• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transparent Oxide Semiconductors: Fabrication, Properties, and Applications

Wang, Kai January 2008 (has links)
Transparent oxide semiconductors (TOSs) are materials that exhibit electrical conduction and optical transparency. The traditional applications of these materials are transparent conducting oxides in flat-panel displays, light-emitting diodes, solar cells, and imaging sensors. Recently, significant research has been driven to extend state-of-the-art applications such as thin-film transistors (TFTs). A new and rapidly developing field is emerging, called transparent electronics. This thesis advances transparent electronics through developing a new technique to fabricate TOSs and demonstrating their applications to active semiconductor devices such as diodes and TFTs. Ion beam assisted evaporation (IBAE) is used to deposit two common TOSs: zinc oxide (ZnO) and indium oxide (In2O3). The detailed material study is carried out through various characterization of their electrical properties, chemical composition, optical properties, crystal structure, intrinsic stress, topology, and morphology, as well as an investigation of thin-film property as a function of the deposition parameters: ion flux and energy, and deposition rate. The study proves that IBAE technique provides the capability for fabricating TOSs with controllable properties. By utilizing the newly developed semiconducting ZnO, p-NiO/i-ZnO/n-ITO and n-ITO/i-ZnO/p-NiO heterostructure photodiodes with a low leakage are proposed and assessed. Analysis of their current-voltage characteristics and current transient behaviour reveals that the dominant source of leakage current stems from the deep defect states in the intrinsic zinc oxide layer, where its dynamic response at low signal levels is limited by the charge trapping. The exploration of the photoconduction mechanism and spectral response confirms that such photodiodes are potentially applicable for ultraviolet (UV) sensors. The comparative study of both device structures provides further insights into the leakage current mechanisms, p-i interface properties, and quantum efficiency. Secondly, with the novel semiconducting In2O3, TFTs are fabricated and evaluated. The device performance is optimized by addressing the source/drain contact issue, lowering the intrinsic channel resistance, and improving the dielectric/channel interface. The best n-channel TFT has a high field-effect mobility of ~30 cm^2/Vs, a high current ON/OFF ratio of ~10^8, and a sub-threshold slope of 2.0 V/decade. More important, high-performance indium oxide TFTs here are integrated with the silicon dioxide and silicon nitride gate dielectrics by conventional plasma-enhanced chemical vapour deposition, which makes indium oxide TFT a competitive alternative for next generation TFTs to meet the technical requirements for flat-panel displays, large area imager arrays, and radio frequency identification tags. The stability study shows that indium oxide TFTs are highly stable with a very small threshold voltage shift under both a long-term constant voltage and long-term current stress. The dynamic behaviour indicates factors that affect the operation speed of such TFTs. A descriptive model is proposed to link the material properties and the processing issues with the device performance to facilitate further research and development of TOS TFTs. The research described in this thesis is one of the first investigations of the fabrication of TOSs by the IBAE and their applications to a variety of thin-film devices, particularly UV sensors and TFTs.
2

