Spelling suggestions: "subject:"nanomechanics"" "subject:"nanomechanical""
1 |
Fabrication of Three-Dimensionally Ordered Nanostructured Materials Through Colloidal Crystal TemplatingXu, Lianbin 21 May 2005 (has links)
The void spaces in colloidal crystals (opals, three-dimensional (3D) close-packed arrays of silica nanospheres) and their replicas are used as templates in the fabrication of new nanostructured materials. 3D ordered nanomeshes and nanosphere arrays are readily obtained by chemical and/or electrochemical methods. Using silica opal templates, metals or polymers are infiltrated into the interstices between the silica nanospheres. Subsequent dissolution of the opals with HF solution produces open 3D mesh structures. Metal (such as Ni, Co, Fe, Pd, Au, Ag, and Cu) and conductive polymer (such as polyaniline) meshes are obtained by electrochemical deposition approach, while the nonconductive polymer (such as poly(methyl methacrylate) (PMMA)) meshes are synthesized by chemical polymerization method. Some new types of meshes are fabricated by the conversion of metal meshes and polymer meshes. NiO meshes are formed by oxidizing Ni meshes in the air. The NiO meshes exhibit higher volume occupation fraction than Ni meshes and the nanocrystalline sizes of NiO particles can be adjusted by the oxidation temperature. Due to the mechanical flexibility of polymer meshes, the compression of PMMA meshes produces deformed PMMA meshes which contain oblate pores. These meshes can be again served as templates to prepare new types of colloidal crystals (nanosphere arrays) and specific nanocomposites. By the use of poorly conductive NiO mesh or PMMA mesh arrays as templates, 3D periodic metal nanosphere arrays, such as those of Ni, Co, Au and Pd, are readily fabricated by the electrodeposition method. Metal/NiO or Metal/PMMA composites can also be obtained if the templates are left intact. The magnetic behavior of metal (such as Ni and Co) meshes and sphere arrays has been investigated. These nanoscale arrays show significantly enhanced coercivities compared with bulk metals, due to the size effect of the nanometer dimensions of the components in meshes and sphere arrays. Angle-dependent magnetic properties of Ni and Co sphere array membranes exhibit out-of-plane anisotropy.
|
2 |
Etude théorique de nouveaux concepts de nano-transistors en graphène / Theoretical study of new concepts of graphene based transistorsBerrada, Salim 16 May 2014 (has links)
Cette thèse porte sur l’étude théorique de nouveaux concepts de transistors en graphène par le formalisme des fonctions de Green dans l’hypothèse du transport balistique. Le graphène est un matériau bidimensionnel composé d’atomes de carbone organisés en nid d’abeille. Cette structure confère des propriétés uniques aux porteurs de charge dans le graphène, comme une masse effective nulle et un comportement ultra-relativiste (fermions de Dirac), ce qui conduit à des mobilités extraordinairement élevées. C’est pourquoi des efforts très importants ont été mis en œuvre dans la communauté scientifique pour la réalisation de transistors en graphène. Cependant, en vue de nombreuses applications, le graphène souffre de l’absence d’une bande d’énergie interdite. De plus, dans le cas des transistors conventionnels à base de graphène (GFET), cette absence de bande interdite, combinée avec l’apparition de l’effet tunnel de Klein, a pour effet de dégrader considérablement le rapport I_ON/I_OFF des GFET. L’absence de gap empêche également toute saturation du courant dans la branche N – là où se trouve le maximum de transconductance pour des sources et drain dopés N – et ne permet donc pas de tirer profit des très bonnes performances fréquentielles que le graphène est susceptible d’offrir grâce aux très hautes mobilités de ses porteurs. Cependant, de précédents travaux théorique et expérimentaux ont montré que la réalisation d’un super-réseau d’anti-dots dans la feuille de graphène – appelée Graphene NanoMesh (GNM) – permettait d’ouvrir une bande interdite dans le graphène. On s’est donc d’abord proposé d’étudier l’apport de l’introduction de ce type de structure pour former canal des transistors – appelés GNMFET – par rapport aux GFET « conventionnels ». La comparaison des résultats obtenus pour un GNM-FET avec un GFET de mêmes dimensions permettent d’affirmer que l’on peut améliorer le rapport I_ON/I_OFF de 3 ordres de grandeurs pour une taille et une périodicité adéquate des trous. Bien que l’introduction d’un réseau de trous réduise légèrement la fréquence de coupure intrinsèque f_T, il est remarquable de constater que la bonne saturation du courant dans la branche N, qui résulte de la présence de la bande interdite dans le GNM, conduit à une fréquence maximale d’oscillation