• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 19
  • 19
  • 12
  • 11
  • 8
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude par RMN du magnétisme et de la supraconductivité dans les pnictures de Fer / NMR study of magnetism and superconductivity in iron pnictides

Laplace, Yannis 06 December 2011 (has links)
La découverte récente de supraconductivité à relativement haute température (Tc,max=56K) dans les pnictures de Fer soulève des questions fondamentales sur l’origine et la nature de la supraconductivité : en particulier, la présence d’une phase antiferromagnétique à proximité de celle-ci dans leur diagramme de phase, comme dans d’autres supraconducteurs non conventionnels pose la question du lien entre magnétisme et supraconductivité.Nous nous sommes intéressés à la nature de l’état normal ainsi que des phases antiferromagnétique et supraconductrice d’un point de vue local grâce à la Résonance Magnétique Nucléaire (RMN) dans les pnictures de Fer. Nous avons pour cela étudié des pnictures de Fer de même composé parent BaFe2As2 pour des substitutions Co en site Fer de nature hétérovalente et réalisant un dopage électron ou bien Ru en site Fer de nature isovalente. L’état normal de ces matériaux présente des différences notables avec l’état normal des cuprates supraconducteurs : le désordre introduit par les substitutions au niveau intraplan est faible et on constate l’absence d’une phase de PseudoGap pour la susceptibilité de spin. Les diagrammes de phase sont similaires pour le Co et le Ru mais nos mesures montrent que la nature des phases antiferromagnétique et supraconductrice est en réalité qualitativement différente à l’échelle locale pour les deux types de substitution. Pour la substitution au Co réalisant un dopage électron, les phases électroniques sont homogènes et nous démontrons en particulier qu’à certains dopages, un ordre antiferromagnétique incommensurable coexiste avec la supraconductivité jusqu’à une échelle atomique, suggérant une nature itinérante du magnétisme et un état supraconducteur possédant une symétrie non conventionnelle. Pour la substitution isovalente au Ru, les phases électroniques sont inhomogènes à une échelle étonnamment faible, de l’ordre du nanomètre, mettant en jeu une coexistence entre magnétisme et supraconductivité très distribuée spatialement. Ce travail illustre la possibilité d’engendrer une phase supraconductrice non conventionnelle en déstabilisant une phase antiferromagnétique au moyen de mécanismes agissant soit dans l’espace réciproque (dopage électron), soit dans l’espace réel (substitution isovalente) et donnant lieu par ailleurs à une coexistence de ces phases de nature très différente dans les deux cas. / The recent discovery of superconductivity at a rather high temperature in the iron pnictides (Tc,max=56K) has revived some fundamental questions about the existence and the nature of the superconducting phase : in particular, the existence of an antiferromagnetic phase that is in vicinity of the superconducting phase in their phase diagram, as in other unconventional superconductors, raises questions about the link between magnetism and superconductivity. In this thesis, we studied the normal state as well as the antiferromagnetic and superconducting phases of the iron pnictides on a local scale with Nuclear Magnetic Resonance (NMR). Starting from the same parent compound BaFe2As2, we studied heterovalent Co substitution in Fe site realizing an electron doping and isovalent Ru substitution in Fe site. The normal state is shown to display important qualitative differences with the normal state of cuprates superconductors: disorder induced substitutions in electronically active layers is weak and we show the absence of a PseudoGap phase from spin susceptibility measurements. Whereas the phase diagram is similar for Co and Ru substitutions, we show that the nature of the antiferromagnetic and the superconducting phases is qualitatively different on a local scale in the two cases. For Co substitution leading to electron doping, the electronic phases are homogeneous and we demonstrate in particular the homogeneous coexistence of antiferromagnetism and superconductivity down to an atomic scale for some compositions: this suggests a magnetism of itinerant nature and an unconventional superconducting order parameter for the superconducting phase. For the isovalent Ru substitution, the electronic phases are inhomogeneous at a scale surprisingly low of the order of the nanometer scale, leading to a coexistence that is very distributed spatially. This works shows the possibility to induce an unconventional superconducting phase by the weakening of an antiferromagnetic phase made possible with very different means : either in reciprocal space with electron doping or in real space with isovalent substitution. Moreover, this is shown to lead to different kinds of coexistence between these phases in the two cases.
2