Transparent Oxide Semiconductors: Fabrication, Properties, and Applications

Wang, Kai January 2008 (has links)
Transparent oxide semiconductors (TOSs) are materials that exhibit electrical conduction and optical transparency. The traditional applications of these materials are transparent conducting oxides in flat-panel displays, light-emitting diodes, solar cells, and imaging sensors. Recently, significant research has been driven to extend state-of-the-art applications such as thin-film transistors (TFTs). A new and rapidly developing field is emerging, called transparent electronics. This thesis advances transparent electronics through developing a new technique to fabricate TOSs and demonstrating their applications to active semiconductor devices such as diodes and TFTs. Ion beam assisted evaporation (IBAE) is used to deposit two common TOSs: zinc oxide (ZnO) and indium oxide (In2O3). The detailed material study is carried out through various characterization of their electrical properties, chemical composition, optical properties, crystal structure, intrinsic stress, topology, and morphology, as well as an investigation of thin-film property as a function of the deposition parameters: ion flux and energy, and deposition rate. The study proves that IBAE technique provides the capability for fabricating TOSs with controllable properties. By utilizing the newly developed semiconducting ZnO, p-NiO/i-ZnO/n-ITO and n-ITO/i-ZnO/p-NiO heterostructure photodiodes with a low leakage are proposed and assessed. Analysis of their current-voltage characteristics and current transient behaviour reveals that the dominant source of leakage current stems from the deep defect states in the intrinsic zinc oxide layer, where its dynamic response at low signal levels is limited by the charge trapping. The exploration of the photoconduction mechanism and spectral response confirms that such photodiodes are potentially applicable for ultraviolet (UV) sensors. The comparative study of both device structures provides further insights into the leakage current mechanisms, p-i interface properties, and quantum efficiency. Secondly, with the novel semiconducting In2O3, TFTs are fabricated and evaluated. The device performance is optimized by addressing the source/drain contact issue, lowering the intrinsic channel resistance, and improving the dielectric/channel interface. The best n-channel TFT has a high field-effect mobility of ~30 cm^2/Vs, a high current ON/OFF ratio of ~10^8, and a sub-threshold slope of 2.0 V/decade. More important, high-performance indium oxide TFTs here are integrated with the silicon dioxide and silicon nitride gate dielectrics by conventional plasma-enhanced chemical vapour deposition, which makes indium oxide TFT a competitive alternative for next generation TFTs to meet the technical requirements for flat-panel displays, large area imager arrays, and radio frequency identification tags. The stability study shows that indium oxide TFTs are highly stable with a very small threshold voltage shift under both a long-term constant voltage and long-term current stress. The dynamic behaviour indicates factors that affect the operation speed of such TFTs. A descriptive model is proposed to link the material properties and the processing issues with the device performance to facilitate further research and development of TOS TFTs. The research described in this thesis is one of the first investigations of the fabrication of TOSs by the IBAE and their applications to a variety of thin-film devices, particularly UV sensors and TFTs.
3

Design Of Reflective &amp / Antireflective Coatings For Space Applications

Eroglu, Huseyin Cuneyt 01 September 2009 (has links) (PDF)
In order to improve the efficiency of various optical surfaces, optical coatings are used. Optical coating is a process of depositing a thin layer of a material on an optical component such as mirror or lens to change reflectance or transmittance. There are two main types of coatings namely / reflective and antireflective (AR) Coatings. Reflective and antireflective coatings have long been developed for a variety of applications in all aspects of use / for optical and electro-optical systems in telecommunications, medicine, military products and space applications. In this thesis, the main properties of reflective and antireflective coatings, the thin film deposition techniques, suitable coating materials for space applications, space environment effects on coating materials and coating design examples which are developed using MATLAB for space applications will be discussed.
4

ECR Assisted Deposition of Tin And Si3N4 Thin Films For Microelectronic Applications

