• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 125
  • 28
  • 20
  • 16
  • 12
  • 11
  • 8
  • 5
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 279
  • 65
  • 38
  • 38
  • 32
  • 32
  • 27
  • 19
  • 19
  • 19
  • 19
  • 18
  • 18
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Influence of High Mobility Polymer Semiconductors in Organic Photovoltaics

Murphy, Leanne 22 April 2013 (has links)
Increasing global energy demands and diminishing supplies of conventional fuels are forcing the world to focus more on alternative power sources that are both renewable and ecologically benign. Solar energy is clean, regularly available and can be harvested without sacrificing valuable land space. Due to the associated cost of solar cells, however a very small portion of the world’s energy needs are supplied by the sun. Solution-processable organic photovoltaics (OPVs) offer the promise of lower production costs relative to conventional (silicon) solar cell technology. Solution-processing can be performed using reel-to-reel manufacturing, with printing and coating techniques that are significantly cheaper than current processing methods for inorganic semiconductors. Although OPV efficiency values currently remain inferior to those of conventional solar cells, the rate of improvement is much higher in OPVs than in other solar cell technologies. Recently an efficiency exceeding 10% was reported for organic solar cells. An important difference between organic and conventional solar cells is the charge carrier mobility of the semiconductors, which tends to be relatively low in organic semiconductors. Recent advances in molecular design have led to polymer semiconductor materials that possess hole mobility values similar to that of amorphous silicon. The present study investigates potential improvements in OPV devices that can be achieved through the application of high hole mobility polymer semiconductor donors. Two diketopyrrolopyrrole-based polymers, PDQT and PDBFBT, were selected for the role of electron donor in OPV devices due to their high mobilities and their optimum optical and electrical properties. Optimization of the process parameters was performed using PC61BM as the acceptor. A relatively high quantity of PC61BM (3 - 4 × the weight of the donor) is required in the donor-acceptor blends of both polymers in order to balance the high hole mobility. For these donor-acceptor blends, a solvent system consisting of chloroform/ortho-dichlorobenzene (4:1 v/v) is necessary for proper solubility, and an additive, 1,8-diiodooctane, is required to achieve an acceptable morphology. The main benefit expected from the use of high mobility semiconductors is reduced charge recombination. This was studied in relation to the active layer thickness in standard and inverted OPV devices prepared using PC61BM as the acceptor. Normally the thickness of the active layer is required to be low (~100 nm) due to the poor charge transport mobility of the carriers. In this study, rather consistent power conversion efficiencies were achieved throughout a wide range of active layer thicknesses (~100 nm to ~800 nm). A comparison between standard and inverted device configurations demonstrates that the inverted configuration is more suitable for achieving thicker active layers when a high hole mobility donor is used. This is attributed to the longer hole collection path in the inverted structure, which can benefit from using a high hole mobility material. Increasing the absorption spectra of the donor-acceptor blend was studied by substituting PC71BM for PC61BM. The improved absorption leads to greater charge generation. In PDQT devices, the increase in absorption that is contributed by PC71BM appears to be of greatest benefit when active layers are not very thick. Therefore, when thick active layers (>500 nm) are required, the use of PC61BM is sufficient, in conjunction with a high mobility donor. Finally, an increase in a polymer’s crystallinity can often lead to greater mobility. This can be accomplished through various annealing techniques. The improved crystallinity of PDBFBT that occurs as a result of thermal annealing was studied in OPV applications. Although hole mobility of PDBFBT in the lateral direction improves with thermal annealing, mobility in the vertical direction decreases with increasing temperature. This suggests that the crystallinity of PDBFBT is oriented in the lateral direction as opposed to the vertical direction, thereby directing charge flow horizontal to the surface. With thermal annealing, an optimal amount of PC61BM added to PDBFBT can increase the vertical mobility to fairly high values. Nevertheless, the efficiency of standard and inverted OPV devices decreases with increased annealing temperature. This is attributed to agglomeration of PC61BM that occurs from an increase in annealing temperature. The results of this study demonstrate that thermal annealing is not beneficial for PDBFBT:PC61BM films in OPV applications due to the vertical orientation of devices. All of the studies presented in this work involve the use of high hole mobility polymer semiconductors as donor materials for OPV applications. This work will provide a deeper understanding of the properties required for the development of new semiconductor materials in OPV applications. Furthermore, this work will be very useful for the design of device structures for more feasible manufacturing of large area OPV devices via high speed roll-to-roll printing processes.
62

Analytical Techniques and Operational Perspectives for a Spherical Inverted-F Antenna

