Spelling suggestions: "subject:"isotope.""
621 |
The influence of field pea on carbon and nitrogen dynamics and greenhouse gas emissionsSangster, Amy 04 March 2010 (has links)
Pulse crops have been long associated with biological dinitrogen fixation and therefore improve the sustainability of cropping systems when included in rotation. However, studies indicate there may be additional benefits of including pulse crops in rotation. To quantify these potential benefits, soil processes and properties related to nitrogen (N) and carbon (C) cycling were examined in five crop rotations with and without field pea (<i>Pisum sativum</i> L.) in Scott, Saskatchewan. Gross mineralization and nitrification rates were determined using the 15N isotope dilution technique in intact soil cores. To estimate the proportion of nitrous oxide (N2O) emissions derived from nitrification related processes rather than denitrification processes tracer techniques using 15N were used. Field incubations were performed in 2008 at seeding (May 13), anthesis (July 8) and just after harvest (October 8). Mean mineralization and nitrification rates were not significantly different among rotations on any date and there was no significant difference in mean N2O emissions among rotations. From labeled 15NO3- cores, it was determined that nitrification-related processes were the major contributors to N2O emissions. There was no difference among the rotations in microbial biomass carbon (MB-C) or microbial biomass N (MB-N) with the exception of MB-C in the continuous field pea (FP) and the canola (<i>Brassica napus</i> L.)-wheat (<i>Triticum aestivum</i> L.)-field pea (CNL-W-FP) rotation at anthesis. There was no effect of rotation on dissolved organic carbon (DOC) and only seasonal differences were observed with DOC levels being lower before seeding than at anthesis and post-harvest. Based on the results obtained from a single growing season, our results show that N benefits of including field pea in rotation, beyond dinitrigen fixation, were not detectable and that the immediate N benefit of including field pea in rotation may be due simply to the direct effects of biological dinitrogen (N2) fixation. However, there have been reports of pulse crop benefits to succeeding crops in rotation. As a result, we investigated both the quantity and quality of crop residues, which can have an impact on soil properties and processes. Plants enriched with isotopic tracers can be used to trace crop residue decomposition to various C pools but only if the tracer is homogeneously distributed throughout the plant. In order to determine if repeat-pulse labeling could be used to trace crop residue decomposition, this method was followed using 13CO2 to enrich plant material of field pea and canola plants in a controlled environment. The distribution of 13C throughout the plant parts (roots, stem, leaves, and pod) and biochemical fractions [acid detergent fiber (ADF) and acid detergent lignin (ADL)] were determined. It was found that 13C was not homogeneously distributed throughout the plant parts or biochemical fractions. The pod fraction in particular was much less enriched in comparison to the other fractions. The ADL fraction was less enriched than the ADF fraction. Because of the heterogeneity of the label throughout the plant, modifications of the method are needed and 13C distribution through out the plant needs to be assessed before the repeat-pulse method can be used to trace C residue through various C pools. Nevertheless, root contributions to below-ground C were successfully determined from the enriched root material and the resulting enriched soil. It was found that canola contributed more above- and below-ground residues than field pea, however canola was also higher in ADF and ADL fractions indicating a more recalcitrant residue. Research should continue to better define the impact of pulse crop residues on C and N cycling and subsequent crops in rotation.