Vargheese, K Deenamma 07 1900 (has links)
The broad theme of the present research investigation is Ion Assisted Deposition of thin films and its effect on the properties of thin films. Though this activity has been of interest to researchers for more than a decade, the development of different types of ion sources with control over the ion flux and energy, makes it a current topic of interest. Ion assisted deposition was successful in depositing thin films of many material with desired qualities, however, there are certain class of materials whose deposition has been rather difficult. This has mainly been attributed to higher energies and low ion flux of conventional ion sources. The advent of ECR ion sources for thin film deposition has given impetus to the deposition of such materials. This is due to the low energy high-density plasma generated in this type of sources. Hitherto, these sources were widely used in PECVD techniques and only recently the importance of ECR sources in PVD techniques has been realized. This thesis is on the development of ECR plasma source for ion assisted deposition of thin films using PVD techniques. This thesis is organized into six chapters. The first chapter gives an introduction on the ion assisted growth of thin films and the importance of ECR plasma. A detailed discussion on various aspects of ECR sources has been included. The design details on the development of ECR source have been discussed in the second chapter. The performance of ECR source as analyzed by the Langmuir probe are also discussed. Variation of plasma parameters like ion density, electron temperature, plasma potential and floating potential as a function of pressure and microwave power have been studied using Langmuir probe analysis. An ion density of the order of 1011/cm3 was measured at a distance of 8 cm from the plasma source with a microwave power of 400 watts. This was comparable to the ion density reported in downstream plasma of ECR sources. The behavior of plasma parameters with variation in microwave power and pressure was explained on the basis of microwave transmission above critical ion density and the microwave power absorption. The uniformity of the plasma parameters at the substrate position (29 cm from the ECR source) was found to be ± 2% over a diameter of 12 cm, which makes the ion source suitable for ion assisted deposition. The third chapter deals with the simulation and experimental study of the ECR sputtering process. ECR sputter type sources are equipped with cylindrical targets. The sputtered flux distribution on the substrate depends on target geometry, sputtering pressure and target-substrate distance. The effect of cylindrical geometry on the distribution of sputtered flux has been simulated by Monte Carlo methods. It is found that the sputtered flux distribution at different pressures and target-substrate distances in ECR sputter type source differs from the conventional glow discharge sputtering system equipped with planar targets. The simulated results are compared with the experimental results. The simulated data agree very well with the experimental data. The deposition and characterization of the TiN thin films for diffusion barrier applications in copper metallization have been discussed in the fourth chapter. Titanium nitride films are prepared by ECR sputtering. The effect of high density ion bombardment on the morphology, orientation and resistivity of the films was studied. It was observed that films with atomic smoothness could be prepared by ECR sputtering. Also the high density ion bombardment has been found to be effective for the film growth in (100) orientation. The behavior of TiN films deposited by this method as a diffusion barrier in copper metallization has been investigated. The resistivity measurements and RBS depth profile studies showed that up to 700°C there is no diffusion of copper into silicon. This shows that ECR sputtered TiN can be used as an effective diffusion barrier in copper metallization. The fifth chapter contains investigations on the ECR assisted growth of silicon nitride films. The films are characterized for composition, morphology and chemical bonding using AES, RBS, AFM, XPS and FTIR. AFM studies revealed that ion bombardment results in the reduction of surface roughness, which indicates dense film growth. The effect of ion assistance on the optical and electrical properties is studied in detail. Films prepared with microwave power ranging from 100 to 200 watts are having bandgap and refractive index of 4.9 eV and 1.92 respectively. Interface state density of silicon nitride films prepared in the above mentioned range was found to be 5x10 10 eVcm2. These films exhibited a resistivity of 10 13 Ω, cm and critical field of 4 MV/cm. The electrical conductivity in these films has been explained on the basis of Poole and Frenkel conduction. The low value of interface state density, higher resistivity, and critical field show that good quality SiN4 films can be deposited with low energy high density ECR plasma. A detailed summary of this research investigation has been discussed in the last chapter. The thesis is concluded with a discussion on the need of focused ECR source to establish ECR assisted deposition as a versatile technique for the growth of thin films.
5

