1 |
Entwicklung und Einsatz eines In-vitro-Ischämiemodels zur Untersuchung zellulärer Pathomechanismen der Klauenrehe des Rindes / Development and experimental application of an in vitro ischemia model for investigating the cellular pathomechanism of laminitis in cattleLübbe, Katharina 22 June 2015 (has links) (PDF)
Die subklinische Klauenrehe oder claw horn disruption (CHD) ist von großer wirtschaftlicher Bedeutung für die Rinderhaltung, da sie zu Lahmheiten, Beeinträchtigungen des Allgemeinbefindens sowie einer eingeschränkten Leistungsfähigkeit der Tiere führt. Trotz zahlreicher Untersuchungen sind die pathophysiologischen Grundlagen der CHD noch immer nicht vollständig geklärt. Die derzeitigen Hypothesen weisen auf eine Ischämie in den noch lebensfähigen Epidermisschichten infolge einer veränderten dermalen Mikrozirkulation. Diese hat pathophysiologische Veränderungen zur Folge, die eine Störung der epidermalen Zellproliferation, eine Schädigung der dermo-epidermalen Verbindung sowie eine veränderte Keratinisierung und Hornproduktion umfassen. Von Bedeutung sind daher In-vitro-Ischämiemodelle, um die epidermale Reaktionsmechanismen auf die pathologischen Veränderungen der Dermis zu untersuchen.
Ziel in der vorliegenden Arbeit war die Etablierung eines In-vitro-Ischämiemodells auf der Grundlage boviner Keratinozyten aus der Klauenepidermis. Mithilfe dieses Modells sollten die zellulären Pathomechanismen infolge einer Ischämie, einer Hypoxie sowie eines Glukoseentzugs untersucht werden. Des Weiteren stand die Analyse des Differenzierungsverhaltens der Keratinozyten infolge ischämischer, hypoxischer und hypoglykämischer Konditionen im Mittelpunkt.
Für die Etablierung des In-vitro-Ischämiemodells diente als Grundlage das oxygen glucose deprivation (OGD)-Modell, das die Untersuchung eines gleichzeitigen Sauerstoff- und Glukosemangels sowie lediglich einer Hypoxie und eines Glukoseentzugs bei bovinen Keratinozyten ermöglichte. Die Versuche wurden in eine Kurzzeitanalyse über 96 Stunden sowie eine Langzeitanalyse über drei Wochen geteilt. Nach erfolgter Exposition wurde die Zellviabilität mittels LDH(Lactatdehydrogenase)- und MTT(3-(4,5-Dimethylhiazol-2-yl)-2,5-diphenyltetrazoliumbromid)-Assay untersucht. Des Weiteren wurde das veränderte Differenzierungsverhalten der Keratinozyten infolge der veränderten Kultivierungsbedingungen mittels Western Blot-Analyse anhand der Involukrin- und Lorikrin-Expression untersucht.
Die Keratinozyten zeigten infolge einer OGD nach kurzer Expositionsdauer die höchsten zytotoxischen Effekte, die von einer zeitabhängigen Abnahme der Zellviabilität sowie massiven morphologischen Veränderungen gefolgt wurde. Hypoxische Bedingungen bewirkten eine zeitabhängige Abnahme der Zellviabilität, die erst nach zweiwöchiger Inkubation die größte Zytotoxizität aufwies, sowie eine geringgradig veränderte Zellmorphologie bei Erhaltung des Zellverbands. Der Glukoseentzug bewirkte eine stark verminderte Zellviabilität sowie starke morphologische Zellveränderungen. In der Western Blot-Analyse konnte eine gesteigerte Involukrin- und Lorikrin-Expression infolge einer OGD, einer Hypoxie und eines Glukoseentzugs nachgewiesen werden.