Angle-resolved Photoemission Studies on Hole Doped Iron Pnictides Ba1-xKxFe2As2

Xu, Yiming January 2010 (has links)
Thesis advisor: Hong Ding / Thesis advisor: Ziqiang Wang / The discovery of the high-T<sub>c</sub> superconductivity in iron-arsenic materials in 2008 immediately became one of the hottest topics in the condensed matter physics. This dissertation presents a systematic study on the pairing symmetry and electronic structure on the hole doped materials of BaFe<sub>2</sub>As<sub>2</sub> (so called &ldquo;122&rdquo;-system), by angle-resolved photoemission spectroscopy (ARPES). In the early ARPES studies on &ldquo;122&rdquo;-pnictides, we observed two hole-like Fermi surfaces (FSs) centered at the Brillouin zone (BZ) center, (&Gamma;), and two electron-like FSs centered at the zone corner (M), which is (&pi;, &pi;) in the BZ or (&pi;, 0) in the unfolded BZ. The size of these FS sheets can be changed by carrier doping, which causes change of the chemical potential. In the superconducting state, temperature (<italic>T</italic>) and momentum (<italic>k</italic>) dependence of ARPES measurements reveals the Fermi-surface-dependent nodeless superconducting gaps in this system and shows that an <italic>s</italic>-wave symmetry is the most natural interpretation for our findings in terms of the pairing order parameter. The ratio 2&Delta;/k<sub>B</sub>T<sub>c</sub> switches from weak to strong coupling on different FS sheets. Large superconducting gaps are observed with a strong coupling coefficient (2&Delta;/k<sub>B</sub>T<sub>c</sub>) on the near-nested FSs connected by the antiferromagnetic (AF) wave vector ((&pi;, &pi;) in the BZ or (&pi;, 0) in the unfolded BZ). When T<sub>c</sub> is suppressed in the heavily overdoped materials, the near-nesting condition vanishes, or more precisely, the (&pi;, &pi;) inter-FS scattering disappears due to the absence of either the hole-like or the electron-like FS at the Fermi energy (E<sub>F</sub>). We have also performed ARPES measurements on k<sub>z</sub>-dependence of the superconducting gap and band structure of the optimally hole doped sample Ba<sub>0.6</sub>K<sub>0.4</sub>Fe<sub>2</sub>As<sub>2</sub>. By varying the photon energy, we can tune k<sub>z</sub> continuously. While significant k<sub>z</sub> dispersion of the superconducting gaps is observed on the hole-like bands, much weaker k<sub>z</sub> dispersion of the superconducting gaps is observed on the electron-like bands. Remarkably, we find that a 3D gap function based on short-range pairing can fit the superconducting gaps on all the FS sheets. Moreover, an additional hole-like FS (referred as the &alpha;<super>&lsquo;</super> FS) predicted by local density approximation (LDA) calculations is observed around the Z point. The disappearance of intensity of the &alpha;<super>&lsquo;</super> band near E<sub>F</sub> at k<sub>z</sub> = &pi;/2 suggests that the &alpha;<super>&lsquo;</super> band could either sink below E<sub>F</sub> or be degenerate with the inner hole (&alpha;) band. The studies on the &alpha;<super>&lsquo;</super> band in the superconducting state reveal a nearly isotropic superconducting gap on this FS sheet. Underdoped samples Ba<sub>0.75</sub>K<sub>0.25</sub>Fe<sub>2</sub>As<sub>2</sub> are used to study how the AF fluctuations and superconductivity interplay in the underdoped regime that is closer to the AF phase. we observe that the superconducting gap of the underdoped pnictides scales linearly with T<sub>c</sub>. A distinct pseudogap develops upon underdoping and coexists with the superconducting gap. Remarkably, this pseudogap occurs mainly on the FS sheets that are connected by the AF wave vector, where the superconducting pairing is stronger as well. This suggests that both the pseudogap and the superconducting gap are driven by the AF fluctuations, and the long-range AF ordering competes with the superconductivity. The observed dichotomic behaviour of the pseudogap and the SC gap on different FS sheets in the underdoped pnictides shares similarities with those observed in the underdoped copper oxide superconductors, providing a possible unifying picture for both families of high-temperature superconductors. / Thesis (PhD) — Boston College, 2010. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Physics.
3