f_max bien supérieure dans le GNM-FET. Le gain en tension dans ce dernier est aussi amélioré d’un ordre de grandeur de grandeur par rapport au GFET conventionnel. Bien que les résultats sur le GNM-FET soient très encourageants, l’introduction d’une bande interdite dans la feuille de graphène induit inévitablement une masse effective non nulle pour les porteurs, et donc une vitesse de groupe plus faible que dans le graphène intrinsèque. C’est pourquoi, en complément de ce travail, nous avons exploré la possibilité de moduler le courant dans un GFET sans ouvrir de bande interdite dans le graphène. La solution que nous avons proposée consiste à utiliser une grille triangulaire à la place d’une grille rectangulaire. Cette solution exploite les propriétés du type "optique géométrique" des fermions de Dirac dans le graphène, qui sont inhérentes à leur nature « Chirale », pour moduler l’effet tunnel de Klein dans le transistor et bloquer plus efficacement le passage des porteurs dans la branche P quand le dopage des sources et drains sont de type N. C’est pourquoi nous avons choisi d’appeler ce transistor le « Klein Tunneling FET » (KTFET). Nous avons pu montrer que cette géométrie permettrait d’obtenir un courant I_off plus faible que ce qui est obtenu d’habitude, pour la même surface de grille, pour les GFET conventionnels. Cela offre la perspective d’une nouvelle approche de conception de dispositifs permettant d’exploiter pleinement le caractère de fermions de Dirac des porteurs de charges dans le graphène. / This thesis is a theoretical study of new concepts of graphene-based transistors using non equilibrium Green’s function formalism in the ballistic limit. Graphene is a two-dimensional material made of a honeycomb arrangement of carbon atoms. This crystallographic structure allows electrons to behave like ultra-relativistic particles, namely massless Dirac fermions. This yields extraordinary high mobility for charge carriers in this material and a huge potential for high frequency applications. Consequently, strong efforts have been made in the scientific community towards the implementation of this material as a channel for field effect transistors. Unfortunately, graphene suffers from the lack of an energy band gap, and the Klein tunneling effect that takes place in Graphene Field Effect Transistor’s (GFET) channel makes it impossible to back-scatter completely the carriers even for high potential barriers. This degrades considerably the I_ON/I_OFF ratio obtained in GFETs. Additionally, the absence of a band gap makes it impossible to obtain current saturation in the N branch, where the maximum of transconductance is reached for n-doped source and drain regions, preventing to take full advantage from the huge potential for high frequency application of graphene. Fortunately, it has been demonstrated in both theoretical and experimental works that Graphene NanoMesh (GNM), a structure obtained after punching an anti-dot super-lattice in the graphene sheet, can open a band gap for charge carriers. This has motivated our study of a field effect transistor where the GNM is used as a channel (GNMFET) and to compare its performance with the conventional GFET. Our study showed that the use of this type of transistors can improve the I_ON/I_OFF ratio up to 3 orders of magnitude when the GNM is carefully chosen. Though the introduction of the anti-dots in the graphene sheet reduces the transit frequency f_T, it is remarkable that the good saturation that occurs in the N branch, as a result of the band gap opening, yields a much higher maximum oscillation frequency f_max in the GNMFET. The voltage gain is also improved by an order of magnitude compared to its GFET counterpart. Though the performance of the GNMFET is very encouraging, the band gap opening in the GNM confers a finite effective mass to the carriers in graphene, resulting in lower group velocity compared to the case of pristine graphene. This is why we explored a new solution that avoids the band gap opening to modulate the current in graphene-based transistors. We proposed the use of a triangular gate of the transistor. The operation of this transistor relies on optics-like behavior of Dirac fermions that emerges from their “chiral” properties, giving the possibility to modulate the Klein tunneling. We called this transistor the “Klein Tunneling Field Effect Transistor” (KTFET), and we showed that that this prismatic gate shape enables the KTFET to have an “OFF” current I_OFF that is lower than the one that it obtained for the conventional GFET and which is determined by the Dirac point. This study paves the way for a new approach to designing graphene devices which fully exploits the Dirac fermions nature of particles in graphene.