In der vorliegenden Arbeit konnte erstmalig ein auf bovinen Keratinozyten basierendes In-vitro-Ischämiemodell etabliert werden, das die Untersuchung zellulärer Mechanismen der Epidermis ermöglichte. Die OGD zeigte den stärksten Einfluss auf die Zellviabilität sowie eine veränderte Zelldifferenzierung der Keratinozyten, was die pathophysiologischen Veränderungen im Rahmen der CHD reflektiert. Die ebenfalls starken Zellveränderungen infolge eines Glukoseentzugs verdeutlichen die Rolle der Glukose im Zellmetabolismus der Keratinozyten. Solch ein epidermaler Glukosemangel ist in Verbindung mit der negativen Energiebilanz der Rinder im peripartalen Zeitraum denkbar. Die Ergebnisse infolge einer Hypoxie verweisen auf vielfältige Adaptationsmechanismen der Keratinozyten an hypoxische Bedingungen, denen sie in der Epidermis in vivo während der Zelldifferenzierung ausgesetzt werden. Damit besitzt das In-vitro-Ischämiemodell ein großes Potenzial für den Einsatz in der Klauenreheforschung, um einerseits die mit einer Ischämie einhergehenden pathologischen Veränderungen der CHD untersuchen zu können. Andererseits liefert das Modell wertvolle Informationen zu den physiologischen Grundlagenmechanismen der Epidermis, die mit der Zelldifferenzierung einhergehen. / The subclinical laminitis or claw horn disruption (CHD) is of great economic importance in the dairy industry as it causes lameness, poor general condition and reduced performance. Despite extensive research efforts, the pathomechanism of CHD remains widely unclear. The current hypotheses on CHD pathogenesis include ischemic alterations of the epidermal keratinocytes resulting from an impaired blood supply. This causes an alteration of cell proliferation, a dermo-epidermal separation and an impaired keratinization and horn production. Therefore, in vitro ischemia models are of critical importance in clarification of the epidermal responses to an altered microcirculation.
The aim of this study was the establishment of an in vitro ischemia model based on bovine claw keratinocytes. This in vitro model should enable the investigation of cellular pathomechanisms following exposure to ischemia, hypoxia and glucose deprivation. An additional aim was the analysis of the differentiation pattern of keratinocytes under ischemic, hypoxic and hypoglycaemic conditions.
To establish the in vitro ischemia model, the keratinocytes were exposed to oxygen-glucose deprivation (OGD). In addition, this model allowed the parallel examination of hypoxic and hypoglycaemic conditions on bovine claw keratinocytes. The experiments were divided into a short-term analysis over 96h and a long-term analysis over three weeks. Measurement of cell viability was performed by LDH(lactatedehydrogenase) and MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra- zolium bromide) assays. Furthermore, the differentiation pattern of the keratinocytes after exposure to ischemia, hypoxia and glucose deprivation was detected by western blot analysis of the focus on expression of involucrin and loricrin.
The highest cytotoxic effect was measured after short exposure to OGD followed by a time-dependent decrease of cell viability and extensive morphological changes of the keratinocytes. Hypoxic conditions lead to a time-dependent decrease of cell viability with the highest cytotoxicity after two weeks. The keratinocytes showed slight changes in cell morphology while maintaining a confluent cell layer. Exposure of keratinocytes to glucose deprivation showed a high decrease of cell viability and strong morphological changes. Furthermore, western blot analysis showed an altered expression pattern with increased involucrin and loricrin levels after exposure to OGD, hypoxia and glucose deprivation.
The present study established for the first time an in vitro ischemia model based on bovine claw keratinocytes to study the cellular mechanisms of the epidermis. After exposure to OGD, keratinocytes showed the highest loss in cell viability and an altered cell differentiation. This reflects the pathophysiological changes following epidermal ischemia occurring during the pathogenesis of CHD. The massive cellular alterations after glucose deprivation provide good evidence for the importance of glucose in the cellular metabolism of keratinocytes. An epidermal glucose deficiency may occur in combination with a negative energy balance during peripartal period in cattle. The results of hypoxia show the different adaptive mechanisms of keratinocytes to hypoxic conditions which are present in the epidermis during cell differentiation. Thus, the in vitro ischemia model has a great potential for use in research into CHD pathogenesis and pathomechanisms associated with ischemia. On one side, it is possible to investigate the pathological changes following ischemia during CHD. On the other side, the model offers useful information on physiological response mechanisms of the epidermis that correlate with cell differentiation.
