11 |
An interdisciplinary approach to monitoring the hydroecology of thermokarst lakes in Old Crow Flats, Yukon Territory, CanadaTondu, Jana-marie January 2012 (has links)
Lake-rich thermokarst landscapes, such as Old Crow Flats (OCF) in northern Yukon, Canada have been identified as amongst the most vulnerable to climate change. This has raised concerns of the Vuntut Gwitchin First Nation (VGFN) and Parks Canada (Vuntut National Park) about the ecological integrity of this significant wetland. The influence of climate change on the hydroecological conditions of thermokarst lakes are complex and vary across the landscape, thus long-term hydroecological monitoring is essential to adequately assess the ecological integrity of the aquatic ecosystem and how it is changing over time. In a genuine interdisciplinary and collaborative approach, this thesis establishes an integrated approach using isotope hydrology, aquatic ecology, and paleolimnology to develop a robust long-term aquatic monitoring program that has already been adopted by Parks Canada.
In collaboration with Parks Canada, 14 of 58 lakes that were previously studied during the International Polar Year from 2007-09 were selected to represent monitoring lakes. Lakes were sampled in early June and late August/early September 2010-11. Water samples for analysis of hydrogen and oxygen isotope composition and chemistry (i.e., ions and nutrients) were collected to track hydrological and limnological conditions. Artificial substrates were deployed in June and accrued algae were collected at the end of the ice-free season to assess community composition and abundance. Sediment coring was conducted in a culturally-significant lake (Zelma Lake – OCF06) to reconstruct long-term baseline hydroecological conditions over the past three centuries. Radiometric dating techniques (137Cs, 210Pb) were used to develop a sediment core chronology. Baseline hydroecological conditions were reconstructed through analyses of loss-on-ignition, bulk organic carbon and nitrogen elemental and isotope compositions, and pigments.
Meteorological data and a multi-year evaporation pan experiment were used to develop a robust isotope framework, which provides the basis for interpreting five years (2007-11) of lake water isotope measurements and deriving knowledge of hydrological conditions for the monitoring lakes. Using this framework and the coupled-isotope tracer method, isotopic compositions of input water (δI) and evaporation-to-inflow (E/I) ratios were calculated and provide key hydrological information for each sampling interval. δ¬I values distinguish snowmelt- and rainfall-sourced lakes, with δP representing a threshold between the two isotopic-based hydrologic regimes. A Mann-Kendall test showed that three lakes (OCF11, 26, and 49) displayed significant increasing trends in δI values indicating a potential transition from snowmelt-sourced to rainfall-sourced isotope-based hydrologic-regimes. E/I ratios >0.5 signifies lakes that are evaporation-dominated with positive water balances and E/I ratios >1 indicates lakes that are evaporation-dominated with negative water balances. Six lakes in OCF (OCF06, 19, 37, 46, 49, and 58) surpass the 0.5 threshold and three of these lakes (OCF06, 19, and 46) crossed the significant evaporation threshold (E/I > 1) during dry climatic conditions.
Multi-proxy paleolimnology analysis conducted on Zelma Lake reveals different hydroecological transitions during the past ~330 years that include: phase 1 (~1678-1900) characterized by stable hydroecological conditions; thermokarst expansion (~1900-1943) marked by decreases in productivity; phase 2 (~1943-2007) distinguished by increasing productivity; and a post drainage phase following rapid drainage in 2007 characterized by further increases in productivity. The stratigraphy of Zelma Lake shows that hydroecological conditions in dynamic landscapes such as OCF are complex and require multi-proxy paleolimnological analysis. In particular, organic matter, δ13Corg, and pigment concentrations are important parameters to consider when interpreting past hydroecological conditions, thermokarst expansion, and lake drainage events.
