• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 44
  • 44
  • 15
  • 14
  • 11
  • 11
  • 8
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Molecular Characterization of Endophytic Fungal Colonizers of Plant Roots: A Comparison between the Aggressive Invasives Vincetoxicum rossicum, Alliaria petiolata, and Local Native Plant Species

Bongard, Cynthia Lee 02 August 2013 (has links)
Soil fungi play an important role in regulating plant communities as well as above and below ground ecosystem-level processes; conversely, plant communities may also affect the structure and functionality of these root-associating fungi. Alteration of these fungal communities due to non-native plant invasion has the potential to disrupt biogeochemical cycling, soil structure, and plant growth. Both beneficial symbionts such as arbuscular mycorrhizal fungi (AMF) as well as the total fungal community are potentially altered by aggressive invasive plant species in such a way as to disrupt existing native endophytic fungal communities in the soil post invasion. This disruption could provide a pathway for invasion and suggests the importance of investigating plant-fungal associations in invaded ranges. I used molecular techniques to characterize the fungal communities colonizing Vincetoxicum rossicum or Dog-strangling vine (DSV) and Alliaria petiolata or garlic mustard, both European natives that are currently well established in Eastern North America, as well as native plants that are commonly found persisting in the presence of dense colonies of DSV, as well as those same natives growing separately from DSV. Fungi colonizing different plant groups were analyzed using primers that target the internal transcribed spacer region of the ribosomal operon in order to amplify total fungal species (TF), as well as primers designed to exclusively amplify AMF using small subunit rRNA sequences. Significant differences were observed in the diversity of both the TF and the AMF communities colonizing native plants in the invaded sites relative to the uninvaded sites. Sequencing work indicated that DSV forms associations with a broad array of fungal partners relative to proximal native plants, suggesting the likelihood of it being a fungal generalist. As well, DSV was found to associate with described opportunistic AMF such as Glomus intraradices, G. caledonium, G. fasciculatum and G. mosseae, while natives growing within DSV patches were not. Finally, garlic mustard was found to have the dominant effect where DSV and garlic mustard were co-occurring. These findings support the ongoing investigations into plant invasion processes, and therefore contribute to the development of effective strategies for invasive species management as well as site restoration techniques.
12

Applications of DNA-barcoding in the identification and understanding of grass invasions in Southern Africa

Brown, Carly January 2014 (has links)
Magister Scientiae (Biodiversity and Conservation Biology) / The spread of invasive species is one of the greatest threats to global biodiversity. Alien plant invasions also have serious economic impact in terms of the delivery of ecosystem goods and services. Studies of biological invasions in southern Africa have tended to overlook grasses (family Poaceae), although there are many naturalised species in the region. Only a few of these, all perennials, have been officially categorised as invasive in South Africa, but in the winter rainfall region of the Western Cape, grass invasion especially by Mediterranean European annuals have also been noted. These grasses can be difficult to identify. DNA barcoding has been suggested as an alternative method of identifying grasses in the hope of facilitating identification of existing invaders and preventing future invasions. In this study a list of all known naturalised grasses in South Africa was compiled, and a DNA barcoding reference database was assembled for these naturalised grass species as well as for native southern African grass species. The two official markers for plant DNA barcoding (rbcLa + matK) were used in barcoding and phylogenetic analyses, both individually and in combination. The barcoding data was assessed for identification efficacy using three distance-based metrics and one tree-based metric in the R package SPIDER, both including and excluding singleton data. This study lists 128 naturalised grass species and subspecies found in South Africa. In the DNA barcoding analyses, matK was found to perform better as a single barcode than rbcLa, with identification success rates of up to 84% for matK and 76% for rbcLa, using the most successful metric which was the Nearest Neighbour criterion for both of these markers in the data sets without singletons. The combined rbcLa + matK data set performed better than either of the two individual markers, with identification success rates of up to 91% in the data without singletons, with the most successful metric again being the Nearest Neighbour criterion. The combined rbcLa + matK data would therefore be the recommended DNA barcode for southern African grasses of the three data sets tested, based on the results of this study. Phylogenetic trees were constructed with the DNA barcoding data using Bayesian Inference (BI) and Maximum Parsimony (MP) to assess the usefulness of the data in phylogenetic studies and to confirm the efficacy of this grass DNA barcoding data when using tree-based methods of identification. Both the matK and combined datasets resolved all of the grass tribes represented in this study as monophyletic, but the rbcLa data did not.
13

