Spelling suggestions: "subject:"isosceles orthogonal""
1 |
An Invitation to Generalized Minkowski GeometryJahn, Thomas 11 March 2019 (has links)
The present thesis contributes to the theory of generalized Minkowski spaces as a continuation of Minkowski geometry, i.e., the geometry of finite-dimensional normed spaces over the field of real numbers.
In a generalized Minkowski space, distance and length measurement is provided by a gauge, whose definition mimics the definition of a norm but lacks the symmetry requirement.
This seemingly minor change in the definition is deliberately chosen.
On the one hand, many techniques from Minkowski spaces can be adapted to generalized Minkowski spaces because several phenomena in Minkowski geometry simply do not depend on the symmetry of distance measurement.
On the other hand, the possible asymmetry of the distance measurement set up by gauges is nonetheless meaningful and interesting for applications, e.g., in location science.
In this spirit, the presentation of this thesis is led mainly by minimization problems from convex optimization and location science which are appealing to convex geometers, too.
In addition, we study metrically defined objects, which may receive a new interpretation when we measure distances asymmetrically.
To this end, we use a combination of methods from convex analysis and convex geometry to relate the properties of these objects to the shape of the unit ball of the generalized Minkowski space under consideration.
|
2 |
Metrical Problems in Minkowski GeometryFankhänel, Andreas 19 October 2012 (has links) (PDF)
In this dissertation we study basic metrical properties of 2-dimensional normed linear spaces, so-called (Minkowski or) normed planes.
In the first chapter we introduce a notion of angular measure, and we investigate under what conditions certain angular measures in a Minkowski plane exist. We show that only the Euclidean angular measure has the property that in an isosceles triangle the base angles are of equal size. However, angular measures with the property that the angle between orthogonal vectors has a value of pi/2, i.e, a quarter of the full circle, exist in a wider variety of normed planes, depending on the type of orthogonality. Due to this we have a closer look at isosceles and Birkhoff orthogonality. Finally, we present results concerning angular bisectors.
In the second chapter we pay attention to convex quadrilaterals. We give definitions of different types of rectangles and rhombi and analyse under what conditions they coincide. Combinations of defining properties of rectangles and rhombi will yield squares, and we will see that any two types of squares are equal if and only if the plane is Euclidean. Additionally, we define a ``new\'\' type of quadrilaterals, the so-called codises. Since codises and rectangles coincide in Radon planes, we will explain why it makes sense to distinguish these two notions. For this purpose we introduce the concept of associated parallelograms.
Finally we will deal with metrically defined conics, i.e., with analogues of conic sections in normed planes. We define metric ellipses (hyperbolas) as loci of points that have constant sum (difference) of distances to two given points, the so-called foci. Also we define metric parabolas as loci of points whose distance to a given point equals the distance to a fixed line. We present connections between the shape of the unit ball B and the shape of conics. More precisely, we will see that straight segments and corner points of B cause, under certain conditions, that conics have straight segments and corner points, too. Afterwards we consider intersecting ellipses and hyperbolas with identical foci. We prove that in special Minkowski planes, namely in the subfamily of polygonal planes, confocal ellipses and hyperbolas intersect in a way called Birkhoff orthogonal, whenever the respective ellipse is large enough.
|
3 |
Metrical Problems in Minkowski GeometryFankhänel, Andreas 07 June 2012 (has links)
In this dissertation we study basic metrical properties of 2-dimensional normed linear spaces, so-called (Minkowski or) normed planes.
In the first chapter we introduce a notion of angular measure, and we investigate under what conditions certain angular measures in a Minkowski plane exist. We show that only the Euclidean angular measure has the property that in an isosceles triangle the base angles are of equal size. However, angular measures with the property that the angle between orthogonal vectors has a value of pi/2, i.e, a quarter of the full circle, exist in a wider variety of normed planes, depending on the type of orthogonality. Due to this we have a closer look at isosceles and Birkhoff orthogonality. Finally, we present results concerning angular bisectors.
In the second chapter we pay attention to convex quadrilaterals. We give definitions of different types of rectangles and rhombi and analyse under what conditions they coincide. Combinations of defining properties of rectangles and rhombi will yield squares, and we will see that any two types of squares are equal if and only if the plane is Euclidean. Additionally, we define a ``new\'\' type of quadrilaterals, the so-called codises. Since codises and rectangles coincide in Radon planes, we will explain why it makes sense to distinguish these two notions. For this purpose we introduce the concept of associated parallelograms.
Finally we will deal with metrically defined conics, i.e., with analogues of conic sections in normed planes. We define metric ellipses (hyperbolas) as loci of points that have constant sum (difference) of distances to two given points, the so-called foci. Also we define metric parabolas as loci of points whose distance to a given point equals the distance to a fixed line. We present connections between the shape of the unit ball B and the shape of conics. More precisely, we will see that straight segments and corner points of B cause, under certain conditions, that conics have straight segments and corner points, too. Afterwards we consider intersecting ellipses and hyperbolas with identical foci. We prove that in special Minkowski planes, namely in the subfamily of polygonal planes, confocal ellipses and hyperbolas intersect in a way called Birkhoff orthogonal, whenever the respective ellipse is large enough.:1 Introduction
2 On angular measures
3 Types of convex quadrilaterals
4 On conic sections
|
Page generated in 0.0649 seconds