|
622 |
Selenium as paleo-oceanographic proxy: a first assessmenMitchell, Kristen Ann 05 April 2011 (has links)
Selenium (Se) is an essential trace element, which, with multiple oxidation states and six stable isotopes, has the potential to be a powerful paleo-environmental proxy. In this study, Se concentrations and isotopic compositions were analyzed in a suite of about 120 samples of fine-grained marine sedimentary rocks and sediments spanning the entire Phanerozoic. While the selenium concentrations vary greatly (0.22 to 72 ppm), the δ82/76Se values fall in a fairly narrow range from -1 to +1 , with the exception of laminated black shales from the New Albany Shale formation (Devonian), which have δ82/76Se values of up to +2.20 . Black Sea sediments (Holocene) and sedimentary rocks from the Alum Shale formation (Late Cambrian) have Se/TOC ratios and δ82/76Se values close to those found in modern marine plankton (1.72x10-6±1.55x10-7 mol/mol and 0.42±0.22 ). (Note: TOC = total organic carbon.) For the other sedimentary sequences, the Se/TOC ratios indicate enrichment in selenium relative to marine plankton. Additional input of isotopically light terrigenous Se (δ82/76Se ≈ -0.42 ) may explain the Se data measured in recent Arabian Sea sediments (Pleistocene). The very high Se concentrations in sedimentary sequences that include the Cenomanian-Turonian Ocean Anoxic Event (OAE) 2 possibly reflect a significantly enhanced input of volcanogenic Se to the oceans. As the latter has an isotopic composition (δ82/76Se ≈ 0 ) not greatly different from marine plankton, the volcanogenic source does not impart a distinct signature to the sedimentary Se isotope record. The lowest δ82/76Se values are observed in the OAE2 samples from Demerara Rise and Cape Verde Basin cores (δ82/76Se = -0.95 to 1.16 ) and are likely due to fractionation associated with microbial or chemical reduction of Se oxyanions in the euxinic water column. In contrast, a limiting availability of seawater Se during periods of increased organic matter burial is thought to be responsible for the elevated δ82/76Se values and low Se/TOC ratios in the black shales of the New Albany Shale formation. Overall, our results suggest that Se data may provide useful information on paleodepositional conditions, when included in a multi-proxy approach.
|
623 |
Catalytic Properties of Protective Metal-OxidesHörnlund, Erik January 2003 (has links)
No description available.
|
624 |
Calcul prédictif du facteur de partage isotopique entre minéraux dans le cadre de la théorie de la fonctionnelle de la densitéMéheut-Le Quéau, Merlin 25 January 2008 (has links) (PDF)
Dans ce travail, nous avons appliqué les méthodes de calcul électronique basés sur la théorie de la fonctionnelle de la densité pour calculer les propriétés de partage isotopique à l'équilibre de l'hydrogène, de l'oxygène et du silicium entre divers matériaux d'intérêt en sciences de la Terre. La compréhension de ces mécanismes de partage est un enjeu majeur en géochimie, car le contenu isotopique des minéraux constitue un témoin des événements géochimiques. Le calcul électronique permet de déterminer les propriétés vibrationnelles complètes d'un matériau au niveau harmonique,<br />desquelles on déduit ses propriétés de partage. Notre but est de valider une approche ab initio, i.e. libre de tout paramètre issu de l'expérience, permettant la prédiction du partage entre deux matériaux. On s'est intéressé aux matériaux: quartz, vapeur d'eau, glace, kaolinite, lizardite, enstatite, forstérite, brucite et gibbsite. Certains ont fait l'objet d'études expérimentales précises de leurs différentes propriétés physiques, ce qui nous permet de valider notre approche, et tous sont de grand intérêt en sciences de la Terre, ce qui nous permet de proposer de nouvelles lois de partage en fonction de la température, et de vérifier la validité de celles déjà proposées. C'est la première fois qu'une telle étude systématique est réalisée à partir d'une approche ab initio, et sur autant de systèmes différents. On a donc procédé à une étude la plus complète possible des sources d'erreur susceptibles d'influencer le résultat final. Par ailleurs, cette approche nous permet d'analyser de façon plus détaillée les processus physiques à l'origine du partage isotopique dans ces différents matériaux.
|
625 |
Étude et mise au point d'une nouvelle méthode d'évaluation de la bioassimilation utilisation des isotopes stables du carbone pour le marquage de la biomasse microbienne /Lucas, Nathalie Silvestre, Françoise. January 2008 (has links)
Reproduction de : Thèse de doctorat : Science des agroressources : Toulouse, INPT : 2007. / Titre provenant de l'écran-titre. Bibliogr. 191 réf.
|
626 |
Spectroscopie ultraviolet-visible et infrarouge de molécules clés atmosphériquesGratien, Aline Orphal, Johannes Picquet-Varrault, Bénédicte. January 2008 (has links) (PDF)
Thèse de doctorat : Sciences de l'Univers et de l'environnement : Paris Est : 2008. / Titre provenant de l'écran-titre.
|
627 |
Sensitivity of stable isotopes (13C, 15N, and 18O) in bone to dietary specialization and niche separation among sympatric primates in Kibale National Park, Uganda /Carter, Melinda Lee. January 2001 (has links)
Thesis (Ph. D.)--University of Chicago, Dept. of Anthropology, August 2001. / Includes bibliographical references. Also available on the Internet.
|
628 |
Development of a soil respiration isotopic sampling systemMurray, Sam January 2014 (has links)
The rate of carbon turnover in soil is a balance between the input of carbon by plants through their roots and associated fungi and the loss of carbon due to plant and microbial respiration, oxidation and leaching. Soil carbon dynamics are notoriously difficult to measure, and being able to separate total soil respiration into its autotrophic and heterotrophic components would help understanding of carbon cycling processes. Where autotrophic respiration originates from roots and their associated mycorrhizal fungi, using newly fixed carbon, and heterotrophic respiration originates from the breakdown of older soil organic matter.
