1 |
Produktutveckling av koncept för isbanesystem / Product development of concept for ice rink refrigeration system.Nilsson, Markus January 2009 (has links)
<p>Today most ice rinks in Sweden use secondary refrigeration systems with a solution of calcium chloride and water as secondary refrigerant. Due to the large amount of energy such a system uses more efficient systems would be desired.An earlier study concluded in the possibilities of using carbon dioxide as secondary refrigerant with copper tubes as the loops in the ice rink. Since then 3 ice rink refrigeration systems has been built with carbon dioxide in copper tubes. Excluding the ones being direct involved in those projects there is still very little knowledge about how these system works. This study has been made primarily with the aim of adding to the knowledge concerning availability and cost and secondary to look at possibilities for improvement.A comparison between systems with carbon dioxide, calcium chloride respective ammonium solved in water has been made by using Decision Matrix. The comparison indicates that carbon dioxide is the more appropriate successor for the calcium chloride solvent.By using carbon dioxide the pump energy can be reduced considerably. With carbon dioxide there is also potential to use self circulation most of the time, and by doing so reduce the energy consumption even more.One area where knowledge seems to be lacking with carbon dioxide systems is in the ranges and availabilities of the required components. This study has shown that even if the ranges in some cases are limited it is still considerably easy to find suitable components. The price estimation made in this study estimates the total sum of the components for a carbon dioxide system at a bit over 900 000 SEK and a bit over 600 000 SEK for a system using calcium chloride. These numbers are mainly excluding costs for pipes and work.The second area where more knowledge seems to be needed is about ensuring the safety of the public while using carbon dioxide systems. The largest risk seems to be in the relatively high pressure of 3 MPa. But by using a good control system and having safety valves in all the critical spots there shouldn’t be any real risk for accidents. The risk for leakages is relatively easily countered by installing an alarm system with detectors for carbon dioxide. The large space inside an indoor ice rink also helps negotiating any leakage of carbon dioxide to the extent of possibly making it totally harmless even if undetected.</p><p> </p>
|
2 |
Produktutveckling av koncept för isbanesystem / Product development of concept for ice rink refrigeration system.Nilsson, Markus January 2009 (has links)
Today most ice rinks in Sweden use secondary refrigeration systems with a solution of calcium chloride and water as secondary refrigerant. Due to the large amount of energy such a system uses more efficient systems would be desired.An earlier study concluded in the possibilities of using carbon dioxide as secondary refrigerant with copper tubes as the loops in the ice rink. Since then 3 ice rink refrigeration systems has been built with carbon dioxide in copper tubes. Excluding the ones being direct involved in those projects there is still very little knowledge about how these system works. This study has been made primarily with the aim of adding to the knowledge concerning availability and cost and secondary to look at possibilities for improvement.A comparison between systems with carbon dioxide, calcium chloride respective ammonium solved in water has been made by using Decision Matrix. The comparison indicates that carbon dioxide is the more appropriate successor for the calcium chloride solvent.By using carbon dioxide the pump energy can be reduced considerably. With carbon dioxide there is also potential to use self circulation most of the time, and by doing so reduce the energy consumption even more.One area where knowledge seems to be lacking with carbon dioxide systems is in the ranges and availabilities of the required components. This study has shown that even if the ranges in some cases are limited it is still considerably easy to find suitable components. The price estimation made in this study estimates the total sum of the components for a carbon dioxide system at a bit over 900 000 SEK and a bit over 600 000 SEK for a system using calcium chloride. These numbers are mainly excluding costs for pipes and work.The second area where more knowledge seems to be needed is about ensuring the safety of the public while using carbon dioxide systems. The largest risk seems to be in the relatively high pressure of 3 MPa. But by using a good control system and having safety valves in all the critical spots there shouldn’t be any real risk for accidents. The risk for leakages is relatively easily countered by installing an alarm system with detectors for carbon dioxide. The large space inside an indoor ice rink also helps negotiating any leakage of carbon dioxide to the extent of possibly making it totally harmless even if undetected.
|
3 |
Carbon dioxide in ice rink refrigerationNGUYEN, TUYET January 2013 (has links)
The average energy consumption of one ice rink is around 1000MWh/year, which approximately69% is occupied by the refrigeration unit and heating demand. With the aim of decreasing theenergy consumption, a new concept of refrigeration system with CO2 as a refrigerant has beendeveloped and it is promising to become a high potential next generation for refrigeration systemin ice rink.This thesis is to evaluate a new refrigerant application in ice rink refrigeration system underthree different aspects; energy performance, heat recovery potential and economic efficiency. Inorder to make this evaluation, three main tasks are executed. Firstly, literature review and marketstatistic are processed to give a general picture of the CO2 development as a refrigerant. Secondly, asoftware Pack Calculation II is used for the simulations of CO2 refrigeration system and traditionalice rink refrigeration system. Älta ice rink located in Sweden, is chosen as a reference case forsimulation’s input data. The simulation results is to compare these system in terms of energyperformance and heat recovery potential. Finally, life cycle cost of these systems is calculated toinvestigate the economic benefits from this new application.Results from this study show good benefits of the new CO2 application in ice rink. Fromthe market statistics, CO2 has become a successful refrigerant in supermarket food and beverageindustry with 1331 CO2 refrigeration system installed until 2011 in Europe (Shecco2012). In icerink industry, 24 ice rinks have been applied CO2 in the second cycle of refrigeration system; oneice rink in Canada applied a refrigeration system with only CO2 in the first cycle and the distributionsystem.From the simulation’s result, CO2 full system has been proven as the most efficiency sys-tem with the lowest energy consumption (30% lower than NH3/Brine system and 46% lower thanCO2/Brine system) and the highest COP (6.4 in comparison with 4.9 of NH3/Brine system and4.37 of CO2/Brine system). Regarding heat recovery potential, CO2 full system has highest energysaving in comparison with the other two systems.Due to lower energy cost and service cost, the life cycle cost of CO2 full system is loweraround 13% than the traditional NH3/Brine system, furthermore, the component cost of CO2 sys-tem is promising to decrease in the next years thanks to the rapid development of this market insupermarket industry.To conclude, CO2 full system has high potential to become a next generation of refrigerationsystem in ice rink, however, because of its transcritical working, this application can be restrictedin the regions of warm climate.