Spin-Lattice Coupling in the Iron-Pnictide High-Temperature Superconductors

Parshall, Daniel E 01 December 2010 (has links)
The recent discovery of the iron-pnictide superconductors has generated tremendous excitement, in part because there are many tantalizing similarities to the cuprate superconductors. As with the cuprates, it is strongly suspected that the spins contribute to superconductivity. There seems to be a strong relationship between the lattice and magnetism in this system. Several authors have discussed the possibility of spin-phonon coupling, but direct experimental evidence has remained elusive. This work discusses the relationship between the spins and the lattice in the $BaFe_{2}As_{2}$ family. We demonstrate the presence of negative thermal expansion in these materials, which is a strong indicator of spin-lattice interaction. In addition, we have conducted inelastic neutron scattering experiments to examine the dynamical relationship between the spins and the lattice. In particular, we make use of the phenomenon known as magnetovibrational scattering to search for evidence of spin-phonon coupling. We believe that this is the first work to use magnetovibrational scattering in an antiferromagnetic system as a tool to study the spin-phonon interaction. Our results provide direct experimental evidence for the existence of spin-phonon coupling, with possible implications about the role of phonons in the superconductivity of iron pnictides.
4

Thermal expansion and magnetostriction studies on iron pnictides

Wang, Liran 07 October 2010 (has links) (PDF)
In this work, a 3-terminal capacitance dilatometer was set up and used for measurements of the thermal expansion and magnetostriction of novel superconducting iron pinictides and related materials. In particular, \re~with R\,=\,La, Ce, Pr, Sm, Gd, \laf~and Ca(Fe$_{1-x}$Co$_x$)$_2$As$_2$ have been investigated. The data on polycrystalline \laf~are the first published thermal expansion data on this material. The lattice effects at the structural and the magnetic phase transition have been investigated and the phase diagram upon F-doping has been studied. A main result is the observation of a previously unknown fluctuation regime for the doping level $\mathnormal{x}\leqslant$ 0.04 over a large $T$ range above the structural transition temperature \ts. The absence of any structural anomalies in the normal state of the superconducting \laf~samples with $\mathnormal{x}\geqslant$ 0.05 corroborates the discontinuous character of the phase boundary not only for the magnetism but also for the structural degrees of freedom. Similarly, the presence of high-temperature fluctuations is found for all \re~undoped materials under study. The discussion of the probable origin of the fluctuations as well as the definition of the structural transition temperature \ts~are done. The low temperature features shown by the thermal expansion data for \re~are caused by the onset of long range magnetic order of the $4f$-moments and their different configurations. In particular, \pr, which has a very pronounced anomaly associated with Pr-ordering exhibits a large magnetostriction at low temperatures. By discussing this effect along with the magnetization, resistivity and other measurements, it is found that this large magneto-elastic effect may originate from the correlations between the momentum from Fe$^{3+}$ and Pr$^{3+}$. Last, the thermal expansion of Ca(Fe$_{1-x}$Co$_x$)$_2$As$_2$ 122 single crystals is investigated. Ca(Fe$_{1-x}$Co$_x$)$_2$As$_2$ is one of the first materials where single crystals are available. The thermal expansion results on the undoped compound with $x=0$ show a large anomaly at the combined magnetic and structural transition which is far sharper than that for polycrystalline systems. Upon doping, both transitions are suppressed and their splitting is visible in the thermal expansion data. The high precision thermal expansion and magnetostriction results presented in this work are among the first data on the novel family of iron-based superconductors. A valuable insight in the respective ordering phenomena and the thermodynamic properties is provided.
5

High-temperature superconductivity in a family of iron pnictide materials

Gillett, Jack January 2011 (has links)
The work in this thesis falls roughly into three parts, which I characterise loosely as a developmental stage, an exploratory stage, and an attempt to contribute to understanding of the field. In the developmental stage, I have worked to design a variety of methods to create high-quality samples of various Iron Pnictide superconductors, to dope them with various chemicals and to characterise the resulting crystalline samples. I discuss in depth the signature of good quality crystals and the various experiments that they have been used in by myself and my collaborators. These processes are ongoing and will hopefully continue to contribute to my research group's capabilities. My exploratory work involves a detailed survey of one particular family, Sr(Fe1-xCox)2As2, as the level of Cobalt is varied, and the mapping of the phase diagram for the system. I have also made a comparison to the better-measured Barium analogue, and discuss the reasons for the differences in character between the two, most notably the lack of a splitting of the structural and magnetic transitions in the first species. I also discuss the effect of pressure, which can lead to superconductivity in lightly doped samples for very modest pressures; and annealing, which increases transition temperatures within samples, on a limited quantity of crystals. Finally, I attempt to contribute to the understanding of the field via a series of Resonant Ultrasound Spectroscopic experiments conducted by a collaborator on my crystals and analysed by me. I see distinct first-order transitions in the parent compounds, characterisable above the high-T structural transition within a Ginzburg-Landau pseudoproper ferroelastic scheme for a transition coupling weakly to strain but driven by another order parameter. My observations allow several statements about the symmetry of the order parameter and are suggestive of a non-magnetically driven structural transition. In the case of doped samples a much richer behavior is seen, with a broad transition and simultaneous relaxation of all elastic peaks and a broad temperature range of significant dispersion. The effect of the softening is seen far above TN and lends strong support to the family of models predicting such high-T fluctuations.
6