|
12 |
Novo estudo isotÃpico de Ãguas subterrÃneas na Bacia Sedimentar do Cariri. / New isotopic study of groundwaters in the Sedimentary Basin of the Cariri.Bruno Alves de Mesquita 15 March 2013 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / Este trabalho foi realizado na regiÃo do Cariri, localizada no sul do Estado do Ceara, onde se encontra a maior e mais importante reserva de agua subterrÃnea do Estado, a
Bacia Sedimentar do Araripe. Nessa regiÃo, a principal fonte de agua para o abastecimento publico e privado e o recurso hÃdrico subterrÃneo armazenado no Vale do Cariri, nos aquiÃferos, Rio da Batateira, MissÃo Velha e Mauriti. Dada a importÃncia desta reserva hÃdrica, diversos trabalhos, no decorrer dos anos, tÃm sido feitos para obter informaÃÃes relevantes sobre a Ãgua subterrÃnea da regiÃo. O objetivo deste trabalho foi estudar as
aguas subterrÃneas dessa regiÃo e identicar mudanÃas ocorridas durante os Ãltimos 16 anos, utilizando medidas hidroquÃmicas e medidas dos isotopos ambientais oxigÃnio-18, deutÃrio, carbono-13 e carbono-14. Para isso, foram analisadas 17 amostras de Ãgua subterrÃnea coletadas nos municÃpios de Crato, Barbalha, Juazeiro do Norte, Milagres, MissÃo Velha e Nova Olinda. Os resultados isotÃpicos mostraram que na maioria das amostras houve contribuiÃÃo de recargas recentes, caracterizando Ãguas jovens, com valores de O-18 apresentando pequenas flutuaÃÃes em relaÃÃo aos de Ãguas de chuvas atuais e com valores de pMC elevados. Entretanto, 04 amostras apresentaram mistura de aguas modernas com Ãguas nÃo modernas, paleoaguas, devido aos baixos valores de O-18 (< -4 por mil). A idade aparente das amostras de Ãguas subterrÃneas foi calculado pelo metodo de radiocarbono, utilizando um software estatÃstico de tratamento de dados, desenvolvido nesse trabalho; e as idades foram corrigidas pelos modelos de Pearson, Tamers e Vogel. Quanto aos resultados dos parÃmetros hidroquÃmicos, predominam Ãguas do tipo bicarbonatada
quanto aos Ãnions e mista quanto aos cÃtions, numa relaÃÃo: rHCO3- > rCl- > rSO4 2- e rCa2+ rMg2+ > rNa+. As Ãguas amostradas enquadram-se nos padrÃes de potabilidade do CONAMA, com exceÃÃo de duas amostras. / This work was performed in the Cariri, located in the south of the state of Ceara, where is found the largest and most important groundwater reserves of the state, the Araripe
Sedimentary Basin. In this region, the main source of water for public and private supply is groundwater stored in the Cariri Valley, in the aquifers, Rio da Batateira, MissÃo Velha and Mauriti. Given the importance of these water reserves, several research projects have been made to obtain relevant information about the groundwater in the region. The objective of this work was to study groundwaters samples this region and to identify
changes occurred during the last 16 years, using hydrochemical measures and measures
of environmental isotopes oxygen-18, deuterium, carbon-13 and carbon-14. For this, we analyzed 17 samples of groundwater collected in the municipalities of Crato, Barbalha,Juazeiro, Milagres, MissÃo Velha and Nova Olinda. The isotope results showed that in most samples were found contributions of recent recharge, featuring young waters, with values of O-18 with minor fluctuations with respect to modern rain water and high values PMC. However, 04 samples showed a mixture of modern waters with paleowater, with
low values of O-18 (<-4 permil). The apparent age of groundwater samples was calculated by the method of radiocarbon using software processing statistical data, developed in this work, and ages were corrected by the methods of Pearson, Tamers and Vogel. Regarding
the results of hydrochemical parameters, bicarbonate type waters predominate for anions
and the mixed type for cations: rHCO3- > rCl- > rSO4 2- e rCa2+ rMg2+ > rNa+. The waters comply with the standards of potability of CONAMA, regarding major ions, except
two samples.
