• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 992
  • 354
  • 314
  • 132
  • 38
  • 38
  • 38
  • 38
  • 38
  • 37
  • 27
  • 25
  • 12
  • 10
  • 7
  • Tagged with
  • 2404
  • 941
  • 364
  • 313
  • 302
  • 249
  • 215
  • 214
  • 178
  • 171
  • 170
  • 156
  • 154
  • 141
  • 138
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
661

Microwave-assisted decomposition of environmental samples, and the analysis of plutonium and radiostrontium

Garcia, Ramon 05 1900 (has links)
No description available.
662

Isotope harvesting at heavy ion fragmentation facilities

Mastren, T., Pen, A., Peaslee, G. F., Wosniak, N., Loveless, S., Essenmacher, S., Sobotka, L., Morrissey, D., Lapi, S. E. 19 May 2015 (has links) (PDF)
Introduction The National Superconducting Cyclotron Laboratory (NSCL) is a national nuclear physics facility in which heavy ion beams are fragmented to produce exotic nuclei. In this process of fragmentation many nuclei are created, however, only one isotope is selected for experimentation. The remaining isotopes that are created go unused. The future upgrade of the NSCL to the Facility for Rare Isotope Beams (FRIB) will increase the incident energy of these heavy ion beams and amplify the current by three orders of magnitude. An aqueous beam dump will be created to collect the unused isotopes created in the process of fragmentation. Several of these isotopes are of interest for many applications including nuclear security, medical imaging, and therapy and are not currently available or are only available in very limited supply. Harvesting these isotopes from the aqueous beam dump could provide a consistent supply of these im-portant isotopes as an ancillary service to the existing experimental program. Material and Methods A liquid water target system was designed and tested to serve as a mock beam dump for exper-iments at the NSCL1. A 25 pnA 130 MeV/u 76Ge beam was fragmented using a 493 mg/cm2 thick beryllium production target. After fragmentation the beam was separated using the A1900 frag-ment separator2 set up for maximum 67Cu pro-duction using a 240 mg/cm2 aluminum wedge and a 2% momentum acceptance. The secondary beam was collected for four hours in the liquid water target system before being transferred to a collection vessel. Four additional four hour collections were made before finally shipping the five collections to Washington University and Hope College for chemical separation. Four of the five samples were separated using a two part separation scheme. First they were passed through and 3M Empore iminodiacetic acid functionalized chelation disk in a 1.25M ammonium acetate solution at pH 5. The flow through was collected and analyzed using an HPGe detector. Then 10mL of 6M HCl acid was passed through the chelation disk to remove the 2+ transition metals. The 10mL of 6M HCl acid was collected after passing through the disk and added to an anion-exchange column with 2.5 g AG1-X8 resin. The eluate was collected and then an additional 10mL of 6M HCl was passed through the column to remove the nickel. The 67Cu was then collected by passing 10mL of 0.5M HCl and the eluate was collected in 1mL fractions each analyzed by HPGe for 67Cu concentration and purity. The two highest 67Cu fractions were heated to dryness and reconstituted in 50 μL 0.1M ammonium acetate pH 5.5. 2 μL of 7.9 mg/mL NOTA-Bz-Trastuzumab was added to 45 μL of 67Cu and 3 μL 0.1M ammonium acetate pH 5.5. This solution was placed in a shaking incubator at 37 °C for twenty minutes and then analyzed by radio-instant thin layer chromatography in order to determine the per-cent of 67Cu bound to the antibody. Results and Conclusion 67Cu was collected into the liquid water target system with an average efficiency of 85 ± 5 %. The secondary beam was 73 % pure with the impurities, half-lives greater than 1 minute, listed in TABLE 1. Separation of 67Cu from the impurities resulted in an average recovery of 88 ± 3 % for a total recovery of 67Cu from the beam and separation of 75 ± 4 %. No detectable radioactive impurities were found in the final samples when analyzed using an HPGe detector. TABLE 2 shows the amount of 67Cu collected from the beam and the amount recovered decay corrected to end of bombardment. Labeling NOTA-Bz-Trastuzumab with 67Cu resulted in > 95 % radiochemical yield. Collection of the 73 % pure 67Cu beam in water and the resulting separation proved successful. These results demonstrate that radioisotopes can be collected from fragmented heavy ion beams and isolated in usable quantities and purity for many radiochemical applications. Further experimentation with an unpurified beam to better simulate conditions in the beam dump at the Facility for Rare Isotope Beams will be performed in the near future.
663