Thermal expansion and magnetostriction studies on iron pnictides

Wang, Liran 19 August 2010 (has links)
In this work, a 3-terminal capacitance dilatometer was set up and used for measurements of the thermal expansion and magnetostriction of novel superconducting iron pinictides and related materials. In particular, \re~with R\,=\,La, Ce, Pr, Sm, Gd, \laf~and Ca(Fe$_{1-x}$Co$_x$)$_2$As$_2$ have been investigated. The data on polycrystalline \laf~are the first published thermal expansion data on this material. The lattice effects at the structural and the magnetic phase transition have been investigated and the phase diagram upon F-doping has been studied. A main result is the observation of a previously unknown fluctuation regime for the doping level $\mathnormal{x}\leqslant$ 0.04 over a large $T$ range above the structural transition temperature \ts. The absence of any structural anomalies in the normal state of the superconducting \laf~samples with $\mathnormal{x}\geqslant$ 0.05 corroborates the discontinuous character of the phase boundary not only for the magnetism but also for the structural degrees of freedom. Similarly, the presence of high-temperature fluctuations is found for all \re~undoped materials under study. The discussion of the probable origin of the fluctuations as well as the definition of the structural transition temperature \ts~are done. The low temperature features shown by the thermal expansion data for \re~are caused by the onset of long range magnetic order of the $4f$-moments and their different configurations. In particular, \pr, which has a very pronounced anomaly associated with Pr-ordering exhibits a large magnetostriction at low temperatures. By discussing this effect along with the magnetization, resistivity and other measurements, it is found that this large magneto-elastic effect may originate from the correlations between the momentum from Fe$^{3+}$ and Pr$^{3+}$. Last, the thermal expansion of Ca(Fe$_{1-x}$Co$_x$)$_2$As$_2$ 122 single crystals is investigated. Ca(Fe$_{1-x}$Co$_x$)$_2$As$_2$ is one of the first materials where single crystals are available. The thermal expansion results on the undoped compound with $x=0$ show a large anomaly at the combined magnetic and structural transition which is far sharper than that for polycrystalline systems. Upon doping, both transitions are suppressed and their splitting is visible in the thermal expansion data. The high precision thermal expansion and magnetostriction results presented in this work are among the first data on the novel family of iron-based superconductors. A valuable insight in the respective ordering phenomena and the thermodynamic properties is provided.
7

