• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 101
  • 15
  • 14
  • 13
  • 6
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 194
  • 194
  • 37
  • 33
  • 24
  • 23
  • 23
  • 22
  • 22
  • 21
  • 21
  • 21
  • 20
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

HIERARCHICAL APPROACH TO PREDICTING TRANSPORT PROPERTIES OF A GRAMICIDIN ION CHANNEL WITHIN A LIPID BILAYER

WANG, ZHENG January 2003 (has links)
No description available.
102

Regulation of cardiac voltage gated potassium currents in health and disease

Sridhar, Arun 24 August 2007 (has links)
No description available.
103

Regulation of ATP-Sensitive Potassium Channels in the Heart

Garg, Vivek 26 June 2009 (has links)
No description available.
104

Blockade of the Transient Receptor Potential Vanilloid (TRPV) by Ruthenium Red Does Not Suppress Hypothalamic Neuronal Thermosensitivity

Unger, Nicholas T. 19 June 2012 (has links)
No description available.
105

Regulation of the T-type Ca2+ channel Cav3.2 by hydrogen sulfide: emerging controversies concerning the role of H2S in nociception

Elies, Jacobo, Scragg, J.L., Boyle, J.P., Gamper, N., Peers, C. 25 January 2016 (has links)
Yes / Ion channels represent a large and growing family of target proteins regulated by gasotransmitters such as nitric oxide, carbon monoxide and, as described more recently, hydrogen sulfide. Indeed, many of the biological actions of these gases can be accounted for by their ability to modulate ion channel activity. Here, we report recent evidence that H2S is a modulator of low voltage-activated T-type Ca2+ channels, and discriminates between the different subtypes of T-type Ca2+ channel in that it selectively modulates Cav3.2, whilst Cav3.1 and Cav3.3 are unaffected. At high concentrations, H2S augments Cav3.2 currents, an observation which has led to the suggestion that H2S exerts its pro-nociceptive effects via this channel, since Cav3.2 plays a central role in sensory nerve excitability. However, at more physiological concentrations, H2S is seen to inhibit Cav3.2. This inhibitory action requires the presence of the redox-sensitive, extracellular region of the channel which is responsible for tonic metal ion binding and which particularly distinguishes this channel isoform from Cav3.1 and 3.3. Further studies indicate that H2S may act in a novel manner to alter channel activity by potentiating the zinc sensitivity/affinity of this binding site. This review discusses the different reports of H2S modulation of T-type Ca2+ channels, and how such varying effects may impact on nociception given the role of this channel in sensory activity. This subject remains controversial, and future studies are required before the impact of T-type Ca2+ channel modulation by H2S might be exploited as a novel approach to pain management. / This work was supported by grants from the British Heart Foundation, the Medical Research Council, and the Hebei Medical University
106

K+ channels : gating mechanisms and lipid interactions

Schmidt, Matthias Rene January 2013 (has links)
Computational methods, including homology modelling, in-silico dockings, and molecular dynamics simulations have been used to study the functional dynamics and interactions of K<sup>+</sup> channels. Molecular models were built of the inwardly rectifying K<sup>+</sup> channel Kir2.2, the bacterial homolog K<sup>+</sup> channel KirBac3.1, and the twin pore (K2P) K<sup>+</sup> channels TREK-1 and TRESK. To investigate the electrostatic energy profile of K<sup>+</sup> permeating through these homology models, continuum electrostatic calculations were performed. The primary mechanism of KirBac3.1 gating is believed to involve an opening at the helix bundle crossing (HBC). However, simulations of Kir channels have not yet revealed opening at the HBC. Here, in simulations of the new KirBac3.1-S129R X-ray crystal structure, in which the HBC was trapped open by the S129R mutation in the inner pore-lining helix (TM2), the HBC was found to exhibit considerable mobility. In a simulation of the new KirBac3.1-S129R-S205L double mutant structure, if the S129R and the S205L mutations were converted back to the wild-type serine, the HBC would close faster than in the simulations of the KirBac3.1-S129R single mutant structure. The double mutant structure KirBac3.1-S129R-S205L therefore likely represents a higher-energy state than the single mutant KirBac3.1-S129R structure, and these simulations indicate a staged pathway of gating in KirBac channels. Molecular modelling and MD simulations of the Kir2.2 channel structure demonstrated that the HBC would tend to open if the C-linker between the transmembrane and cytoplasmic domain was modelled helical. The electrostatic energy barrier for K<sup>+</sup> permeation at the helix bundle crossing was found to be sensitive to subtle structural changes in the C-linker. Charge neutralization or charge reversal of the PIP2-binding residue R186 on the C-linker decreased the electrostatic barrier for K<sup>+</sup> permeation through the HBC, suggesting an electrostatic contribution to the PIP2-dependent gating mechanism. Multi-scale simulations determined the PIP2 binding site in Kir2.2, in good agreement with crystallographic predictions. A TREK-1 homology model was built, based on the TRAAK structure. Two PIP2 binding sites were found in this TREK-1 model, at the C-terminal end, in line with existing functional data, and between transmembrane helices TM2 and TM3. The TM2-TM3 site is in reasonably good agreement with electron density attributed to an acyl tail in a recently deposited TREK-2 structure.
107

