• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 2
  • Tagged with
  • 11
  • 11
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Photonic crystals and photocatalysis : Study of titania inverse opals

Lebrun, Delphine Misao January 2016 (has links)
Due to an increase of human activity, an increase health risk has emerged from the presence of pollutants in the environment. In the transition to renewable and sustainable life style, treatment of pollutants could support the shifting societies. A motivation behind material research for environmental applications is to maximize the efficiency of the materials to alleviate environmental pollution. In the case of titania, an increase of ultra-violet light absorption is needed to overcome its bandgap to produce reactive radicals, which is the basis for photocatalysis. It has been hypothesized that photonic crystal can enhance titania photocatalysis. They are structures made of at least two dielectrics with a high refractive index contrast, ordered in a periodic fashion. For a strong contrast, photonic band gaps emerge. The effect of the photonic band gap is to force complete reflection of the incoming light within its range and multiple internal reflections at its edges. By combining photonic and electronic band gap positions, it is possible to increase the absorption at the photonic band gap edges. In this thesis, fabrication method and structural analysis of titania and alumina/titania photonic structures were presented. A thorough optical analysis was performed at all steps of fabrication – beyond what previously has been reported. The photocatalytic activity was measured with two setups. Fourier Transform Infrared spectroscopy combined with arc lamps and bandpass filters was used to monitor the degradation of stearic acid in ambient air. A home-built setup was used to degrade methylene blue in solution with ultra-violet illumination. The results in this thesis show in general no correlation of the photocatalytic activity to the photonic band gap position, even though absorbance data displayed an increase absorption in this energy range. A more controlled environment might show the effect of the structure, as seen in some of the experiments.
2

Fabrication of Opal-Based Photonic Crystals Using Atomic Layer Deposition

King, Jeffrey Stapleton 19 August 2004 (has links)
The past decade and a half has seen the rapid emergence of a new material class known as photonic crystals (PCs), structures that exhibit 1, 2, or 3, dimensional periodicity of their dielectric constant, resulting in a modification of the dispersion characteristics from the normal w = vk relationship found in isotropic materials. Several remarkable electromagnetic phenomenon result, including the formation of photonic band gaps (PBGs), which are specific energy ranges where electromagnetic wave propagation is forbidden, and the existence of energies where the photon group velocity is slowed drastically from its normal value. The resulting modification of a materials photonic band structure allows unprecedented control of light, resulting in phenomena such as self-collimation, and spontaneous emission modification or lasing threshold reduction through either band edge effects (low group velocity) or microcavity defect incorporation. PCs for operation at visible wavelengths are difficult to form due to the need for nanoscale fabrication techniques. The research described focused on the fabrication of photonic crystal phosphors by using the infiltration and subsequent removal of self-assembled opal templates to make inverted opal-based photonic crystals. This thesis shows the advantages that atomic layer deposition (ALD) has as an important method for use in photonic crystal fabrication, and highlights the exciting results of use of ALD to fabricate luminescent ZnS:Mn and optically inactive titania inverse opals, as well as ZnS:Mntitania luminescent composite inverse opals.
3

Fabrication of inverse opal oxide structures for efficient light harvesting

Lebrun, Delphine January 2014 (has links)
Artificial opals are self-assembled face centered cubic (fcc) structures of  spherically shaped beads, which interesting applications as photonic band gap materials. Inverse opals are photonic crystals consisting of fcc paced voids of a low refractive index material imbedded in a high refractive index material. Such structures has been used to enhance the photocatalytic effect of different materials and motivates further studies to improve the deposition process of the opal templates and their inversion. We state the fabrication method to design and model metal oxide inverse opals. We have successfully created alumina and alumina-titania inverse opals. With the help of simulations, we engineered inverse opals with self-assembly and atomic layer deposition.
4

DEVELOPMENT OF HIGH REFRACTIVE INDEX POLY(THIOPHENE) FOR THE FABRICATION OF ALL ORGANIC 3-D PHOTONIC MATERIALS WITH A COMPLETE PHOTONIC BAND GAP