Effects of symmetry breaking in low dimensional materials

César Dos Santos, Mário Jorge 04 November 2021 (has links)
Tesis por compendio / [EN] The dimensionality of the system plays a decisive role in the behavior of the electronic dynamics of interacting electrons. In particular, the quasi-2D dimensionality is responsible for the unusual behavior observed in graphene-like materials and layered van-der-Waal systems. Moreover, such effects are also observed for superconducting materials of high critical temperature, even in the normal state, due to their low-dimensionality. The experimental study of graphene triggered a growing attention to respective electronic properties, because the honeycomb lattice defines a band structure with two nodal points in the Brillouin zone which determines a relativistic Dirac-type electronic dynamics. Within a theoretical framework, many properties of single-layer graphene have been studied to allow further characterization of this material. These properties are unconventional due to the unique band structure of graphene, which is described in terms of Dirac fermions, creating links with certain theories of particle physics. In fact, several theoretical groups have employed phenomenological models inspired in quantum cromodynamics (i.e. Nambu-Jona Lassino and Gross-Neveu models) applied to the study of graphene properties. These properties are responsible for the unusual phenomena, such as the fractional Hall effect, which allows the possibility for magnetic catalysis of an excitonic gap, ferromagnetism and superconductivity. The research of high critical temperature superconductors with impurity centers is significant for understanding the underlying physics of such disordered systems. While the cuprate family present insulating properties in the pristine state, the undoped iron pnictides (i.e. LaOFeAs) show a semi-metallic behavior. Inspite these diferences, both compounds are layered structures, where the superconducting state is supported by a quasi-2D square lattice. While for iron pnictides this state is formed by the FeAs layer, the cuprate superconducting state is formed by the CuO layer. The current work focuses on the theoretical study of the structural, electronic and optical properties of graphene-type materials, such as bilayer graphene; and also of s- and d-wave superconductors, more specifically iron pnictides and cuprates, respectively. Furthermore, disordered systems will be focused upon since these (quasi-)2D systems are quite sensitive to disorder. Such properties have major importance for technological device applications, as can be observed in the increasing technological fields of high temperature superconductores and electronic devices. The type of perturbations applied to the systems of interest are chemical impurities and/or external electric bias, and these show variations of the electronic and optical properties when compared to the pristine systems. / [ES] La dimensionalidad de un sistema juega un papel fundamental en la conducta de la dinámica de los electrones que interactúan. En particular, la dimensionalidad cuasi-2D es responsable del comportamiento inusual observado en materiales de tipo grafeno y sistemas laminares basados en enlaces de tipo van der Waals. Además, estos efectos también se observan en materiales superconductores de alta temperatura crítica, incluso en el estado normal, debido a su baja dimensionalidad. El estudio experimental del grafeno provocó una atención creciente a sus propie-dades electrónicas, porque su estructura en forma de panal de abejas da lugar a una estructura de bandas con dos puntos nodales en la zona de Brillouin que determina una dinámica electrónica relativista de tipo Dirac. En el plano teórico, muchas propiedades del grafeno de una sola capa se han estudiado para permitir una mayor caracterización de este material. Estas propiedades son poco convencionales debido a la singular estructura de bandas del grafeno, que se describe en términos de fermiones de Dirac, lo que crea vínculos con ciertas teorías de la física de partículas. De hecho, varios grupos teóricos han empleado modelos fenomenológicos inspirados en la cromodinámica cuántica (es decir, los modelos Nambu-Jona Lassino y Gross-Neveu) aplicados al estudio de las propiedades del grafeno. Estas propiedades son responsables de inusuales fenómenos, como el efecto Hall fraccionario, que permite la posibilidad de catálisis magnética de un gap excitónico, ferromagnetismo y superconductividad. La investigación de superconductores de alta temperatura crítica con centros de impurezas es importante para comprender la física subyacente de tales sistemas desordenados. Mientras que la familia de los cupratos presenta propiedades aislantes en estado prístino, los pnictogenuros de hierro sin dopar (es decir, LaOFeAs) muestran un comportamiento semimetálico. A pesar de estas diferencias, ambos compuestos son estructuras en capas, donde el estado superconductor está respaldado por una red cuadrada cuasi-2D. Mientras que para los pnictogenuros de hierro este estado está formado por la capa de FeAs, el estado superconductor de cuprato está formado por la capa de CuO. El presente trabajo se centra en el estudio teórico de las propiedades estructurales, electrónicas y ópticas de los materiales de tipo grafeno, como el grafeno bicapa; y también de superconductores de ondas s y d, más específicamente pnictogenuros y cupratos de hierro, respectivamente. Además, se hace hincapié en sistemas desordenados ya que estos sistemas (cuasi-)2D son bastante sensibles al desorden. Tales propiedades tienen gran importancia para aplicaciones de dispositivos tecnológicos, como se puede observar en la creciente tecnología campos de tensiotrónica y espintrónica. El tipo de perturbaciones aplicadas a los sistemas de interés son las impurezas químicas y campos eléctricos externos. Estas perturbaciones producen variaciones de las propiedades electrónicas y ópticas cuando se comparan con los sistemas prístinos. / [CAT] La dimensionalitat d'un sistema juga un paper fonamental en la conducta de la dinámica dels electrons que interactúen. En particular, la dimensionalitat cuasi-2D és responsable del comportament inusual observat a materials de tipus grafè i sistemes laminars basats en enllaços de tipus van der Waals. A més a més, aquestos efectes també s'observen a materials superconductors d'alta temperatura crítica, inclús al seu estat normal, degut a la seua baixa dimensionalitat. L'estudi experimental del grafè va produir una atenció creixent a les seues propietats electròniques, perque la seua estructura en forma de panal d'abelles dona lloc a una estructura de bandes amb dos punts nodals a la zona de Brillouin que determinen una dinámica electrónica relativista de tipus Dirac. Al planol teòric, moltes propietats del grafè d'una sola capa s'han estudiat per a permetre una major caracterizació d'aquest material. Aquestes propietat són poc convencionals degut a la singular estructura de bandes del grafè, que es descriu mitjançant fermions de Dirac. Aquestos fermions permeten establir víncles amb certes teories de la física de particles. De fet, alguns grups teòrics han empleat models fenomenològics inspirats a la cromodinàmica quàntica (es a dir, els models Nambu-Jona Lassino i Gross-Neveu) aplicats a l'estudi de les propietats del grafè. Aquestes propietats són responsables d'inusuals fenómens, com l'efecte Hall fraccionari, que permet la possibilitat de catálisi magnètica d'un gap excitònic, ferromagnetisme i superconductivitat. La investigació de superconductors d'alta temperatura crítica amb centres d'impureses és important per a comprendre la física subjacent de tals sistemes desordenats. Mentre que la família dels cuprats presenta propietats aïllants en estat pristí, els pnictogenurs de ferro sense dopar (és a dir, LaOFeAs) mostren un comportament semimetálico. Malgrat aquestes diferències, tots dos compostos són estructures en capes, on l'estat superconductor està recolzat per una xarxa quadrada quasi-2D. Mentre que per als pnictogenurs de ferro aquest estat està format per la capa de FeAs, l'estat superconductor dels cuprats està format per la capa de CuO. El present treball es centra en l'estudi teòric de les propietats estructurals, electròniques i òptiques dels materials de tipus grafè, com el grafè bicapa; i també de superconductors d'ones s i d, més específicament pnictogenurs i cuprats de ferro, respectivament. A més a més, es fa emfasi en sistemes desordenats ja que aquestos sistemes (cuasi-)2D són prou sensibles al desordre. Aquestes propietats tenen gran importància per a aplicacions de dispositius tecnològics, com es pot observar a la creixent tecnologia dels camps de la tensiotrònica i l'espintrònica. El tipus de pertorbacions aplicades als sistemes d'interés són les impureses químiques i els camps elèctrics externs. Aquestes pertorbacions produeixen variacions de les propietats electròniques i òptiques quan es comparen amb els sistemes pristins. / César Dos Santos, MJ. (2021). Effects of symmetry breaking in low dimensional materials [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/176058 / TESIS / Compendio
8