The Hydrogeochemistry of Spring and Gorge Waters of the Karijini National Park, Pilbara, Western Australia.

Hedley, Paul James January 2009 (has links)
Isotopes and hydrochemistry were used to define groundwater flow systems and better understand the hydrogeological setting of the Karijini National Park within the Central Pilbara region, this study was initiated because of the near proximity of the Marandoo iron ore mine to the National Park. Based on the stable isotope composition of the water samples, two main groups of water can be identified. Groundwater is characterised by depleted δD and δ¹⁸O, suggesting no significant evaporation effect. Surface water on the other hand is more enriched in δD and δ¹⁸O due to evaporation. The relatively high concentration of Cl- compared to rainfall and depleted δD and δ¹⁸O values of groundwater indicate that recharge of the aquifers is occurring during intense rainfall events when rapid infiltration occurs. Evapotranspiration then acts to concentrate ionic species prior to recharge. The presence of CFCs in the groundwater indicates the presence of modern recharge water. Relationships between various ionic species has shown that infiltration through the Tertiary sequence and subsquent dissolution of carbonate minerals is main influence on increasing concentrations of Ca²⁺ , Mg²⁺ , HCO₃⁻ . The TDS concentration of the groundwater in the Marra-Mamba Iron Formation that hosts the Marandoo ore body is higher than most of the water bodies surrounding the mining area. This suggests that either significant chemical modification is occuring or it is recharged by different mechanisms to that of the Karijini groundwater. Relationships between the major ion concentration and catchment area, surficial Tertiary cover and distance between recharge and discharge were identified. The results show that the hydrochemistry of the water discharging at each location within the National Park can be justified by groundwater evolution within it’s own catchment.
664

Ecological connectivity in braided riverscapes

Gray, Duncan Peter January 2010 (has links)
Rivers are hierarchical networks that integrate both large and small scale processes within catchments. They are highly influenced by variation in flow and are characterised by strong longitudinal movement of materials. I conducted an extensive literature review that indicated braided rivers lie at the upper end of the river complexity gradient due to the addition of strong lateral and vertical connectivity with their floodplains. The management of these rivers requires an understanding of the connective linkages that drive complexity, however in developed regions few braided river systems remain intact. The large number of relatively pristine braided rivers in New Zealand provided a unique opportunity to study physical and biotic patterns in these large dynamic systems. Initially I examined horizontal connectivity through patterns in regional and local diversity in eleven braided rivers in the North and South islands of New Zealand. Subsequently, the next component of my thesis focused on vertical connectivity through intensive investigations of energy pathways and the recipient spring stream food-webs. The eleven river survey included sampling of multiple reaches and habitats (main channels, side braids, spring sources, spring streams and ponds) and confirmed the importance of lateral habitats to invertebrate diversity. However, I found that large spatial scales made a greater contribution to diversity than small scales, such that major differences occurred between rivers rather than habitats. This result suggested either a role for catchment-scale factors, such as flow, or biogeographic patterning. Subsequent analysis of the relationships between invertebrate diversity and the physical environment indicated strong regulation by flow variability, but also biogeographic community patterns. Braided rivers are clearly disturbance dominated ecosystems, however the effects of disturbance are manifest in different ways across the riverscape. The role of vertical hydrological connectivity in linking the different components of the floodplain was investigated by tracing carbon pathways from the terrestrial floodplain to spring-fed streams and their communities. Using δ13C isotope signatures it was possible to show that inorganic carbon in groundwater was derived from terrestrial vegetation and subsequently incorporated into spring stream food-webs. However, the degree to which a stream community uses groundwater as opposed to allochthonous carbon is affected by the successional stage of riparian vegetation, a function of the shifting habitat mosaic that is regulated primarily by flow variation and sediment dynamics. In summary, the structure of braided river ecosystems is regulated primarily at the catchment scale, but connectivity at smaller scales plays an important role in determining ecological structure and function.
665