|
13 |
Évaluation des ressources en eau de l’aquifère du Continental Intercalaire/Hamadien de la Région de Tahoua (bassin des Iullemeden, Niger) : impacts climatiques et anthropiques / Assessment of the Water Resources of the "Continental Inetrcelaire/Hamadien" aquifer in the Tahoua Region (Iullemeden Basin, Niger) : climatic and anthropic impactsHassane Saley, Abdel Kader 18 July 2018 (has links)
Dans la région de Tahoua (Niger), qui fait partie du bassin des Iullemeden, le système aquifère multicouche profond du Continental Intercalaire/Hamadien (CI/H) représente une réserve essentielle. Il est utilisé pour l'alimentation en eau potable des populations, pour les besoins en eau des industries extractives, et pour l'abreuvage du bétail, en raison de la dégradation de la qualité et le très faible débit des nappes phréatiques, et de celles du Crétacé supérieur. Malgré quelques études hydrogéologiques classiques conduites sur ce système aquifère, il reste mal connu, notamment en ce qui concerne la répartition des différentes masses d'eau et leurs temps de résidence/renouvellement. Cette étude, principalement fondée sur une approche hydrogéochimique et isotopique, vise à améliorer les connaissances sur le système aquifère du CI/H afin d'optimiser sa gestion durable. Les données ont été obtenues à partir de cartes géologiques et des fiches techniques de forage, de diagraphie, et d'essais de pompage. En outre, des échantillons d'eau ont été prélevés dans 30 forages répartis régulièrement dans la zone d'étude (114 425 km2). Des paramètres (pH, t et CE) ont été mesurés in situ et les échantillons ont été acheminés au laboratoire GEOPS où des analyses chimiques (ions majeurs) et isotopiques (18O, 2H, 13C, 14C) ont été effectuées. À partir des coupes géologiques, la couche du CH est présente au-dessus des couches CI dans la partie sud de la région mais pas dans la partie nord. Cependant, la piézométrie est continue sur toute la région. Dans la partie située au nord (au-dessus de 16°N), les lignes d'écoulement sont dirigées des affleurements du CI (est) vers l'ouest, et dans la partie située au sud (au-dessous de 16°N), des affleurements du CH (nord-est) vers le sud-ouest. La teneur en isotopes stables de l'eau (vs V-SMOW) varie de -8 à -7 ‰ pour 18O et de -59 à -48 ‰ pour 2H dans la partie nord (CI) et de -6 à -5 ‰ pour 18O et - 51 à -41 ‰ pour 2H dans la partie sud (CH), montrant deux masses d'eau différentes. Toutes ces teneurs sont très inférieures à celles correspondant aux précipitations actuelles, qui ne contribuent donc pas significativement à la recharge. Ceci est en accord avec les "âges" des eaux souterraines (5 à 36 ka) calculés à partir des teneurs en 14C (1 à 57 pmC), qui sont également en bon accord avec la piézométrie. Ainsi, même si la piézométrie continue du système aquifère du CI/H indique que les pressions sont en équilibre entre les différentes couches, les caractéristiques géochimiques montrent des différences notables entre la partie sud, où la couche de CH est présente, et la partie nord, où elle est absente. Les échanges d'eau entre les différentes couches sont donc très limités. Dans toutes ces couches, les eaux souterraine sont vieilles (> 5ka) et ont été rechargées sous un climat plus frais qu'aujourd'hui. Il est probable qu'elles soient largement héritées de périodes humide du Pléistocène supérieur et de la "Période Humide Africaine" (~ 15-5 ka) et devraient être gérées comme une ressource fossile. / In the region of Tahoua (Niger), which is part of the Iullemeden basin, the deep multilayer aquifer system of the Continental Intercalaire/Hamadien (CI/H) represents an essential reserve. It is exploited for the drinking-water supply for the local population, for the extractive-industry's water use and for the watering of cattle, because of the degradation of water quality and the very low flow in shallow aquifers and Upper Cretaceous aquifers. Despite some classical hydrogeological studies, this system remains poorly known, particularly with regard to the distribution of the different water bodies and their