|
3 |
Characterization and Functionalization of 2D Overlayers Adsorbed on Transition MetalsNg, May Ling January 2010 (has links)
Two-dimensional layered materials, namely monolayer hexagonal boron nitride and graphene were grown by CVD on various transition metals. The physical and chemical properties of these systems were characterized systematically using synchrotron-based spectroscopic techniques, scanning tunneling microscopy and low energy electron diffraction. It is learned that the overlayer–substrate interaction is caused by the overlayer π–substrate d band hybridization. The physical properties of these overlayers depend on the strength of interaction and the degree of lattice matching at the interface. The strength of interaction between the boron nitride and graphene overlayers and the transition metal substrates is increasing from Pt(111)–Ir(111)–Rh(111)–Ru(0001). For overlayers adsorbed on Rh and Ru, the interplay between these two parameters can result in corrugation of the overlayer, i.e. a surface with bonding and non-bonding areas. The amplitude of corrugation is increasing with the strength of interfacial interaction. The corrugated BN overlayer (BN nanomesh) was used as a template for the growth of two-dimensional and highly dispersive Au nanoparticles. In addition, the inert BN nanomesh was used as a substrate for the deposition of pentacene molecules that conform to the corrugated surface while preserving the herringbone crystal structure. The coadsorption of oxygen and Co clusters on the nanomesh was investigated. Oxygen was utilized to lower the Co surface energy, i.e. to prevent Co agglomeration. It is observed that the smaller Co clusters intercalate through the BN overlayer upon soft annealing. Beside the surface structure, the substrate induced surface reactivity of the MG overlayer was employed to promote the hydrogenation of graphene on Pt, Ir and Ni. The graphene layer adsorbed on Pt and Ir shows higher H uptake than MG/Ni. Furthermore the uptake increases with the size of the bonded graphene. The small H uptake for MG/Ni was attributed to the electron localization in the C-Ni bonds.
|
4 |
Etude théorique de nouveaux concepts de nano-transistors en graphèneBerrada, Salim 16 May 2014 (has links) (PDF)
Cette thèse porte sur l'étude théorique de nouveaux concepts de transistors en graphène par le formalisme des fonctions de Green dans l'hypothèse du transport balistique. Le graphène est un matériau bidimensionnel composé d'atomes de carbone organisés en nid d'abeille. Cette structure confère des propriétés uniques aux porteurs de charge dans le graphène, comme une masse effective nulle et un comportement ultra-relativiste (fermions de Dirac), ce qui conduit à des mobilités extraordinairement élevées. C'est pourquoi des efforts très importants ont été mis en œuvre dans la communauté scientifique pour la réalisation de transistors en graphène. Cependant, en vue de nombreuses applications, le graphène souffre de l'absence d'une bande d'énergie interdite. De plus, dans le cas des transistors conventionnels à base de graphène (GFET), cette absence de bande interdite, combinée avec l'apparition de l'effet tunnel de Klein, a pour effet de dégrader considérablement le rapport I_ON/I_OFF des GFET. L'absence de gap empêche également toute saturation du courant dans la branche N - là où se trouve le maximum de transconductance pour des sources et drain dopés N - et ne permet donc pas de tirer profit des très bonnes performances fréquentielles que le graphène est susceptible d'offrir grâce aux très hautes mobilités de ses porteurs. Cependant, de précédents travaux théorique et expérimentaux ont montré que la réalisation d'un super-réseau d'anti-dots dans la feuille de graphène - appelée Graphene NanoMesh (GNM) - permettait d'ouvrir une bande interdite dans le graphène. On s'est donc d'abord proposé d'étudier l'apport de l'introduction de ce type de structure pour former canal des transistors - appelés GNMFET - par rapport aux GFET " conventionnels ". La comparaison des résultats obtenus pour un GNM-FET avec un GFET de mêmes dimensions permettent d'affirmer que l'on peut améliorer le rapport I_ON/I_OFF de 3 ordres de grandeurs pour une taille et une périodicité adéquate des trous. Bien que l'introduction d'un réseau de trous réduise légèrement la fréquence de coupure intrinsèque f_T, il est remarquable de constater que la bonne saturation du courant dans la branche N, qui résulte de la présence de la bande interdite dans le GNM, conduit à une fréquence maximale d'oscillation f_max bien supérieure dans le GNM-FET. Le gain en tension dans ce dernier est aussi amélioré d'un ordre de grandeur de grandeur par rapport au GFET conventionnel. Bien que les résultats sur le GNM-FET soient très encourageants, l'introduction d'une bande interdite dans la feuille de graphène induit inévitablement une masse effective non nulle pour les porteurs, et donc une vitesse de groupe plus faible que dans le graphène intrinsèque. C'est pourquoi, en complément de ce travail, nous avons exploré la possibilité de moduler le courant dans un GFET sans ouvrir de bande interdite dans le graphène. La solution que nous avons proposée consiste à utiliser une grille triangulaire à la place d'une grille rectangulaire. Cette solution exploite les propriétés du type "optique géométrique" des fermions de Dirac dans le graphène, qui sont inhérentes à leur nature " Chirale ", pour moduler l'effet tunnel de Klein dans le transistor et bloquer plus efficacement le passage des porteurs dans la branche P quand le dopage des sources et drains sont de type N. C'est pourquoi nous avons choisi d'appeler ce transistor le " Klein Tunneling FET " (KTFET). Nous avons pu montrer que cette géométrie permettrait d'obtenir un courant I_off plus faible que ce qui est obtenu d'habitude, pour la même surface de grille, pour les GFET conventionnels. Cela offre la perspective d'une nouvelle approche de conception de dispositifs permettant d'exploiter pleinement le caractère de fermions de Dirac des porteurs de charges dans le graphène.