By calculating the δ¹³C signature of respired CO₂ (the ratio of the abundances of C isotopes ¹²C and ¹³C) it is possible to determine whether it is of heterotrophic or autotrophic origin. In this study a 6 chamber, constant CO₂ concentration measuring apparatus was developed to determine both the rate of CO₂ efflux and to collect undisturbed CO₂ samples for isotope analysis. This apparatus was tested using live soil samples with different δ¹³C values (-22 ‰ to -27 ‰) and respiration rates (2 – 8 µmol m⁻² s⁻¹) obtained from various locations in New Zealand. Testing involved taking samples using the respiration apparatus, then incubating the same samples in a bag, and then comparing the two. There was no difference between the results from the soil respiration apparatus and the bags (R²=0.96, p=0.0002).
Twelve microcosms including soil and grass were extracted from a newly converted dairy farm and placed into in growth cabinets. Diurnal courses of partitioned soil respiration were made over 24 hours with constant soil temperature to eliminate temperatures effect on soil respiration. Half were then covered with 90% shade cloth for 12 days to test if a reduction in light (and therefore newly fixed carbon) would have any effect on soil respiration. There was a significant reduction in soil respiration, yet no detectable change in the δ¹³C of soil respired CO₂ under heavily shaded treatment. There was however there was a shift towards heterotrophic dominated respiration. This shows that while L. perenne is resilient to surrounding conditions it is susceptible to change if exposed to different conditions for prolonged periods of time. The use of this new technique in the field will allow improved understanding of factors effecting soil C efflux.
|
629 |
Proxy records of climate change in subtropical and tropical karst environmentsPolk, Jason Samuel 01 June 2009 (has links)
Understanding the paleoclimate of a region is important, especially when trying to determine the extent of natural climate variability within the context of anthropogenic impacts. Recent anomalous periods of climate change in the Late Holocene, including the Little Ice Age and Medieval Warm Period, could possibly repeat in the future, having significant worldwide consequences. This holds especially true for tropical and subtropical karst environments, where limited paleoclimate proxies provide minimal data regarding past climate change. An investigation into past climate change in Belize using fulvic acids from cave sediments shows periods of drought during the collapse of the Maya society around 1400 years ago. Comparison of changes in the carbon isotope data from the fulvic acids agree with speleothem records, but more closely reflect changes in the vegetation above the cave, showing Maya population decline through waning agriculture.
Further investigation of using fulvic and other organics acids are examined from cave sediments in Florida. The data show fulvic acid carbon isotopes are the most robust recorders of climate change, agreeing with several nearby speleothem d¹8O and d¹³C records from west-central Florida. A more detailed record of climate change in Florida through a calibration study of precipitation and cave dripwater oxygen and hydrogen isotopes revealed that the amount effect dominates rainfall in west-central Florida. Homogenization of epikarst dripwater gives average d¹8O values representative of the annual amount-weighted average of precipitation d¹8O for the area, suggesting speleothem isotope records reflect changes in rainfall amount. Examination of two speleothems from west-central Florida show complex teleconnection and solar forcing mechanisms responsible for past climate changes.
A high-resolution stable isotope, trace element, and time series analysis study for the last 1500 years shows variability during the LIA and MWP, pointing to a combined influence of Pacific and Atlantic teleconnection mechanisms, especially the ITCZ, NAO and PDO, being responsible for precipitation variability. Long-term reconstruction of the mid-Holocene and Late Pleistocene from another speleothem reveals differences in temperature and precipitation between glacial and interglacial conditions in Florida. Climate proxies from the tropics and subtropics provide additional clues to global climate change crucial to understanding future water availability.
|
630 |
Stable carbon isotopes as indicators of increased water-use efficiency and biomass production in white spruce (Picea glauca (Moench) voss) seedlings grown under different water and nitrogen regimesSun, Zongjia 26 August 2015 (has links)
Graduate
|
Page generated in 0.0332 seconds