residence/renewal times. This study, mainly based on a geochemical and isotopic approach, aims to improve knowledge on the CI/H system in order to optimize its sustainable management. Data were obtained from geological maps, and data-sheets of drilling, pumping and logging test. In addition, water samples were collected from 30 boreholes regularly distributed over the study area (114 425 km2). Some parameters (pH, t and EC) were measured in situ and the samples were sent to the GEOPS laboratory where chemical (major ions) and isotopic (stable isotopes in water, 14C, 13C) analyses were performed. From geological cross-sections, the CH layer is present above the CI layers in the southern part of the region but not in the northern part. However, piezometry is continuous over the whole region. In the northern part (above 16°N), the flow lines are directed from the CI outcrops (east) to west and in the southern part (below 16°N), from the CH outcrops (east) to south-west. Stable isotope contents of water (vs V-SMOW) range from -8 to -7 ‰ for 18O and from -59 to -48 ‰ for 2H in the northern part (CI) and from -6 to -5 ‰ for 18O and -51 to -41 ‰ for 2H in the southern part (CH), showing two different water masses. All these values are much lower than those corresponding to present-day precipitation, which does not significantly contribute to recharge. This is in agreement with the groundwater "ages" (5 to 36 ka) calculated from 14C contents (1 to 57 pmC), which are also in good agreement with piezometry. Therefore, even if the continuous piezometry of the deep aquifer system of CI/H indicates that pressures are in equilibrium between the different layers, the geochemical features show noticeable differences between the southern part, where the CH layer is present, and the northern part, where it is absent. Thus, water exchanges between the different layers are very limited. In all these layers, groundwater is old (> 5ka) and was recharged under a cooler climate than at present. Probably, it is largely inherited from Upper-Pleistocene wet periods and from the "African Humid Period" (~15-5 ka) and should be managed as a fossil resource
|
14 |
Stable isotope mass balance of the North American Laurentian Great LakesJasechko, Scott January 2011 (has links)
This thesis describes a method for calculating lake evaporation as a proportion of water inputs (E/I) for large surface water bodies, using stable isotope ratios of oxygen (18O/16O) and hydrogen (2H/1H) in water. Evaporation as a proportion of inflow (E/I) is calculated for each Laurentian Great Lake using a new dataset of 516 analyses of δ18O and δ2H in waters sampled from 75 offshore stations during spring and summer of 2007. This work builds on previous approaches by accounting for lake effects on the overlying atmosphere and assuming conservation of both mass and isotopes (18O and 2H) to better constrain evaporation outputs.
Results show that E/I ratios are greatest for headwater Lakes Superior and Michigan and lowest for Lakes Erie and Ontario, controlled largely by the magnitude of hydrologic inputs from upstream chain lakes. For Lake Superior, stable isotopes incorporate evaporation over the past century, providing long-term insights to the lake’s hydrology that may be compared to potential changes under a future – expectedly warmer – climate. Uncertainties in isotopically derived E/I are comparable to conventional energy and mass balance uncertainties. Isotope-derived E/I values are lower than conventional energy and mass balance estimates for Lakes Superior and Michigan. The difference between conventional and isotope estimates may be explained by moisture recycling effects. The isotope-based estimates include only evaporated moisture that is also advected from the lake surface, thereby discounting moisture that evaporates and subsequently reprecipitates on the lake surface downwind as recycled precipitation. This shows an advantage of applying an isotope approach in conjunction with conventional evaporation estimates to quantify both moisture recycling and net losses by evaporation.