Ion Assisted Deposition Of HfO2 Thin Films For CMOS Gate Dielectric Applications

Jajala, Bujjamma 09 1900 (has links) (PDF)
The scaling down of Complementary Metal Oxide Semiconductor (CMOS) transistors to sub-100nm requires replacement of conventional Silicon dioxide layer with high dielectric constant (K) material for gate dielectric. Among the various high-K dielectrics that have been studied, HfO2 is found to be a promising candidate because of its high dielectric constant (~25), large band gap (5.68 eV), thermodynamic stability and good interface with Si. The HfO2 films have already been deposited using different growth techniques such as Atomic layer Deposition (ALD), Metalorgonic Chemical Vapor Deposition (MOCVD) and Pulsed Laser Deposition (PLD). Ion Assisted Deposition (IAD) is a novel technique that has been successfully employed to produce optical coatings of required quality. This growth technique presents many advantages over the other techniques such as formation from solid oxide sources, low growth temperatures (25-3000C) and film densification by ion bombardment. Hence this technique has been used to prepare HfO2 films in the present investigations. This thesis presents the structural, optical and electrical properties of HfO2 thin films prepared by Ion assisted deposition (IAD). The suitability of Ion assisted deposition process and the importance of investigations on the influence of process parameters on the film characteristics have been brought out in the process parameters-structure-composition and properties correlation presented in this thesis. The aim of this work is to process and characterize HfO2 films and investigate the influence of process parameters on the structure, composition and properties of the films to identify their suitability for CMOS gate applications. HfO2 films were deposited on p-type Si (100) wafers by Ion assisted deposition in an electron beam evaporation (Leybold,L-560) system. Pre-bombardment of the substrates with Argon ions has been done to remove any native oxide layer formation on Silicon by using a hallow cathode ion source (DENTON VACUUM CC103). During the film deposition a collimated oxygen ion beam, generated from the ion source is directed towards the substrate. The oxygen ion current is controlled by adjusting the voltage applied to the ion source and the oxygen flow through the ion source. The oxygen ions bombard the film as it grows and in that process improves its packing density as well as its stoichiometry. Keeping the deposition rate and thickness constant, HfO2 films have been deposited by varying Ion Current, Ion energy and substrate temperature. MOS capacitors were fabricated with Aluminum as gate electrode deposited by thermal evaporation. Ellipsometry techniques have been used to measure the optical thickness of the films. The interfacial layer (IL) formed at the HfO2/ Si interface was investigated by using Fourier transform Infrared spectroscopy (FT-IR). The structural characterization was carried out by X-ray diffraction technique. The high frequency capacitance-voltage and DC leakage current characteristics were measured to analyze the electrical characteristics of MOS capacitors. The effect of post deposition annealing (PDA) of the films at 600°C and 700ºC in Forming Gas (15%H2+85%N2) ambient and Post metallization annealing (PMA) at 400ºC in the same ambient was also investigated to observe the changes in electrical characteristics. The initial step of this work was to compare the characteristics of the films deposited by reactive evaporation and Ion assisted deposition which confirmed the superiority of the quality of IAD coatings and justified the need to proceed further with a more detailed study on the influence of various parameters on the properties of IAD coatings. HfO2 films deposited on substrates maintained at 1000C exhibited better structural, Optical and Electrical properties. The leakage current in these films were lower which has been attributed to silicate free interface as confirmed by XRD studies. Investigations on films deposited with oxygen ion beams of different currents in the range 20 to 40mA indicated that the films deposited at 20mA ion current showed better electrical properties. Better stoichiometry of these films as indicated by FT IR studies was one of the reasons for their improved performance. Annealing of these films at 6000C and 7000C in FGA medium resulted in creation of silicates and silicides at the interface thereby increasing the leakage currents and degraded the film properties. The films deposited with oxygen ion beams generated with a driving voltage 265V showed better structural and optical properties with silicate free interface compared with low and high driving voltages. Among all the films, the maximum dielectric constant of about 21.9 with a minimum EOT of 5.5 nm corresponding to a film deposited at ion current 20mA with PMA 400°C in FG ambient for 20minites is achieved. The lowest value of interface charge density achieved is 2.7 x1012 per cm-2 eV-1 corresponding to the sample deposited at substrate temperature 100°C with deposition rate of 0.5Å/sec followed by post metallization annealing at 400°C in forming gas for 20minutes. The range of Dit values that were obtained are varying from 2.7x 1012 – 16.7x1012 cm-2eV-1.It was also found that, the samples deposited at higher ion currents show lower Dit values than the samples deposited at lower ion currents. From the I−V analysis, the leakage current density is found to be comparatively less in IAD than in reactive evaporation. Leakage current increases with increase in substrate temperature and the same trend is observed with annealed films also. The lowest leakage current density of 1.05x10–8 A/cm2 at a gate bias of 1V was observed in the films deposited at substrate temperature 1000C. The present thesis focused on the suitability of the Ion Assisted deposition process for the preparation of HfO2 films for high-K gate dielectric application and the importance of investigations on the influence of process parameters on the film characteristics.
6

Controle de propriedades de filmes finos de óxido de alumínio através da assistência de feixe iônico / Controlling aluminum oxide thin films properties through ion beam assistance.