X-ray studies of magnetism and electronic order in Fe-based materials

Hamann Borrero, Jorge Enrique 07 February 2011 (has links) (PDF)
The structure and magnetism of selected compounds of the pnictides iron based superconductors with chemical formula LnO{1-x}FeAsFx (Ln = La,Sm and Ce), commonly known as 1111, and of rare earth iron borates RFe3(BO3)4 (R = Tb, Gd, Nd and Y), were studied by means of hard x-ray diffraction. For the 1111 pnictides compounds, Rietveld refinement of powder x-ray diffraction measurements at room temperature reveals, that the ionic substitution of O by F has no effect on the structure of the FeAs layers of tetrahedra, whereas the major changes takes place in the LnO layer. These changes are reflected as a shrinkage of the crystal lattice, specially in the c direction. Additionally, a study of the temperature dependent structure of the Sm and Ce-1111 compounds was performed and an estimation of the the structural transition temperature was obtained. The results of the structural measurements, combined with electrical resistivity and µSR, were used to construct the Sm and Ce-1111 phase diagrams. These phase diagrams are characterized by two regions, consisting of a spin density wave (SDW) state and a superconducting state, which are sharply separated upon doping. Considering the different Ln ion, upon F doping the transition temperatures are more efficiently suppressed in Ce-1111 as compared to Sm-1111. More intriguingly, for the Ce case, a coexistence region between static magnetism and superconductivity without an orthorhombic distortion has been observed. Further analysis of the width of the Bragg peaks reveals strong lattice fluctuations towards phase transitions, which are reflected in magnetic and transport properties. Moreover, a strong damping of the lattice fluctuations is observed at Tc for superconducting Sm-1111 samples, giving experimental evidence of competing orders towards phase transitions in the iron pnictides. Regarding the iron borates, non-resonant x-ray scattering studies have shown several new diffraction features, from the appearance of additional reflections that violate the reflection conditions for the low temperature crystal structure, to the emerging of commensurate superlattice peaks that appear below TN. A detailed analysis of the structure factors and q dependencies of the earlier reflections, demonstrate their magnetic nature. Additional resonant x-ray magnetic scattering experiments on NdFe3(BO3)4 were performed at the Nd L2,3 and Fe K edges. The results show that the magnetization behavior is different for the Nd and for the Fe sublattices. Moreover, we find that the magnetization of the Nd sublattice is induced by the Fe magnetization. The temperature dependent measurements also show a commensurate to incommensurate transition where the magnetic structure changes from a commensurate collinear structure, where both Nd and Fe moments align in the hexagonal basal plane, to an incommensurate spin helix structure that propagates along c. When a magnetic field is applied, the spin helix is destroyed and a collinear structure is formed where the moments align in a direction perpendicular to the applied magnetic field. Moreover, the critical field at which the spin helix is destroyed is the same field at which the magnetic induced electric polarization is maximum, thus, showing that the spin helix is not at the origin of the electric polarization.
9