Depth profiles of 18O/16O and 2H/1H in the Great Lakes show a lack of isotopic stratification in summer months despite an established thermocline. These results are indicative of very low over-lake evaporation during warm summer months, with the bulk of evaporation occurring during the fall and winter. This seasonality in evaporation losses is supported by energy balance studies. For Lakes Michigan and Huron, the isotope mass balance approach provides a new perspective into water exchange and evaporation from these lakes. This isotope investigation shows that Lake Michigan and Lake Huron waters are distinct, despite sharing a common lake level. This finding advocates for the separate consideration of Lake Michigan and Lake Huron in future hydrologic studies.
|
15 |
Stable isotope mass balance of the North American Laurentian Great LakesJasechko, Scott January 2011 (has links)
This thesis describes a method for calculating lake evaporation as a proportion of water inputs (E/I) for large surface water bodies, using stable isotope ratios of oxygen (18O/16O) and hydrogen (2H/1H) in water. Evaporation as a proportion of inflow (E/I) is calculated for each Laurentian Great Lake using a new dataset of 516 analyses of δ18O and δ2H in waters sampled from 75 offshore stations during spring and summer of 2007. This work builds on previous approaches by accounting for lake effects on the overlying atmosphere and assuming conservation of both mass and isotopes (18O and 2H) to better constrain evaporation outputs.
Results show that E/I ratios are greatest for headwater Lakes Superior and Michigan and lowest for Lakes Erie and Ontario, controlled largely by the magnitude of hydrologic inputs from upstream chain lakes. For Lake Superior, stable isotopes incorporate evaporation over the past century, providing long-term insights to the lake’s hydrology that may be compared to potential changes under a future – expectedly warmer – climate. Uncertainties in isotopically derived E/I are comparable to conventional energy and mass balance uncertainties. Isotope-derived E/I values are lower than conventional energy and mass balance estimates for Lakes Superior and Michigan. The difference between conventional and isotope estimates may be explained by moisture recycling effects. The isotope-based estimates include only evaporated moisture that is also advected from the lake surface, thereby discounting moisture that evaporates and subsequently reprecipitates on the lake surface downwind as recycled precipitation. This shows an advantage of applying an isotope approach in conjunction with conventional evaporation estimates to quantify both moisture recycling and net losses by evaporation.
Depth profiles of 18O/16O and 2H/1H in the Great Lakes show a lack of isotopic stratification in summer months despite an established thermocline. These results are indicative of very low over-lake evaporation during warm summer months, with the bulk of evaporation occurring during the fall and winter. This seasonality in evaporation losses is supported by energy balance studies. For Lakes Michigan and Huron, the isotope mass balance approach provides a new perspective into water exchange and evaporation from these lakes. This isotope investigation shows that Lake Michigan and Lake Huron waters are distinct, despite sharing a common lake level. This finding advocates for the separate consideration of Lake Michigan and Lake Huron in future hydrologic studies.
|
16 |
Définition du potentiel aquifère du sous-sol de la région de Bangui (République Centrafricaine) à l’aide d’outils géochimiques et isotopiques. Aide à la mise en oeuvre d’un plan de diversification des ressources en eau potable à partir des eaux souterraines / Definition of the aquifer potential of the underground of the area of Bangui (Central African Republic) with geochemical and isotopic tools. Contribution to the implementation of a plan to diversify the drinking water supply sources from groundwater.Djebebe-Ndjiguim, Chantal-Laure 12 December 2014 (has links)
La ville de Bangui, capitale de la République Centrafricaine, est sujette à de grandes difficultés en termes d'alimentation en eau potable. Un moyen de diversifier les ressources est de mettre en exploitation de façon plus importante les eaux souterraines à proximité de la zone urbaine. Deux aquifères existent sur le territoire, un aquifère superficiel dans les niveaux latéritiques et un aquifère en profondeur dans les niveaux carbonatés du Précambrien. L'aquifère superficiel, bien que très exploité, est un réservoir vulnérable et fortement marqué par les sources de pollutions anthropiques. Les caractéristiques isotopiques des eaux indiquent une très forte dépendance aux conditions hydrologiques de recharge et un rôle massif des processus d'évaporation sur la signature