaries; among these, 40 clonal perennials were considered the highest threat to the Park’s biodiversity. Focusing on smooth brome (Bromus inermis Leyss.), a Eurasian perennial, threatening the structure and function of native prairies throughout the Great Plains, I extended my research to investigate the role of dispersal, establishment, proliferation, and persistence in characterizing its threat to the endemic diversity of northern fescue prairies, protected within Riding Mountain National Park. Patterns of smooth brome invasions were contingent on the type of propagules dispersed. The shallow dispersal gradient of individual florets combined with the steeper gradient of panicles and spikelets suggested that smooth brome is capable of simultaneously invading along dense fronts as well as by establishing isolated foci. While low correlations between the number of dispersed seeds and their recruitment suggested post-dispersal transport, seedling establishment remained contingent on prairie diversity. Seedling biomass increased with declining plant diversity, however, its impact depended on the availability of soil nitrogen. As a result, disturbed areas, preserving the root function of native plants, resisted smooth brome establishment. Even though low nitrogen contributed to a decline in seedling biomass, physiological integration between ramets facilitated their vegetative proliferation in low resource environments. Despite its rapid establishment and proliferation, smooth brome productivity declined at the center of invading clones. Although field and greenhouse observations failed to implicate soilborne pathogens, reasons for the observed decline remain unresolved. My research demonstrates that while Riding Mountain National Park and other natural areas in western Canada will continue to be impacted by exotic plants, integrating key stages in their life history provides an important conceptual framework in predicting their threat to natural areas and prioritizing management.
240

Patterns and processes of exotic plant invasions in Riding Mountain National Park, Manitoba, Canada

Otfinowski, Rafael 10 September 2008 (has links)
Invasive exotic species threaten the biodiversity and function of native ecosystems. Existing models, attempting to predict and control successful invaders, often emphasize isolated stages of in their life history and fail to formalize interactions between exotic species and recipient environments. In order to elucidate key mechanisms in the success of select invaders, I investigated the role of dispersal, establishment, proliferation, and persistence in their threat to natural areas. Focusing on Riding Mountain National Park, Manitoba, Canada, I integrated the native climatic range and biological traits of 251 exotic vascular plants reported inside and outside the park. Based on their climatic range in Europe, 155 among 174 exotic plant species absent from the Park were predicted to establish within its boundaries; among these, 40 clonal perennials were considered the highest threat to the Park’s biodiversity. Focusing on smooth brome (Bromus inermis Leyss.), a Eurasian perennial, threatening the structure and function of native prairies throughout the Great Plains, I extended my research to investigate the role of dispersal, establishment, proliferation, and persistence in characterizing its threat to the endemic diversity of northern fescue prairies, protected within Riding Mountain National Park. Patterns of smooth brome invasions were contingent on the type of propagules dispersed. The shallow dispersal gradient of individual florets combined with the steeper gradient of panicles and spikelets suggested that smooth brome is capable of simultaneously invading along dense fronts as well as by establishing isolated foci. While low correlations between the number of dispersed seeds and their recruitment suggested post-dispersal transport, seedling establishment remained contingent on prairie diversity. Seedling biomass increased with declining plant diversity, however, its impact depended on the availability of soil nitrogen. As a result, disturbed areas, preserving the root function of native plants, resisted smooth brome establishment. Even though low nitrogen contributed to a decline in seedling biomass, physiological integration between ramets facilitated their vegetative proliferation in low resource environments. Despite its rapid establishment and proliferation, smooth brome productivity declined at the center of invading clones. Although field and greenhouse observations failed to implicate soilborne pathogens, reasons for the observed decline remain unresolved. My research demonstrates that while Riding Mountain National Park and other natural areas in western Canada will continue to be impacted by exotic plants, integrating key stages in their life history provides an important conceptual framework in predicting their threat to natural areas and prioritizing management.

Page generated in 0.0713 seconds