Single Molecule Spectroscopy Studies of Membrane Protein Dynamics and Energetics by Combined Experimental and Computational Analyses

Rajapaksha, Suneth P. 23 July 2012 (has links)
No description available.
108

Étude du couplage entre les sous-unités du canal potassique KcsA par des mesures de spectroscopie de fluorescence en canal unitaire

McGuire, Hugo January 2009 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
109

Morphologische, immunphänotypische und elektrophysiologische Eigenschaften deaktivierter muriner Mikroglia in vitro

Schilling, Tom 16 July 2001 (has links)
Murine Mikrogliakulturen wurden mit Astrozyten-konditioniertem Medium (ACM) in einen deaktivierten Zustand überführt. Dies wurde anhand morphologischer (Grad der Ramifizierung) und immunologischer (Expression von Adhäsionsmolekülen) Parameter verifiziert. Durch den Einsatz von Makrophagen-koloniestimulierenden Faktor (M-CSF), Granulozyten/Makrophagen-koloniestimulierenden Faktor (GM-CSF), transformierenden Wachstumsfaktor beta (TGF-beta) und den gegen sie gerichteten Antikörpern wurde gezeigt, daß alle untersuchten Zytokine in unterschiedlichem Maße an der Deaktivierung der Mikrogliazellen durch ACM beteiligt sind. Außerdem wurde nach Stimulation mit ACM an murinen Mikrogliazellen eine transiente Hochregulation eines Kaliumauswärtsstromes beobachtet Das Auftreten dieses Kalium-stromes nach Inkubation der Mikrogliazellen mit ACM konnte auf die Wirkung von TGF-beta, welches im ACM enthalten ist, zurückgeführt werden. Der durch ACM in deaktivierter Mikroglia induzierte Kaliumkanal entsprach in seinen kinetischen und pharma-kologischen Eigenschaften am ehesten dem klonierten Kanal Kv1.3. Die Kv1.3 Expression durch TGF-beta oder ACM war durch den unspezifischen Proteinkinaseinhibitor H7 unterdrückbar. Diese Ergebnisse zeigen, daß die Expression des Kv1.3 Kanals nicht, wie bisher angenommen, ein Indikator für aktivierte Mikroglia ist. / Murine microglial cultures were deactivated with astrocyte-conditioned medium (ACM). The deactivation process was verified measuring morphological (ramification index) and immunological (expression level of adhesion molecules) parameters. By using macrophage-colony stimulating factor (M-CSF), granulocyte/macrophage-colony stimulating factor (GM-CSF), transforming growth factor beta (TGF-beta) and their corresponding antibodies it was shown, that to a different extent all of these cytokines influence the deactivation process of microglial cells by ACM. ACM treatment of microglial cultures also lead to a transient upregulation of a delayed potassium outward current. This upregulation was due to the impact of TGF-beta contained in ACM. The ACM induced potassium channel resembled in its kinetic and pharmacological properties the cloned Kv1.3 channel. Expression of Kv1.3 in microglial cells by TGF-beta or ACM was inhibited by the unspecific protein kinase inhibitor H7. These results show, that expression of Kv1.3 channels is not a special feature of activated microglia, which has been proposed in recent publications.
110