|
4 |
Energieffektivisering av ishallar. : Hur förvaltare kan optimera energiförbrukningen och sänka kostnaden i ishallar. / Energy efficiency of icerinks. : How property managers can optimize energy consumption and lower their costs in icerinks.Shirvani, Armin, Youssef, Rana January 2018 (has links)
The purpose of this report is to show how icerink property managers can reduce the energy usage in icerinks thus lower their costs. What this alludes to is how they can optimize and streamline the energy usage in the rink. The cost for the solutions and alternatives presented in this report vary greatly where some require bigger investments and others that cost low to nothing and can be performed by people who frequently attend the ice rinks, workers such as janitors. With help from literature studies, contact with knowledgable people within said field and calculations (where and if possible), this report has presented alternatives and various solutions within respective system presented in this report. The systems this report dissert include the following: ventilationsystem, coolingsystem, heatingsystem, lightning armature and dehumidification system. Part of this report is intended for theory where each system is briefly explained to provide an understanding for said systems. / Denna rapport avhandlar hur förvaltare till ishallar kan sänka energiförbrukningen i ishallar och på så vis sänka sina kostnader, något som förvaltare förhoppningsvis kan dra nytta av. Detta syftar till att optimera och effektivisera den energi som används i en ishall. Kostnad för de lösningar och alternativ till att sänka energiförbrukningen som presenteras i denna rapport varierar, där vissa lösningar är mer kostsamma än andra och andra lösningar är det som kan göras på plats av exempelvis vaktmästare utan några större investeringar. Med hjälp av literaturstudier, kontakt med kunniga personer inom detta fält samt beräkningar och räkneexempel har detta examensarbete presenterat alternativ och diverse lösningar inom respektive system som framförts i detta examensarbete. De system som avhandlas i detta examensarbete är ventilationssystem, kylanläggning, uppvärmningsystem, ljusarmaturer och avfuktningsystem. En del av rapporten är avsedd för teori där respektive system förklaras kortfattat för att ge förståelse av funktion för systemen.
|
5 |
Ishallens klimatskal : En fallstudie kring klimatskalets problematik och dess påverkan på resursanvändning / The Climate Shell of Ice Arenas : Case Study on the Challenges of the Climate Shell and Its Impact on Resource UtilizationGlinning, Alice January 2024 (has links)
Ishallarna som byggs idag är relativt få och utvecklingen av både installationer och klimatskal har gått fort framåt, vilket gör att det är svårt att projektera en typhall för att få bästa resultat med avseende på energi, kostnad och upplevelse. Majoriteten av dagens ishallar, som är byggda under 80-talet, börjar bli gamla och är i behov av renovering. Många av de nya ishallarna som byggs blir pilotprojekt där ny teknik och konstruktion prövas vilket resulterar i ett stort risktagande då det egentligen inte finns några referenser på att koncepten fungerar.Denna studie fokuserar på att identifiera resurskrävande faktorer i ishallen, hur dessa har uppstått och ge förslag på hur de kan förebyggas i framtiden. Hur ishallen konstrueras har en avgörande inverkan på hur kostsam driften kan bli över tid.För genomförandet av denna fallstudie har en kvalitativ forskningsmetod använts. Detta genom en kombination av en systematisk litteraturstudie, observationer och ett antal semi-strukturerade intervjuer, med personer som har relevant kompetens inom området ishallar.Resultatet av studien visar att ett vanligt återkommande fel vid konstruktion av ishallar är att de i vissa fall konstrueras enligt vanlig byggstandard. Det särskilda klimatet i ishallen ställer andra byggnadstekniska krav jämfört med en vanlig byggnad och okunskap om detta vid projektering kan få förödande konsekvenser.När det gäller konstruerande av ishallar i framtiden så vill vi framhäva vikten av branschspecifik kunskap, flexibel projektering och ökad medvetenhet om energieffektivitet, för att främja hållbara åtgärder. Utöver att installera ett korrekt klimatskal, enligt branschstandard, bör man nyttja implementering av avancerade klimatsystem och smarta teknologier.
|
Page generated in 0.0276 seconds