|
5 |
Multifunctional Materials from Nanostructured Graphene and DerivativesMANGADLAO, JOEY DACULA 27 January 2016 (has links)
No description available.
|
6 |
Top-down Fabrication Technologies for High Quality III-V NanostructuresNaureen, Shagufta January 2013 (has links)
III-V nanostructures have attracted substantial research effort due to their interesting physical properties and their applications in new generation of ultrafast and high efficiency nanoscale electronic and photonic components. The advances in nanofabrication methods including growth/synthesis have opened up new possibilities of realizing one dimensional (1D) nanostructures as building blocks of future nanoscale devices. For processing of semiconductor nanostructure devices, simplicity, cost effectiveness, and device efficiency are key factors. A number of methods are being pursued to fabricate high quality III-V nanopillar/nanowires, quantum dots and nano disks. Further, high optical quality nanostructures in these materials together with precise control of shapes, sizes and array geometries make them attractive for a wide range of optoelectronic/photonic devices. This thesis work is focused on top-down approaches for fabrication of high optical quality nanostructures in III-V materials. Dense and uniform arrays of nanopillars are fabricated by dry etching using self-assembly of colloidal SiO2 particles for masking. The physico-chemistry of etching and the effect of etch-mask parameters are investigated to control the shape, aspect ratios and spatial coverage of the nanopillar arrays. The optimization of etch parameters and the utilization of erosion of etch masks is evaluated to obtain desired pillar shapes from cylindrical to conical. Using this fabrication method, high quality nanopillar arrays were realized in several InP-based and GaAs-based structures, including quantum wells and multilayer heterostructures. Optical properties of these pillars are investigated using different optical spectroscopic techniques. These nanopillars, single and in arrays, show excellent photoluminescence (PL) at room temperature and the measured PL line-widths are comparable to the as-grown wafer, indicating the high quality of the fabricated nanostructures. The substrate-free InP nanopillars have carrier life times similar to reference epitaxial layers, yet an another indicator of high material quality. InGaAs layer, beneath the pillars is shown to provide several useful functions. It effectively blocks the PL from the InP substrate, serves as a sacrificial layer for generation of free pillars, and as a “detector” in cathodoluminescence (CL) measurements. Diffusion lengths independently determined by time resolved photoluminescence (TRPL) and CL measurements are consistent, and carrier feeding to low bandgap InGaAs layer is evidenced by CL data. Total reflectivity measurements show that nanopillar arrays provide broadband antireflection making them good candidates for photovoltaic applications. A novel post etch, sulfur-oleylamine (S-OA) based chemical process is developed to etch III-V materials with monolayer precision, in an inverse epitaxial manner along with simultaneous surface passivation. The process is applied to push the limits of top-down fabrication and InP-based high optical quality nanowires with aspect ratios more than 50, and nanostructures with new topologies (nanowire meshes and in-plane wires) are demonstrated. The optimized process technique is used to fabricate nanopillars in InP-based multilayers (InP/InGaAsP/InP and InP/InGaAs/InP). Such multilayer nanopillars are not only attractive for broad-band absorption in solar cells, but are also ideal to generate high optical quality nanodisks of these materials. Finally, the utility of a soft stamping technique to transfer free nanopillars/wires and nanodisks onto Si substrate is demonstrated. These nanostructures transferred onto Si with controlled densities, from low to high, could provide a new route for material integration on Si. / <p>QC 20130205</p>
|
Page generated in 0.039 seconds