Effects of Targeted Grazing and Prescribed Burning on Fire Behavior and Community Dynamics of a Cheatgrass (Bromus tectorum) Dominated Landscape

Diamond, Joel M 01 May 2009 (has links)
Studies were conducted to determine the effectiveness of using targeted grazing and prescribed burning as tools to reduce fire hazards and cheatgrass (Bromus tectorum) dominance on rangelands in the northern Great Basin. A field study, with four grazing-burning treatments (graze and no-burn, graze and burn, no-graze and burn, and no-graze and no-burn), was conducted on a B. tectorum-dominated site near McDermitt, Nevada from 2005-2007. Cattle removed 80-90% of standing biomass in grazed plots in May 2005 and 2006 when B. tectorum was in the boot (phenological) stage. Grazed and ungrazed plots were burned in October 2005 and 2006. Targeted grazing in May 2005 reduced B. tectorum biomass and cover, which resulted in reductions in flame length and rate of spread when plots were burned in October 2005. When grazing treatments were repeated on the same plots in May 2006, B. tectorum biomass and cover were reduced to the point that fires did not carry in grazed plots in October 2006. Fuel characteristics of the October 2005 burns were used to parameterize dry climate grass models in BehavePlus 3.0, and simulation modeling indicated that grazing in spring (May) would reduce the potential for catastrophic fires during the peak fire season (July-August). The graze-and-burn treatment was more effective than grazing alone (graze and no-burn treatment) and burning alone (no-graze and burn treatment) in reducing B. tectorum cover, biomass, plant density, and seed density, and in shifting species composition from a community dominated by B. tectorum to one composed of a suite of species [including tumble mustard (Sisymbrium altissimum), clasping pepperweed (Lepidium perfoliatum), and Sandberg bluegrass (Poa secunda)], with B. tectorum as a component rather than a dominant. A simulation study was designed to compare the cost-effectiveness of using cattle grazing and herbicide to create fuel breaks on B. tectorum-dominated landscapes in the northern Great Basin. Fuel characteristics from this targeted grazing study and from a Plateau® (Imazapic) herbicide study near Kuna, Idaho were used to parameterize fire behavior models and simulate flame lengths and rates of spread for the two fuel reduction treatments under peak fire conditions using BEHAVE Plus. Targeted grazing and Plateau® had similar reductions in flame length and rate of spread. Cattle grazing had high fixed costs (primarily fencing), and was more cost-effective than applications of Plateau® under five fuel loading scenarios except for three consecutive years of low fuel loads.
14