|
2 |
Entwicklung und Einsatz eines In-vitro-Ischämiemodels zur Untersuchung zellulärer Pathomechanismen der Klauenrehe des Rindes: Development and experimental application of an in vitro ischemia model for investigating the cellular pathomechanism of laminitis in cattleLübbe, Katharina 05 May 2015 (has links)
Die subklinische Klauenrehe oder claw horn disruption (CHD) ist von großer wirtschaftlicher Bedeutung für die Rinderhaltung, da sie zu Lahmheiten, Beeinträchtigungen des Allgemeinbefindens sowie einer eingeschränkten Leistungsfähigkeit der Tiere führt. Trotz zahlreicher Untersuchungen sind die pathophysiologischen Grundlagen der CHD noch immer nicht vollständig geklärt. Die derzeitigen Hypothesen weisen auf eine Ischämie in den noch lebensfähigen Epidermisschichten infolge einer veränderten dermalen Mikrozirkulation. Diese hat pathophysiologische Veränderungen zur Folge, die eine Störung der epidermalen Zellproliferation, eine Schädigung der dermo-epidermalen Verbindung sowie eine veränderte Keratinisierung und Hornproduktion umfassen. Von Bedeutung sind daher In-vitro-Ischämiemodelle, um die epidermale Reaktionsmechanismen auf die pathologischen Veränderungen der Dermis zu untersuchen.
Ziel in der vorliegenden Arbeit war die Etablierung eines In-vitro-Ischämiemodells auf der Grundlage boviner Keratinozyten aus der Klauenepidermis. Mithilfe dieses Modells sollten die zellulären Pathomechanismen infolge einer Ischämie, einer Hypoxie sowie eines Glukoseentzugs untersucht werden. Des Weiteren stand die Analyse des Differenzierungsverhaltens der Keratinozyten infolge ischämischer, hypoxischer und hypoglykämischer Konditionen im Mittelpunkt.
Für die Etablierung des In-vitro-Ischämiemodells diente als Grundlage das oxygen glucose deprivation (OGD)-Modell, das die Untersuchung eines gleichzeitigen Sauerstoff- und Glukosemangels sowie lediglich einer Hypoxie und eines Glukoseentzugs bei bovinen Keratinozyten ermöglichte. Die Versuche wurden in eine Kurzzeitanalyse über 96 Stunden sowie eine Langzeitanalyse über drei Wochen geteilt. Nach erfolgter Exposition wurde die Zellviabilität mittels LDH(Lactatdehydrogenase)- und MTT(3-(4,5-Dimethylhiazol-2-yl)-2,5-diphenyltetrazoliumbromid)-Assay untersucht. Des Weiteren wurde das veränderte Differenzierungsverhalten der Keratinozyten infolge der veränderten Kultivierungsbedingungen mittels Western Blot-Analyse anhand der Involukrin- und Lorikrin-Expression untersucht.
Die Keratinozyten zeigten infolge einer OGD nach kurzer Expositionsdauer die höchsten zytotoxischen Effekte, die von einer zeitabhängigen Abnahme der Zellviabilität sowie massiven morphologischen Veränderungen gefolgt wurde. Hypoxische Bedingungen bewirkten eine zeitabhängige Abnahme der Zellviabilität, die erst nach zweiwöchiger Inkubation die größte Zytotoxizität aufwies, sowie eine geringgradig veränderte Zellmorphologie bei Erhaltung des Zellverbands. Der Glukoseentzug bewirkte eine stark verminderte Zellviabilität sowie starke morphologische Zellveränderungen. In der Western Blot-Analyse konnte eine gesteigerte Involukrin- und Lorikrin-Expression infolge einer OGD, einer Hypoxie und eines Glukoseentzugs nachgewiesen werden.