Transportmessungen an Supraleitenden Eisenpniktiden und Heusler-Verbindungen

Bombor, Dirk 11 March 2015 (has links) (PDF)
In dieser Arbeit werden Resultate elektronischer Transportmessungen von supraleitenden Eisenpniktiden und ferromagnetischen Heusler-Verbindungen diskutiert. Die Eisenpniktide sind eine neuartige Klassen von Hochtemperatursupraleitern, deren Eigenschaften sich aus einem Zusammenspiel von Supraleitung und Magnetismus ergeben. Während die sogenannten 122-Pniktide Antiferromagnetismus aufweisen und unter Dotierung in einen supraleitenden Zustand übergehen, konnte in dotiertem LiFeAs Ferromagnetismus beobachtet werden. Undotiert hingegen zeigt dieses Material interessante supraleitende Eigenschaften. Die Heusler-Verbindungen sind u.a. durch ihren Ferromagnetismus bekannt. Das hier untersuchte Co2FeSi ist einer der stärksten Ferromagnete. Der in diesem Material vorhergesagte vollständig spinpolarisierte elektronische Transport, d.h. alle Leitungselektronen besitzen den gleichen Spin, konnte nachgewiesen werden. Die hier genannten Eigenschaften können exzellent mit der Methode der elektronischen Transportmessungen untersucht werden. Deren Ergebnisse aus Messungen an Einkristallen werden in dieser Arbeit diskutiert. / In this work, results of electronic transport measurements are discussed for superconducting iron pnictides as well as for ferromagnetic Heusler compounds. The iron pnictides are a recently discovered class of high temperature superconductors where magnetism might play a crucial role. While the 122-pnictides show antiferromagnetism and migrate to the superconducting state upon doping, ferromagnetism has been observed in doped LiFeAs. On the other hand, in the undoped state this material shows interesting superconducting properties. Among other propierties, Heusler compounds are well known due to their ferromagnetism. Co2FeSi, which was investigated in this work, is one of the strongest ferromagnets. Beside this, one predicts this compound to be a half-metallic ferromagnet with completely spin polarized electronic transport where all conducting electrons have the same spin. The here addressed properties can well be investigated with the method of electronic transport measurements, whose results on single crystals are discussed in this work.
10

An ARPES study of correlated electron materials on the verge of cooperative order