Goatsrue (Galega officinalis) Seed Biology, Control, and Toxicity

Oldham, Michelle 01 May 2009 (has links)
Goatsrue is an introduced perennial plant that has proven to have great invasive potential, leading to its classification as a noxious weed in many states and at the federal level. This research focused on seed biology, herbicide control, and toxic dynamics of goatsrue. Physical dormancy of mature goatsrue seed was tested through scarification using sulfuric acid with exposures of up to 60 minutes resulting in 100% germination. Comparison of dormancy for 26-year-old and 6-month-old goatsrue seed indicated aged seeds had reduced dormancy levels compared to newly harvested seeds, but had similar viability. Goatsrue seedling emergence was inversely related to burial depth; emergence was greatest at 0.5 cm soil depth (93%), and no emergence occurred from 12 and 14 cm. Goatsrue seed density ranged from 14,832 seeds m-2 to 74,609 seeds m-2 in the soil seed bank of five goatsrue-infested areas. Viability and dormancy of seeds recovered from the soil seed bank survey ranged from 91 to 100% and 80 to 93%, respectively. Goatsrue was most sensitive to the ALS inhibitor herbicides chlorsulfuron and imazapyr in greenhouse trials. Field studies showed that plots treated with dicamba, chlorsulfuron, metsulfuron, aminopyralid, triclopyr, and picloram provided at least 93% control of goatsrue 12 months after treatment at two field sites and increased perennial grass cover at one site. All treatments at one site decreased seedling goatsrue cover 11 months after treatment. The concentration and pools (dry weight x concentration) of the toxin galegine, found in goatsrue, vary over plant tissues and phenological growth stages. Galegine concentration is significantly different among plant tissues; reproductive tissues have the highest levels of galegine (7 mg/g), followed by leaf (4 mg/g), and then stem (1 mg/g) tissues. Galegine pools or the total amount of galegine per stalk was lowest at the vegetative growth stage and increased until reaching a maximum at the immature pod stage, but decreased nearly in half at the mature seed stage. Average galegine concentration also peaked at the immature pod stage and decreased by half at the mature seed stage. Thus, goatsrue is most toxic in its phenological development at the immature pod stage.
15

Potential Spread of Hydrilla verticillata in the Great Lakes Basin

Hebebrand, Kristen Marie 28 August 2019 (has links)
No description available.
16

Impacts of nutrient loads on the invasion potential of Butomus umbellatus L. on Ottawa National Wildlife Refuge diked wetlands

Forstater, Erica L. 10 August 2020 (has links)
No description available.
17

Transgenerational Effects of Kin Recognition in Plants: Soil Conditioning by an Invasive Plant

Wu, Albert January 2021 (has links)
Monospecific stands of invasive plant species are found in nearly all known ecosystems and can cause permanent lasting ecosystem damage via deleterious effects in soils. These deleterious soil effects are a proposed mechanism which drives invasions by plants and are known to be influenced by kin recognition in plants. Uncovering whether invasive species utilize kin recognition to facilitate their own ecological persistence via soil conditioning will allow us to better understand the drivers of plant invasions and help combat them. In my master’s thesis, I examined the role of kin recognition and kin selection on soil effects. I grew groups of Potentilla recta in groups of maternal half-sibs or strangers to condition the soil. I then grew a second generation of plants in that conditioned soil to determine the impacts of soil conditioning effects on plant performance. I found soil conditioning by groups of plants affected the performance of a second generation of plants based on the relatedness of the conditioning plants. Further, these soil effects of conditioning selectively benefit future individuals of a subsequent generation based on their relatedness. Moreover, these soil effects only existed in soil that has not been sterilized, indicating these soil effects depended on soil microbes. / Thesis / Master of Biological Science (MBioSci) / Invasive plants form dense stands of same-species individuals that can cause lasting deleterious effects to the soil. These deleterious soil effects have been proposed as a mechanism driving plant invasions. In my master’s thesis, I examined the role of kin recognition and kin selection on soil effects. I first grew groups of Potentilla recta in groups of maternal half-sibs or strangers to condition the soil, and then grew a second generation of plants in that conditioned soil to determine the impacts on plant performance. I found that soil influenced by groups of related plants affect increased the performance of a second generation of plants, particularly if the second generation was related to the first. Moreover, these soil effects only existed in soil that has not been sterilized, indicating these soil effects depended on soil microbes. I found that these soil effects of conditioning selectively benefited future individuals of a subsequent generation based on their relatedness.
18

Population structure and mating system of the invasive shrub Lonicera maackii in Ohio

Barriball, Kelly 17 July 2012 (has links)
No description available.
19

Impact of the invasive shrub Lonicera maackii on shrub-dwelling arthropods in an eastern deciduous forest

Lawrence, Jessica January 2010 (has links)
No description available.
20

Effects of garlic mustard (Alliaria petiolata) on soil nutrient dynamics and microbial community function and structure

Hammer, Erin L. 16 June 2009 (has links)
No description available.

Page generated in 0.3458 seconds