Santos, Thales Borrely dos 28 April 2017 (has links)
Este trabalho tem por objetivo a caracterização de filmes finos de óxido de alumínio produzidos por deposição assistida por feixe de íons Ar+. Tal caracterização consiste em estabelecer a relação entre os parâmetros de produção (energia do feixe e uxo relativo de Ar), a composição e a estrutura dos lmes. Para tanto, utiliza-se técnicas de microscopia de força atômica, difração de raios-x, reetividade de raios-x e análise por feixe iônico. Resultados mostram que amostras produzidas à temperatura ambiente e à 450 oC são amorfas independentemente da energia do feixe iônico. Filmes formados com assistência de feixe possuem qualidade superior àqueles formados por deposição física de vapor. O bombardeamento de íons Ar+ mostra-se capaz de controlar a concentração de hidrogênio, a estequiometria, a rugosidade, o tamanho dos grãos e a densidade dos lmes nos. Amostras com excelente qualidade baixa rugosidade, estequiometria próxima da ideal e boa densidade foram produzidas utilizando íons com energia dentre 300 eV e 600 eV. / The scope of this work is the characterization of aluminum oxide thin films produced by Ar+ ion beam assisted deposition. This characterization consists in establishing the relationship between production parameters (ion beam energy and argon relative ux), structure and composition of these lms. In order to undertake this task, the following techniques were used: atomic force microscopy, x-ray diraction, x-ray reectivity and ion beam analysis. Results show that samples produced at room temperature and at 450 oC are amorphous regardless the ion beam energy. Films grown under ion assistance have better characteristics than the ones deposited by physical vapor deposition. The ion beam bombardment is capable of controlling hydrogen concentration, stoichiometry, roughness, grain size and density of alumina samples. High quality lms at surface and increased density lms with near ideal stoichiometry were produced with 300 eV and 600 eV ion beam energy.
7

Controle de propriedades de filmes finos de óxido de alumínio através da assistência de feixe iônico / Controlling aluminum oxide thin films properties through ion beam assistance.

Thales Borrely dos Santos 28 April 2017 (has links)
Este trabalho tem por objetivo a caracterização de filmes finos de óxido de alumínio produzidos por deposição assistida por feixe de íons Ar+. Tal caracterização consiste em estabelecer a relação entre os parâmetros de produção (energia do feixe e uxo relativo de Ar), a composição e a estrutura dos lmes. Para tanto, utiliza-se técnicas de microscopia de força atômica, difração de raios-x, reetividade de raios-x e análise por feixe iônico. Resultados mostram que amostras produzidas à temperatura ambiente e à 450 oC são amorfas independentemente da energia do feixe iônico. Filmes formados com assistência de feixe possuem qualidade superior àqueles formados por deposição física de vapor. O bombardeamento de íons Ar+ mostra-se capaz de controlar a concentração de hidrogênio, a estequiometria, a rugosidade, o tamanho dos grãos e a densidade dos lmes nos. Amostras com excelente qualidade baixa rugosidade, estequiometria próxima da ideal e boa densidade foram produzidas utilizando íons com energia dentre 300 eV e 600 eV. / The scope of this work is the characterization of aluminum oxide thin films produced by Ar+ ion beam assisted deposition. This characterization consists in establishing the relationship between production parameters (ion beam energy and argon relative ux), structure and composition of these lms. In order to undertake this task, the following techniques were used: atomic force microscopy, x-ray diraction, x-ray reectivity and ion beam analysis. Results show that samples produced at room temperature and at 450 oC are amorphous regardless the ion beam energy. Films grown under ion assistance have better characteristics than the ones deposited by physical vapor deposition. The ion beam bombardment is capable of controlling hydrogen concentration, stoichiometry, roughness, grain size and density of alumina samples. High quality lms at surface and increased density lms with near ideal stoichiometry were produced with 300 eV and 600 eV ion beam energy.

Page generated in 0.5803 seconds