Graham, Matthew January 2006 (has links)
No description available.
5

Fabrication of Three-Dimensionally Ordered Nanostructured Materials Through Colloidal Crystal Templating

Xu, Lianbin 21 May 2005 (has links)
The void spaces in colloidal crystals (opals, three-dimensional (3D) close-packed arrays of silica nanospheres) and their replicas are used as templates in the fabrication of new nanostructured materials. 3D ordered nanomeshes and nanosphere arrays are readily obtained by chemical and/or electrochemical methods. Using silica opal templates, metals or polymers are infiltrated into the interstices between the silica nanospheres. Subsequent dissolution of the opals with HF solution produces open 3D mesh structures. Metal (such as Ni, Co, Fe, Pd, Au, Ag, and Cu) and conductive polymer (such as polyaniline) meshes are obtained by electrochemical deposition approach, while the nonconductive polymer (such as poly(methyl methacrylate) (PMMA)) meshes are synthesized by chemical polymerization method. Some new types of meshes are fabricated by the conversion of metal meshes and polymer meshes. NiO meshes are formed by oxidizing Ni meshes in the air. The NiO meshes exhibit higher volume occupation fraction than Ni meshes and the nanocrystalline sizes of NiO particles can be adjusted by the oxidation temperature. Due to the mechanical flexibility of polymer meshes, the compression of PMMA meshes produces deformed PMMA meshes which contain oblate pores. These meshes can be again served as templates to prepare new types of colloidal crystals (nanosphere arrays) and specific nanocomposites. By the use of poorly conductive NiO mesh or PMMA mesh arrays as templates, 3D periodic metal nanosphere arrays, such as those of Ni, Co, Au and Pd, are readily fabricated by the electrodeposition method. Metal/NiO or Metal/PMMA composites can also be obtained if the templates are left intact. The magnetic behavior of metal (such as Ni and Co) meshes and sphere arrays has been investigated. These nanoscale arrays show significantly enhanced coercivities compared with bulk metals, due to the size effect of the nanometer dimensions of the components in meshes and sphere arrays. Angle-dependent magnetic properties of Ni and Co sphere array membranes exhibit out-of-plane anisotropy.
6

Optimization of ALD grown titania thin films for the infiltration of silica photonic crystals

Heineman, Dawn Laurel 14 May 2004 (has links)
The atomic layer deposition (ALD) growth of titania thin films was studied for the infiltration of silica photonic crystals. Titania thin films were grown in a custom-built ALD reactor by the alternating pulsing and purging of TiCl4 and water vapor. The conformal nature of ALD growth makes it an ideal candidate for the infiltration of the complex opal structure. Titania is a high refractive index material, which makes it a popular material for use in photonic crystal (PC) applications. Photonic crystals are periodic dielectric structures that forbid the propagation of light in a certain wavelength range. This forbidden range is known as the photonic band gap (PBG). A refractive index contrast of at least 2.8 is required for a complete PBG in an inverted opal structure. Therefore, the rutile structure of titania is more desirable for use in PCs due to its higher index of refraction than the anatase or brookite structure. The growth mechanisms and film properties of the TiO2 thin films were studied. Investigation of the growth mechanisms revealed saturated growth rate conditions for multiple temperature regions. Film characterization techniques included XRD, SEM/EDS, XPS, AFM, reflectivity, and index of refraction measurements. Post growth heat treatment was performed to study the conversion from the as-deposited crystal structure to the rutile structure. After optimization of the deposition process, the infiltration of silica opals for PC applications was attempted. The filling fraction was optimized by increasing the pulse and purge lengths at a deposition temperature of 100oC. Although the silica opals were successfully infiltrated using ALD of TiO2, the long range order of the PC was destroyed after the heat treatment step required to achieve the high index rutile structure.
7

Optical Properties and Application Of Template Assisted Electrodeposited Nanowires And Nanostructures