LATEST QUATERNARY PALEOCLIMATE RECONSTRUCTION UTILIZING STABLE ISOTOPIC AND TRACE ELEMENT PROXIES IN A STALAGMITE FROM CULVERSON CREEK CAVE, WEST VIRGINIA

Gilbert, Ashley Nicole 01 January 2010 (has links)
A reconstruction of regional climate variability in southern West Virginia that spans the last glacial/interglacial transition is presented. Paleoclimate interpretations obtained from the 50-cm long stalagmite provide key insights regarding the timing, magnitude, and forcing mechanisms responsible for past climate variability. Stable isotopic (δ18O and δ13C) and trace element (Ba, Sr, Mg) signatures from samples contiguously milled along the growth-axis of a 230Th-dated stalagmite which grew between approximately 20 and 5 thousand years before present (kyr BP) provide critical constraints for above-cave mean annual temperature, seasonality of moisture mean annual precipitation, and potential vegetation shifts. Specifically, the stalagmite record reveals subcentennial-scale variations in the proxy records, and strong multimillennial-scale features that correlate to well-known patterns of sea-surface variability in the North Atlantic Ocean (i.e., Bond cycles). The large-scale glacial/interglacial transition is sufficiently resolved to show that regional climate changes largely paralleled climatic transitions preserved in low-latitude (Chinese monsoon records; Cariaco Basin) and high-latitude (Greenland Ice Sheet) paleo-archives. However, the Younger Dryas interval in the south-central Appalachian Mountains is not as prominent a feature as in other records.
666

A HYDROLOGIC CHARACTERIZATION OF THREE HEADWATER MOUNTAIN WETLANDS IN EASTERN KENTUCKY, USA

Hoy, Catherine 01 January 2012 (has links)
Three small (< 1 ha) mountain wetlands located in eastern Kentucky, host populations of two rare orchids, the white fringeless orchid, Platanthera integrilabia, and the crested yellow orchid, Platanthera cristata. Recently, concern has arisen about the persistence of the orchids. To better understand these wetlands and determine if hydrology is affecting the orchid populations, a hydrologic characterization study was initiated in 2009. Each wetland was equipped with a well nest consisting of piezometers, tensiometers, and a shallow well with a data logging pressure transducer. Chemistry and stable isotopes analysis (deuterium and 18O) of groundwater and precipitation were analyzed, and soil, topographic and channel cross-section surveys were conducted. Hydrology data suggest the primary source of water is precipitation and the primary output is evapotranspiration. Between 10 and 30 cm below the soil surface soil and tensiometer data revealed the presence of a weak fragipan, which likely contributes to seasonal ponding at the site. Management recommendations include thinning and construction of debris dams to increase the hydroperiod, surface area, and total potential volume of the wetlands.
667