Trinckauf, Jan 08 January 2015 (has links) (PDF)
In this thesis the charge dynamics of correlated electron systems, in which a metallic phase lies in close proximity to an ordered phase, are investigated by means of angle resolved photoemission spectroscopy (ARPES). The analysis of the experimental data is complemented by electronic structure calculations within the framework of density functional theory (DFT). First the charge dynamics of the colossal magnetoresistant bilayer manganites are studied. The analysis of the ARPES spectra based on DFT calculations and a Peierls type charge density wave model, suggests that charge, orbital, spin and lattice degrees of freedom conspire to form a fluctuating two dimensional local order that produces a large pseudo gap of about 450 meV in the ferromagnetic metallic phase and that reduces the expected bilayer splitting. Next, the interplay of Kondo physics and (magnetic) order in the heavy fermion superconductor URu2Si2 is investigated. The low energy electronic structure undergoes strong changes at 17.5 K, where a second order phase transition occurs whose phenomenology is well characterized, but whose order parameter could not yet be unambigeously identified. Below THO, non-dispersive quasi particles with a large scattering rate suddenly acquire dispersion and start to hybridize with the conduction band electrons. Simultaniously the scattering rate drops sinificantly and a large portion of the Fermi surface vanishes due to the opening of a gap within the band of heavy quasi particles. The observed behaviour is in stark contrast to conventional heavy fermion systems where the onset of hybridization between localized and itinerant carriers happens in a crossover type transition rather than abruptly. These experimental results suggest that Kondo screening and the hidden order parameter work together to produce the unusual thermodynamic signatures observed in this compound. Finally, the influence of charge doping and impurity scattering on the superconducting porperties of the transition metal substituted iron pnictide superconductor Ba(Fe1-xTMx)2As2 (TM = Co, Ni) is studied. Here, resonant soft X-ray ARPES is applied to see element selective the contribution of the 3d states of the TM substitute to the Fe 3d host bands. The spectroscopic signatures of the substitution are found to be well reproduced by DFT supercell and model impurity calculations. Namely, the hybridization of the dopant with the host decreases with increasing impurity potential and the electronic states of the impurtiy become increasingly localized. Simultaniously, in all simulated cases a shift of the Fermi level due to electron doping is observed. The magnitude of the shift in the chemical potential that accurs in BaFe2As2, however, is in stark contrast to the marginal doping values obtained for the impurity model, where the shift of the chemical potential is largely compensated by the influence of the increasing impurity potential. This suggests that the rigid band behaviour of TM substituded BaFe2As2 is a peculiarity of the compound, which has strong implications for the developement of superconductivity. / In dieser Arbeit wird die Ladungstraegerdynamik in korrelierten Elektronensystemen, in denen eine metallische Phase in direkter Nachbarschaft zu einer geordneten Phase liegt, mit Hilfe von winkelaufgeloester Photoelektronenspektroskopie (ARPES) untersucht. Die Analyse der experimentellen Daten wird ergaenzt durch lektronenstrukturrechnungen im Rahmen der Dichtefunktionaltheorie (DFT). Zuerst wird die Ladungstraegerdynamik in gemischtvalenten zweischichtmanganaten mit kolossalem Magnetiwiderstand studiert. Die Analyse der Photoemissionsspektren basierend auf DFT Rechnungen und einem Peierls artigem Ladungsdichtewellenmodell, legt nahe, dass die Freiheitsgrade von Ladung, Orbitalen, Spin und des Ionengitters konspirieren, um eine fluktuierende zweidimensionale lokale Ordnung zu bilden, die verantwortlich ist fuer die beobachtete Pseudobandluecke von 450 meV, und die zur Reduktion der erwarteten Zweischichtaufspaltung beitraegt. Als naechstes wird das Zusammenspiel von Kondo Physik und (magnetischer) Ordung im Schwerfermionensupraleiter URu2Si2 untersucht. Die iedrigenergetische elektronische Struktur zeigt starke Veraenderungen bei 17.5 K, wo ein Phasenuebergang zweiter Ordnungstattfindet, der phenomenologisch gut charakterisiert ist, aber dessen Ordungsparameter nocht nicht eindeutig identifiziert werden konnte. Unterhalb von THOerlangen nicht dispergierende Quasiteilchen mit gro en Streuraten abrupt Dispersion und hybridisieren mit den Leitungselektronen. Gleichzeitig sinkt die Streurate und ein gro er Teil der Fermiflaeche verschwindet durch das Oeffnen einer Bandluecke innehalb des Bandes schwerer Quasiteilchen. Das beobachtete Verhalten steht in starkem Kontrast zu dem von konventionellen Schwerfermionensystemen, in denen die Hybridisierung zwischen lokalisierten und itineranten Ladungstraegern in einem kontinuierlichen Uebergang ablaeuft, anstatt abrubt. Diese experimentellen Befunde lassen den Schluss zu, dass das zusammenspiel zwischen Kondo Abschirmung und dem unbekannten Ordnungsparameter die ungewoehnlichen thermodynamischen Signaturen in dieser Verbindung hervorruft. Abschliessend wird das Zusammenwirken von Ladungstraegerdotierung und Streuung an Stoeratomen auf die Supraleitung uebergangsmetalldotierter Eisenpniktid Supraleiter Ba(Fe1-xTMx)2As2 (TM = Co, Ni) untersucht. Mit Hilfe von resonantem Weichenroentgen ARPES gelingt es, elementselektiv den Beitrag der 3d Zustaende des TM Substituenten zu den Eisen 3d Wirtsbaendern zu beobachten. Die spektroskopischen Signaturen der Substitution sind mit Hilfe von DFT Rechnungen und Modelrechnungen mit zufaellig verteilten Stoeratomen gut zu reproduzieren. Insbesondere nimmt die Hybridisierung des dotierten Uebergangsmetalls und der Eisenbaender mit zunehmender Kernladungszahl ab und die elektronischen Zustaende der Stoeratome werden zunehmen lokalisiert. Gleichzeitig wird in allen gerechneten Faellen eine Verschiebung des Fermi Niveaus durch Elektronendotierung beobachtet. Der Betrag der Verschiebung des chemischen Potentials in BaFe2As2 steht allerdings in starkem Kontrast zu den Werten, die man im Falle der Modellrechnungen erhaelt, wo die Verschiebung des Fermi Niveaus durch den Einfluss des Potentials der Stoeratome groesstenteils kompensiert wird. Dies legt nahe, dass das beobachtete "rigid band" Verhalten von TM substituiertem BaFe2As2 eine Besonderheit dieser Verbindung ist, welches starke Auswirkungen auf die Ausbildung von Supraleitung hat.

Page generated in 0.0608 seconds