Asaduzzaman Mohammad (9159935) 27 July 2020 (has links)
<div>Self-assembled templates allow the creation of many complex arrays of nanostructures, which would be extremely difficult and expensive, if not impossible, to realize using any of the other available fabrication techniques. The complexity of these advanced nanostructures, synthesized using the various template assisted electrodeposition techniques, can be controlled to nanometer scale range by tuning the structural properties of the template, which is achieved by adjusting its various growth parameters during the self-assembly process.</div><div>Electrodeposition allows the creation of arrays of various metallic and semiconducting nanostructures. Monitoring the electrodeposition conditions permit the creation of single crystalline nanostructures of a particular material, or the formation of heterostructures using multiple electrodeposition steps. This work demonstrates the template assisted electrodeposition of vertically aligned nanowire arrays, both straight and branched, of metals, and a direct bandgap, III-V semiconductor, indium antimonide (InSb), which has one of the smallest known bandgap of any material. The template assisted electrodeposition of metallic, and InSb inverse opal (IO) structures is also shown, and the fabrication of a novel zipper shaped nanostructure by laser photomodification of a Ni IO structure is reported.</div><div>The optical characterization of the various nanostructures realized in this work have been examined. The results from this work confirm the ability to tune the optical spectra of nanostructures of the same material with similar volume fill fractions by structural modulation, where the different optical responses can be attributed to the structural differences of the actual structure as opposed to the material properties of the solid.</div>
8

Silicon Inverse Opal-based Materials as Electrodes for Lithium-ion Batteries: Synthesis, Characterisation and Electrochemical Performance

Esmanski, Alexei 19 January 2009 (has links)
Three-dimensional macroporous structures (‘opals’ and ‘inverse opals’) can be produced by colloidal crystal templating, one of the most intensively studied areas in materials science today. There are several potential advantages of lithium-ion battery electrodes based on inverse opal structures. High electrode surface, easier electrolyte access to the bulk of electrode and reduced lithium diffusion lengths allow higher discharge rates. Highly open structures provide for better mechanical stability to volume swings during cycling. Silicon is one of the most promising anode materials for lithium-ion batteries. Its theoretical capacity exceeds capacities of all other materials besides metallic lithium. Silicon is abundant, cheap, and its use would allow for incorporation of microbattery production into the semiconductor manufacturing. Performance of silicon is restricted mainly by large volume changes during cycling. The objective of this work was to investigate how the inverse opal structures influence the performance of silicon electrodes. Several types of silicon-based inverse opal films were synthesised, and their electrochemical performance was studied. Amorphous silicon inverse opals were fabricated via chemical vapour deposition and characterised by various techniques. Galvanostatic cycling of these materials confirmed the feasibility of the approach taken, since the electrodes demonstrated high capacities and decent capacity retentions. The rate performance of amorphous silicon inverse opals was unsatisfactory due to low conductivity of silicon. The conductivity of silicon inverse opals was improved by crystallisation. Nanocrystalline silicon inverse opals demonstrated much better rate capabilities, but the capacities faded to zero after several cycles. Silicon-carbon composite inverse opal materials were synthesised by depositing a thin layer of carbon via pyrolysis of a sucrose-based precursor onto the silicon inverse opals in an attempt to further increase conductivity and achieve mechanical stabilisation of the structures. The amount of carbon deposited proved to be insufficient to stabilise the structures, and silicon-carbon composites demonstrated unsatisfactory electrochemical behaviour. Carbon inverse opals were coated with amorphous silicon producing another type of macroporous composites. These electrodes demonstrated significant improvement both in capacity retentions and in rate capabilities. The inner carbon matrix not only increased the material conductivity, but also resulted in lower silicon pulverisation during cycling.
9

Silicon Inverse Opal-based Materials as Electrodes for Lithium-ion Batteries: Synthesis, Characterisation and Electrochemical Performance