Partitioning Biological and Anthropogenic Methane Sources

Down, Adrian January 2014 (has links)
<p>Methane is an important greenhouse gas, and an ideal target for greenhouse gas emissions reductions. Unlike carbon dioxide, methane has a relatively short atmospheric lifetime, so reductions in methane emissions could have large and immediate impacts on anthropogenic radiative forcing. A more detailed understanding of the global methane budget could help guide effective emissions reductions efforts.</p><p>Humans have greatly altered the methane budget. Anthropogenic methane sources are approximately equal in flux to natural sources, and the current atmospheric methane concentration is ~2.5 times pre-industrial levels. The advent of hydraulic fracturing and resulting increase in unconventional natural gas extraction have introduced new uncertainties in the methane budget. At the same time, the next few decades could be a crucial period for controlling greenhouse gas emissions to avoid irreversible and catastrophic changes in global climate. Natural gas could provide lower-carbon fossil energy, but the climate benefits of this fuel source are highly dependent on the associated methane emissions. In this context of increasing uncertainty and growing necessity, quantifying the impact of natural gas extraction and use on the methane budget is an essential step in making informed decisions about energy.</p><p>In the work presented here, I track methane in the environment to address several areas of uncertainty in our present understanding of the methane budget. I apply the tools of methane analysis in a variety of environments, from rural groundwater supplies to an urban atmosphere, and at a range of scales, from individual point sources to regional flux. I first show that carbon isotopes of methane and co-occurrence of ethane are useful techniques for differentiating a range of methane sources. In so doing, I also show that leaks from natural gas infrastructure are a major source of methane in my study area, Boston, MA. I then build on this work by applying the same methane carbon isotope and ethane signatures to partition methane flux for the Boston metro region. I find that 88% of the methane enhancement in the atmosphere above Boston is due to pipeline natural gas. </p><p>In the final portion of this thesis and the two appendices, I move from the distribution side of the natural gas production chain to extraction, specifically addressing the potential impacts from hydraulic fracturing in my home state of North Carolina. I combine the methane source identification techniques of the previous sections with additional geochemical analyses to document the pre-drilling water quality in the Deep River Triassic Basin, an area which could be drilled for natural gas in the future. This data set is unique in that North Carolina has no pre-existing commercial oil and gas extraction, unlike other states where unconventional gas extraction is currently taking place. This research is, to my knowledge, the first to examine the hydrogeology of the Deep River Basin, in addition to providing an important background data set that could be used to track changes in water quality accompanying hydraulic fracturing in the region in the future.</p> / Dissertation
668

Intrinsic and extrinsic factors influencing the timing of arrival of capelin (Mallotus villosus) to spawning grounds in coastal Newfoundland

Maxner, Emily 31 July 2014 (has links)
Capelin is an important forage fish species in the Northwest Atlantic and the primary prey species of many top predators. Capelin undergo extensive inshore migrations (> 350 km) to coastal spawning grounds in the spring where the timing of inshore arrival is highly variable. I investigated the influence of intrinsic factors and proxies for extrinsic factors on the timing of arrival of capelin at spawning sites on the northeast coast of Newfoundland (2012 and 2013). Despite high inter-annual variation in almost all factors examined, intrinsic factors, specifically length and age, consistently varied with timing of arrival at spawning sites for both males and females, unlike proxies for extrinsic factors. These results are important for the management of this critical fish species, as selective harvesting by the capelin fishery of early-arriving fish may impact the age/size structure of the population, recruitment, and result in increased variability in the timing of spawning.
669

DEFINING THE DISTRIBUTION, SOURCE, FATE AND TRANSPORT OF NITRATE IN GROUNDWATER BENEATH AN AGRICULTURALLY INTENSIVE REGION USING HIGH-RESOLUTION PROFILING METHODS