des eaux. L'aquifère profond est, quant à lui, dans des conditions semi-confinées et assez bien isolé des influences anthropiques. Les caractéristiques isotopiques des eaux sont en faveur d'une recharge plus homogène, au sein d'un réservoir de taille importante et sur une superficie notable autour de la zone urbaine de Bangui. Les temps de séjour calculés à l'aide du radiocarbone sur les eaux souterraines les plus profondes indiquent des "âges" de l'ordre de plusieurs siècles à environ 3000 ans, traduisant une forte inertie du système aquifère et par là même sont potentiel favorable à une exploitation pérenne et qualitative pour fins de production d'eau potable. / Bangui, capital of the Central African Republic, is subject to great difficulties in terms of drinking water supply. One way to diversify resources is to operate more importantly groundwater near the urban area. Two aquifers exist in the area, a surface water in lateritic levels and a deep aquifer in carbonate levels of the Precambrian. The surface aquifer, although very exploited, is a vulnerable reservoir and is also strongly influenced by anthropogenic sources of pollution. Isotopic characteristics of the water indicate a very strong dependence on hydrological recharge conditions and a massive part of the evaporation of water on the isotopic signature. The deep aquifer is, meanwhile, in a semi-confined situation and relatively well isolated from anthropogenic influences. Isotopic characteristics of the water are in favour of more homogeneous recharge processes, in a large reservoir and over a substantial area around the urban zone of Bangui. The residence times calculated using radiocarbon on the deeper groundwater indicate "ages" of the order of several centuries to about 3000 years, reflecting a strong inertia of the aquifer system and thus favourable exploitation conditions for the development of a sustainable and qualitative drinking water supply from groundwater.
|
17 |
A Reconnaissance Study of Water and Carbon Fluxes in Tropical Watersheds of Peninsular Malaysia: Stable Isotope ConstraintsIshak, Muhammad Izzuddin Syakir 04 February 2014 (has links)
Evapotranspiration is a nexus for planetary energy and carbon cycles, as yet poorly constrained. Here I use stable isotopes of oxygen and hydrogen to partition flux of water due to plant transpiration from the direct evaporative flux from soils, water bodies and plant. The study areas, Langat and Kelantan watersheds represent examples of domains dominated by the respective Southwest and Northeast monsoons on the two sides of the main orographic barrier (Titiwangsa mountain range). Mean annual rainfall for the Langat watershed, obtained from 30 years of hydrological data, is 2145 ± 237 mm. Tentatively, 48% of this precipitation returns to the atmosphere via transpiration (T), with 33% partitioned into discharge (Q), 8% into interception (In), and 11% into evaporation (Ed). In the Kelantan watershed, the mean annual rainfall, also based on the 30 year hydrological data, is 2383 ± 120 mm. Similar to Langat, the T accounts for 43% of precipitation (P), 45% is discharged into South China Sea (Q), 12% partitioned into interception (In) and tentatively 0% for evaporation (Ed). Ed for the Langat watershed represents only a small proportion in terms of volumetric significance, up to almost ~11% with strong effect on the isotopic fingerprints of waters associated with the summer Southwest Monsoon (SWM). Note, however, that insignificant Ed for the Kelantan watershed may be an artefact of rain and river water sampling at only coastal downstream portion of the watershed. High humidity (80%) also was recorded for the Malaysian Peninsula watershed.
T appropriates about half of all solar energy absorbed by the continents, here ~1000*103 g H2O m-2 yr-1 similar to other tropical regions at 900-1200*103 g H2O m-2 yr-1. The associated carbon fluxes are ~ 1300 g C m-2yr-1, independent of P. Vegetation responses to solar irradiance, via T and photosynthesis reflects the importance of stomatal regulation of the water and carbon fluxes. In order to maintain high transpiration in the tropical region, “constant” water supply is required for continuous pumping of water that delivers nutrients to the plant, suggesting that water and carbon cycle are co-driven by the energy of the sun. The existence of the water conveyor belt may be precondition for nutrient delivery, hence operation of the carbon cycle. Potentially, this may change our perspective on the role that biology plays in the water cycle. In such perspective, the global water cycle is the medium that redistributes the incoming solar energy across the planet, and the anatomical structures of plants then help to optimize the loop of energy transfer via evaporation and precipitation in the hydrologic cycle.