Esmanski, Alexei 19 January 2009 (has links)
Three-dimensional macroporous structures (‘opals’ and ‘inverse opals’) can be produced by colloidal crystal templating, one of the most intensively studied areas in materials science today. There are several potential advantages of lithium-ion battery electrodes based on inverse opal structures. High electrode surface, easier electrolyte access to the bulk of electrode and reduced lithium diffusion lengths allow higher discharge rates. Highly open structures provide for better mechanical stability to volume swings during cycling. Silicon is one of the most promising anode materials for lithium-ion batteries. Its theoretical capacity exceeds capacities of all other materials besides metallic lithium. Silicon is abundant, cheap, and its use would allow for incorporation of microbattery production into the semiconductor manufacturing. Performance of silicon is restricted mainly by large volume changes during cycling. The objective of this work was to investigate how the inverse opal structures influence the performance of silicon electrodes. Several types of silicon-based inverse opal films were synthesised, and their electrochemical performance was studied. Amorphous silicon inverse opals were fabricated via chemical vapour deposition and characterised by various techniques. Galvanostatic cycling of these materials confirmed the feasibility of the approach taken, since the electrodes demonstrated high capacities and decent capacity retentions. The rate performance of amorphous silicon inverse opals was unsatisfactory due to low conductivity of silicon. The conductivity of silicon inverse opals was improved by crystallisation. Nanocrystalline silicon inverse opals demonstrated much better rate capabilities, but the capacities faded to zero after several cycles. Silicon-carbon composite inverse opal materials were synthesised by depositing a thin layer of carbon via pyrolysis of a sucrose-based precursor onto the silicon inverse opals in an attempt to further increase conductivity and achieve mechanical stabilisation of the structures. The amount of carbon deposited proved to be insufficient to stabilise the structures, and silicon-carbon composites demonstrated unsatisfactory electrochemical behaviour. Carbon inverse opals were coated with amorphous silicon producing another type of macroporous composites. These electrodes demonstrated significant improvement both in capacity retentions and in rate capabilities. The inner carbon matrix not only increased the material conductivity, but also resulted in lower silicon pulverisation during cycling.
10

Inverse opal scaffolds and photoacoustic microscopy for regenerative medicine

Zhang, Yu 13 January 2014 (has links)
This research centers on the fabrication, characterization, and engineering of inverse opal scaffolds, a novel class of three-dimensional (3D) porous scaffolds made of biocompatible and biodegradable polymers, for applications in tissue engineering and regenerative medicine. The unique features of an inverse opal scaffold include a highly ordered array of pores, uniform and finely tunable pore sizes, high interconnectivity, and great reproducibility. The first part of this work focuses on the fabrication and functionalization of inverse opal scaffolds based on poly(D,L-lactic-co-glycolic acid) (PLGA), a biodegradable material approved by the U.S. Food and Drug Administration (FDA). The advantages of the PLGA inverse opal scaffolds are also demonstrated by comparing with their counterparts with spherical but non-uniform pores and poor interconnectivity. The second part of this work shows two examples where the PLGA inverse opal scaffolds were successfully used as a well-defined system to investigate the effect of pore size of a 3D porous scaffold on the behavior of cell and tissue growth. Specifically, I have demonstrated that i) the differentiation of progenitor cells in vitro was dependent on the pore size of PLGA-based scaffolds and the behavior of the cells was determined by the size of individual pores where the cells resided in, and ii) the neovascularization process in vivo could be directly manipulated by controlling a combination of pore and window sizes when they were applied to a mouse model. The last part of this work deals with the novel application of photoacoustic microscopy (PAM), a volumetric imaging modality recently developed, to tissue engineering and regenerative medicine, in the context of non-invasive imaging and quantification of cells and tissues grown in PLGA inverse opal scaffolds, both in vitro and in vivo. Furthermore, the capability of PAM to monitor and quantitatively analyze the degradation of the scaffolds themselves was also demonstrated.

Page generated in 0.063 seconds