In der vorliegenden Arbeit konnte erstmalig ein auf bovinen Keratinozyten basierendes In-vitro-Ischämiemodell etabliert werden, das die Untersuchung zellulärer Mechanismen der Epidermis ermöglichte. Die OGD zeigte den stärksten Einfluss auf die Zellviabilität sowie eine veränderte Zelldifferenzierung der Keratinozyten, was die pathophysiologischen Veränderungen im Rahmen der CHD reflektiert. Die ebenfalls starken Zellveränderungen infolge eines Glukoseentzugs verdeutlichen die Rolle der Glukose im Zellmetabolismus der Keratinozyten. Solch ein epidermaler Glukosemangel ist in Verbindung mit der negativen Energiebilanz der Rinder im peripartalen Zeitraum denkbar. Die Ergebnisse infolge einer Hypoxie verweisen auf vielfältige Adaptationsmechanismen der Keratinozyten an hypoxische Bedingungen, denen sie in der Epidermis in vivo während der Zelldifferenzierung ausgesetzt werden. Damit besitzt das In-vitro-Ischämiemodell ein großes Potenzial für den Einsatz in der Klauenreheforschung, um einerseits die mit einer Ischämie einhergehenden pathologischen Veränderungen der CHD untersuchen zu können. Andererseits liefert das Modell wertvolle Informationen zu den physiologischen Grundlagenmechanismen der Epidermis, die mit der Zelldifferenzierung einhergehen. / The subclinical laminitis or claw horn disruption (CHD) is of great economic importance in the dairy industry as it causes lameness, poor general condition and reduced performance. Despite extensive research efforts, the pathomechanism of CHD remains widely unclear. The current hypotheses on CHD pathogenesis include ischemic alterations of the epidermal keratinocytes resulting from an impaired blood supply. This causes an alteration of cell proliferation, a dermo-epidermal separation and an impaired keratinization and horn production. Therefore, in vitro ischemia models are of critical importance in clarification of the epidermal responses to an altered microcirculation.
The aim of this study was the establishment of an in vitro ischemia model based on bovine claw keratinocytes. This in vitro model should enable the investigation of cellular pathomechanisms following exposure to ischemia, hypoxia and glucose deprivation. An additional aim was the analysis of the differentiation pattern of keratinocytes under ischemic, hypoxic and hypoglycaemic conditions.
To establish the in vitro ischemia model, the keratinocytes were exposed to oxygen-glucose deprivation (OGD). In addition, this model allowed the parallel examination of hypoxic and hypoglycaemic conditions on bovine claw keratinocytes. The experiments were divided into a short-term analysis over 96h and a long-term analysis over three weeks. Measurement of cell viability was performed by LDH(lactatedehydrogenase) and MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra- zolium bromide) assays. Furthermore, the differentiation pattern of the keratinocytes after exposure to ischemia, hypoxia and glucose deprivation was detected by western blot analysis of the focus on expression of involucrin and loricrin.
The highest cytotoxic effect was measured after short exposure to OGD followed by a time-dependent decrease of cell viability and extensive morphological changes of the keratinocytes. Hypoxic conditions lead to a time-dependent decrease of cell viability with the highest cytotoxicity after two weeks. The keratinocytes showed slight changes in cell morphology while maintaining a confluent cell layer. Exposure of keratinocytes to glucose deprivation showed a high decrease of cell viability and strong morphological changes. Furthermore, western blot analysis showed an altered expression pattern with increased involucrin and loricrin levels after exposure to OGD, hypoxia and glucose deprivation.
The present study established for the first time an in vitro ischemia model based on bovine claw keratinocytes to study the cellular mechanisms of the epidermis. After exposure to OGD, keratinocytes showed the highest loss in cell viability and an altered cell differentiation. This reflects the pathophysiological changes following epidermal ischemia occurring during the pathogenesis of CHD. The massive cellular alterations after glucose deprivation provide good evidence for the importance of glucose in the cellular metabolism of keratinocytes. An epidermal glucose deficiency may occur in combination with a negative energy balance during peripartal period in cattle. The results of hypoxia show the different adaptive mechanisms of keratinocytes to hypoxic conditions which are present in the epidermis during cell differentiation. Thus, the in vitro ischemia model has a great potential for use in research into CHD pathogenesis and pathomechanisms associated with ischemia. On one side, it is possible to investigate the pathological changes following ischemia during CHD. On the other side, the model offers useful information on physiological response mechanisms of the epidermis that correlate with cell differentiation.
|
Page generated in 0.0875 seconds