The main features of aquatic geochemistry of the Langat and Kelantan rivers inferred from the Principal Component Analysis are controlled by three components that explain 80% and 82% of total variances. These components are reflecting of the geogenic factor with superimposed pollution, the latter particularly pronounced in urbanized sections of the Langat river and dominant in downstream of the Kelantan river. There is no correlation between seasonal variations in major ion chemistry and environmental variables such as precipitation, discharge, temperature or solar activity.
|
18 |
A Reconnaissance Study of Water and Carbon Fluxes in Tropical Watersheds of Peninsular Malaysia: Stable Isotope ConstraintsIshak, Muhammad Izzuddin Syakir January 2014 (has links)
Evapotranspiration is a nexus for planetary energy and carbon cycles, as yet poorly constrained. Here I use stable isotopes of oxygen and hydrogen to partition flux of water due to plant transpiration from the direct evaporative flux from soils, water bodies and plant. The study areas, Langat and Kelantan watersheds represent examples of domains dominated by the respective Southwest and Northeast monsoons on the two sides of the main orographic barrier (Titiwangsa mountain range). Mean annual rainfall for the Langat watershed, obtained from 30 years of hydrological data, is 2145 ± 237 mm. Tentatively, 48% of this precipitation returns to the atmosphere via transpiration (T), with 33% partitioned into discharge (Q), 8% into interception (In), and 11% into evaporation (Ed). In the Kelantan watershed, the mean annual rainfall, also based on the 30 year hydrological data, is 2383 ± 120 mm. Similar to Langat, the T accounts for 43% of precipitation (P), 45% is discharged into South China Sea (Q), 12% partitioned into interception (In) and tentatively 0% for evaporation (Ed). Ed for the Langat watershed represents only a small proportion in terms of volumetric significance, up to almost ~11% with strong effect on the isotopic fingerprints of waters associated with the summer Southwest Monsoon (SWM). Note, however, that insignificant Ed for the Kelantan watershed may be an artefact of rain and river water sampling at only coastal downstream portion of the watershed. High humidity (80%) also was recorded for the Malaysian Peninsula watershed.
T appropriates about half of all solar energy absorbed by the continents, here ~1000*103 g H2O m-2 yr-1 similar to other tropical regions at 900-1200*103 g H2O m-2 yr-1. The associated carbon fluxes are ~ 1300 g C m-2yr-1, independent of P. Vegetation responses to solar irradiance, via T and photosynthesis reflects the importance of stomatal regulation of the water and carbon fluxes. In order to maintain high transpiration in the tropical region, “constant” water supply is required for continuous pumping of water that delivers nutrients to the plant, suggesting that water and carbon cycle are co-driven by the energy of the sun. The existence of the water conveyor belt may be precondition for nutrient delivery, hence operation of the carbon cycle. Potentially, this may change our perspective on the role that biology plays in the water cycle. In such perspective, the global water cycle is the medium that redistributes the incoming solar energy across the planet, and the anatomical structures of plants then help to optimize the loop of energy transfer via evaporation and precipitation in the hydrologic cycle.
The main features of aquatic geochemistry of the Langat and Kelantan rivers inferred from the Principal Component Analysis are controlled by three components that explain 80% and 82% of total variances. These components are reflecting of the geogenic factor with superimposed pollution, the latter particularly pronounced in urbanized sections of the Langat river and dominant in downstream of the Kelantan river. There is no correlation between seasonal variations in major ion chemistry and environmental variables such as precipitation, discharge, temperature or solar activity.
|
Page generated in 0.0459 seconds