Rolando, David Lee 2010 December 1900 (has links)
The spherical inverted-F antenna (SIFA) is a relatively new conformal antenna design that consists of a microstrip patch resonator on a spherical ground. The SIFA resembles a planar inverted-F antenna (PIFA) that has been conformally recessed onto a sphere. The basic design, simulation, and fabrication of a SIFA were recently reported. The aim of this thesis is to provide a three-fold improvement to the study of the SIFA: the fabrication of a dielectric-coated SIFA, a new analytical model based on the cavity method, and the analysis of a randomly oriented SIFA’s operation in a remote networking scenario. A key improvement to the basic SIFA design is the addition of a lossy dielectric coating to the outside of the sphere for purposes of impedance stability, bandwidth control, and physical ruggedization. The first contribution of this thesis is the fabrication of such a dielectric-coated SIFA. Two antennas are fabricated: a coated SIFA operating at 400 MHz, and an uncoated SIFA operating at 1 GHz for comparison. Both SIFAs are constructed of foam and copper tape; the coating is comprised of silicone rubber and carbon fiber. The fabricated designs perform with reasonable agreement to corresponding simulations, providing a basic proof of concept for the coated SIFA. The SIFA was previously studied analytically using a transmission line model. The second task of this thesis is to present a new model using the cavity method, as employed in microstrip patches. The SIFA cavity model uses a curvilinear coordinate system appropriate to the antenna’s unique geometry and is able to predict the antenna’s performance more accurately than the transmission line model. The final portion of this thesis examines the performance of the SIFA in a remote network scenario. Specifically, a line-of-sight link between two SIFAs operating in the presence of a lossy dielectric ground is simulated assuming that each SIFA is randomly oriented above the ground. This analysis is performed for both uncoated and coated SIFAs. A statistical analysis of the impedance match, efficiency, and power transfer between these antennas for all possible orientations is presented that demonstrates a design tradeoff between efficiency and predictability.
63

NOVEL INTERNAL ANTENNA DESIGNS FOR APPLICATIONS IN 2G/3G MOBILE HANDSETS

Teng, Pey-ling 03 May 2004 (has links)
This thesis proposes a variety of antenna designs suitable for modern of mobile products, such as mobile phones, PDAs and so forth, on both the 2G and 3G communication systems according to the mobile communication development. Based on the integration of monopole or planar inverted-F antenna with the system ground planes, multi-frequency, broadband, and high radiation efficiency can be achieved, which is very promising to be adapted into communication products. Furthermore, an antenna capable of WLAN and UWB is proposed for future wireless communication applications.
64

NOVEL PLANAR ANTENNA DESIGNS FOR DUAL-BAND OR MULTI-BAND WIRELWSS COMMUNICATIONS

Lee, Gwo-yun 27 May 2004 (has links)
This paper proposes novel PIFA and monopole designs for dual-band or multi-band wireless communications, especially for mobile phones and CF (compact flash) card. The dual-frequency designs for mobile phone mainly utilize one or more metal branch strips to excite two resonant modes. By tuning the dimensions of branch strips, the ratio of the antenna¡¦s first two resonant frequencies can be achieved to be about 2.0, which makes it very promising for 900/1800 MHz operations. In addition, the broadband and quad-band (AMPS/GSM/DCS/PCS) designs for mobile phone application are also proposed. The broadband antenna design, unlike the above-mentioned dual-frequency designs for operating at two separate resonant modes, is more suitable to cover several nearby communication bands (DCS/PCS/UMTS/WLAN 2.45 GHz). The quad-band antenna design utilizes a £k-shape matching bridge to achieve a wider bandwidth both in lower and higher bands. For CF Card application, the triangular chip antenna having one longer and one shorter strip lines can generate the lower and higher modes covering the WLAN 2.4 and WLAN 5.2/5.8 GHz bands. All the antenna designs proposed are very promising to be concealed within the housing of the mobile phones or CF card.
65

INTEGRATED INTERNAL ANTENNAS FOR MOBILE PHONES

Chien, Shao-lun 11 June 2005 (has links)
In this thesis the study mainly focuses on the trends in development of present-day mobile phones and provides a promising alternative for integrating various elements inside mobile phones. With the presence of a small ground plane protruded from the main circuit board of a mobile phone, the proposed antenna design is substantially different from the configuration of feeding the conventional internal patch or planar inverted-F antenna (PIFA), and the proposed antenna can be placed in close proximity to the RF shielding case in the mobile phone, with very small effects on the antenna performances. Thus, more flexibility in the integration between an internal antenna and other associated elements inside a mobile phone can be obtained. In addition, by making use of the space inside the shorting cylinder of the internal PIFA, which can be treated as a shielding wall, the lens module of an embedded digital camera or other possible practical modules can easily fit in the cylinder to satisfy the trends in development of the miniaturized and multi-function mobile phones.
66