Biophysikalische und molekulare Grundlagen der Regulation des Kaliumtransports in Pflanzen / Biophysical and molecular bases of the regulation of potassium transport in plants

Dreyer, Ingo January 2005 (has links)
Kaliumionen (K<sup>+</sup>) sind die am häufigsten vorkommenden anorganischen Kationen in Pflanzen. Gemessen am Trockengewicht kann ihr Anteil bis zu 10% ausmachen. Kaliumionen übernehmen wichtige Funktionen in verschiedenen Prozessen in der Pflanze. So sind sie z.B. essentiell für das Wachstum und für den Stoffwechsel. Viele wichtige Enzyme arbeiten optimal bei einer K<sup>+</sup> Konzentration im Bereich von 100 mM. Aus diesem Grund halten Pflanzenzellen in ihren Kompartimenten, die am Stoffwechsel beteiligt sind, eine kontrollierte Kaliumkonzentration von etwa 100 mM aufrecht.<br><br> Die Aufnahme von Kaliumionen aus dem Erdreich und deren Transport innerhalb der Pflanze und innerhalb einer Pflanzenzelle wird durch verschiedene Kaliumtransportproteine ermöglicht. Die Aufrechterhaltung einer stabilen K<sup>+</sup> Konzentration ist jedoch nur möglich, wenn die Aktivität dieser Transportproteine einer strikten Kontrolle unterliegt. Die Prozesse, die die Transportproteine regulieren, sind bis heute nur ansatzweise verstanden. Detailliertere Kenntnisse auf diesem Gebiet sind aber von zentraler Bedeutung für das Verständnis der Integration der Transportproteine in das komplexe System des pflanzlichen Organismus. <br><br> In dieser Habilitationsschrift werden eigene Publikationen zusammenfassend dargestellt, in denen die Untersuchungen verschiedener Regulationsmechanismen pflanzlicher Kaliumkanäle beschrieben werden. Diese Untersuchungen umfassen ein Spektrum aus verschiedenen proteinbiochemischen, biophysikalischen und pflanzenphysiologischen Analysen. Um die Regulationsmechanismen grundlegend zu verstehen, werden zum einen ihre strukturellen und molekularen Besonderheiten untersucht. Zum anderen werden die biophysikalischen und reaktionskinetischen Zusammenhänge der Regulationsmechanismen analysiert. Die gewonnenen Erkenntnisse erlauben eine neue, detailliertere Interpretation der physiologischen Rolle der Kaliumtransportproteine in der Pflanze. / Potassium ions (K<sup>+</sup>) are the most abundant anorganic cations in plants. They can constitute up to 10% of the plant dry weight. Potassium ions play important roles in different processes in the plant. For example, they are essential for growth and for metabolism. Many important enzymes work optimally at a K<sup>+</sup> concentration within the range of about 100 mM. Therefore, plant cells maintain a controlled potassium concentration of approximately 100 mM in their compartments, which are involved in metabolism. <br><br> The uptake of potassium ions from the soil and their transport within the plant and within a plant cell is accomplished by different potassium transporter proteins. However, the maintenance of a stable K<sup>+</sup> concentration is only possible if the activity of these transporter proteins is subject to strict control. Up today the processes regulating the transporter proteins are only rudimentarily understood. More detailed knowledge in this area is, however, of central importance for the understanding of the integration of the transporter proteins into the complex system of the plant organism. <br><br> This Habilitation-thesis summarizes own publications, in which the investigations of different regulation mechanisms of plant potassium channels are described. These investigations cover a spectrum of different protein-biochemical, biophysical and plant-physiological analyses. In order to understand the regulation mechanisms, on the one hand their structural and molecular characteristics are examined. On the other hand the biophysical and reaction-kinetic properties of the regulation mechanisms are analyzed. The obtained insights allow a new, more detailed view on the physiological role of potassium transporter proteins in the plant.

Page generated in 0.0393 seconds