DTV Receiving Antennas for Portable Media Player Applications

Li, Wei-yu 26 May 2006 (has links)
Three novel wideband antennas suitable for DTV (Digital Television) signal reception in the 470 ~ 806 MHz band for Portable Media Playrer (PMP) applications are presented in this thesis. The antennas include a novel broadband planar monopole antenna in Chpater 2, a novel low-profile planar inverted-U monopole antenna in Chpater 3, and a novel internal planar inverted-F antenna in Chpater 4. These antennas all have wide impedance bandwidths, good radiation efficiencies, and good radiation patterns. In addition, we propose a one-layer simplified hand model for achieving efficient and reliable simulation study for PMP antennas. The studied antenna in Chapter 2 is selected to be the example to study the user¡¦s hand effect on the antenna for PMP application.
67

Six-band Antenna Design for the Mobile Phone

Lee, Cheng-tse 02 July 2007 (has links)
A six-band antenna design for the mobile phone is presented. The required bandwidth for DTV/GSM850/900/DCS/PCS/UMTS operation is achieved by using two antennas. For DTV/GSM850/900 operation, we propose a novel antenna by using the concept of the dipole antenna and an internal matching portion to excite the half- and one-wavelength resonant modes of the antenna. With the internal matching portion, the frequency ratio of the two resonant modes can be controlled, thereby making the two resonant modes formed into a very wide operating band. For DCS/PCS/UMTS operation, a novel monopole slot antenna is used. The lower-edge frequency of the slot antenna depends on its length and the required bandwidth can be achieved by adjusting its tuning section. Effects of casing and human body on the proposed mobile phone antenna are also discussed. It is found that the radiation efficiency of DTV/GSM bands is larger than that of DCS/PCS/UMTS bands in this design. However, overall the operating bands, the antenna performances are greatly affected when the human effects are taken into considerations.
68

Novel Antenna Designs for Mobile Handsets

Fang, Chi-Yin 13 June 2003 (has links)
Two novel antenna designs for mobile handsets are proposed in this thesis. With a helix loading, an inverted-L monopole antenna capable of generating two resonances at about 900 and 1850 MHz is first presented. The operating bandwidths obtained cover the required bandwidths of the GSM/DCS/PCS bands. Besides, an internal mobile handset antenna comprising a PIFA and a PILA, which are, respectively, designed for covering the GSM and DCS/PCS bands is also presented. The PIFA and PILA together occupy a compact volume of 7.2 ¡Ñ 20 ¡Ñ 40 mm3, and are suitable to be built-in within the housing of a mobile handset.
69

Internal Uniplanar Antennas for Laptop Computer

Liao, Shih-jia 18 June 2009 (has links)
In this thesis, three small-size internal multiband antennas for laptop computer application for different wireless communication systems are proposed. In the first design, the coupling feed is incorporated to the planar inverted-F antenna to achieve a dual-resonance excitation in the lower band such that the obtained bandwidths can easily cover GSM850/900/DCS/PCS/UMTS operation. The effect of the user¡¦s hand on the antenna is also studied. In the second design, we introduce the T-shaped coupling feed used in the PIFA for successful excitation of two wide operating bands to cover WLAN operation in the 2.4 GHz band and 5.2/5.8 GHz band, and the size reduction is even larger than 50%. Finally, a multiband monopole antenna with a band-notching slit is proposed. By embedding the slit of length about a quarter-wavelength at about 4 GHz, a band-notching characteristic is obtained, which leads to an additional resonance at about 3.5 GHz. Hence, three wide operating bands for covering all the desired operating bands of WLAN/WiMAX systems are achieved for the proposed antenna.
70

Inverted base pavement structures

Cortes Avellaneda, Douglas D. 15 November 2010 (has links)
An inverted base pavement is a new pavement structure that consists of an unbound aggregate base between a stiff cement-treated foundation layer and a thin asphalt cover. Unlike conventional pavements which rely on upper stiff layers to bear and spread traffic loads, the unbound aggregate inter-layer in an inverted base pavement plays a major role in the mechanical response of the pavement structure. Traditional empirical pavement design methods rely on rules developed through long-term experience with conventional flexible or rigid pavement structures. The boundaries imposed on the unbound aggregate base in an inverted pavement structure change radically from those in conventional pavements. Therefore, current empirically derived design methods are unsuitable for the analysis of inverted base pavements. The present work documents a comprehensive experimental study on a full-scale inverted pavement test section built near LaGrange, Georgia. A detailed description of the mechanical behavior of the test section before, during and after construction provides critically needed understanding of the internal behavior and macro-scale performance of this pavement structure. Given the critical role of the unbound aggregate base and its proximity to the surface, a new field test was developed to characterize the stress-dependent stiffness of the as-built layer. A complementary numerical study that incorporates state-of-the-art concepts in constitutive modeling of unbound aggregates is used to analyze experimental results and to develop preliminary guidelines for inverted base pavement design. Simulation results show that an inverted pavement can deliver superior rutting resistance compared to a conventional flexible pavement structure with the same fatigue life. Furthermore, results show that an inverted base pavement structure can exceed the structural capacity of conventional flexible pavement designs for three typical road types both in rutting and fatigue while saving up to 40% of the initial construction costs.

Page generated in 0.0752 seconds