2014 September 1900 (has links)
The hydrogeology, stable isotope distribution, and chemical distribution of Cl- and NO3--N within the Battersea Drainage Basin in southern Alberta were investigated. The Battersea Drainage Basin is characterized by widespread spreading of livestock manure on irrigated farmland and a high density of feedlots, creating concern about groundwater quality in the region. Past research has used conventional piezometers to study the source, distribution and fate of nitrate in the shallow groundwater. The key component of this research involved using the new technique of high-resolution profiling to determine the distribution, source, fate, and transport of nitrate in the shallow geological groundwater environment. High-resolution profiles of δ2H indicated groundwater throughout the glaciofluvial deposits and between 5.4 and 13.7 m below ground in glaciolacustrine deposits contained values > -150.0‰ and tritiated waters (> 0.08 TU). This suggested that this water recharged within the past 60 years. At depth 5.4 to 13.5 m BG, lower δ2H values did not coincide with detectable tritium, indicating the groundwater was much older and not vulnerable to agricultural contamination. High-resolution profiles of Cl- and NO3--N (solid core and squeezed pore water data) showed concentrations of these ions up to 411 and 219 mg L-1, respectively, in the glaciofluvial deposits. Concentrations of Cl- and NO3--N decreased to less than 50 mg L-1 (Cl-) and the Drinking Water Standard for NO3--N (10 mg L-1) in the underlying glaciolacustrine and glacial till deposits at most sites. Comparison to the high-resolution δ2H profiles suggested the high nitrate concentration in the glaciofluvial sediments is agricultural in origin. High concentrations for Cl- and NO3--N (up to 257 and 209 mg L-1, respectively) observed in glacial till and glaciolacustrine deposits below 6.0 m BG at two sites (LB5a and LB6) did not coincide with modern water, indicating the source of high nitrate is geologic in origin. The NO3--N to Cl- ratios suggested denitrification was not appreciable in the glaciofluvial deposits. However, denitrification may be a cause of decreased nitrate in the underlying fine textured deposits at certain sites. Interpretation of the high resolution profiles also suggested that the major conduit for nitrate migration is in near-surface glaciofluvial sediments via advection. The distributions of δ2H, Cl- and NO3--N with depth suggest that transport in the underlying glaciolacustrine and glacial till deposits is diffusion dominated, thus acting as a sink and removing nitrate from the permeable zone. However, the presence of fracturing in the oxidized zone of glacial tills and glaciolacustrine deposits suggests that transport may occur via advection through fracturing and diffusion in the material matrix. High-resolution profiling of δ2H, Cl- and NO3--N proved to be valuable in obtaining information regarding the distribution, source, and transport of groundwater and nitrate in the shallow groundwater environment at a level of detail that cannot be readily obtained through use of conventional piezometers.
670

Foraminiferal paleoecology across the early to middle Eocene transition (EMET) of the western Caribbean / Title on signature form: Foraminiferal paleoecology across the early to middle Eocene transtion (EMET) of the western Caribbean

Chezem, Michelle A. 22 May 2012 (has links)
Foraminiferal faunas across the early to middle Eocene transition (EMET) were studied from three locations in the western Caribbean: Calle G section in Cuba, ODP site 998 B the Cayman Rise, and ODP site 999 B the Colombian basin. There were three primary objectives of this project 1) to observe changes in physical and biological paleoceanographic parameters in the Western Caribbean, more directly in the Cayman Ridge and the Colombian Basin, by the use of planktonic foraminifera data, 2) determine the cause of an oxygen isotope anomaly seen in Cuba by Fluegeman (2007) and that is expected to be present in the Western Caribbean, and 3) determine if the anomaly is a local or a more widespread regional event. The Calle G section in northwestern Cuba consists of early to middle Eocene age foraminiferal chalks. The planktonic foraminiferal fauna at this section is characterized by subbotinids and acarininids but does not contain morozovellids. Oxygen isotopes were obtained across the EMET from the planktonic foraminiferan Acarinina collactea. The resultant curve shows widely fluctuating values during the early portion of the EMET with more stable values occurring in the middle Eocene. The foraminiferal paleoecologic index tau curve at the Calle G section produced is similar to the oxygen isotope curve. ODP site 998 B, Cayman Rise, contains a series of foraminiferal limestones across the EMET. Unlike the Calle G section, this interval contains an abundant planktonic foraminifera fauna including Morozovella. The Morozovella:Acarinina ratio studied at ODP site 998 shows high, fluctuating values in the early part of the EMET with low, stable values during the middle Eocene.ODP site 999 B in the Colombian Basin consists of a series of foraminiferal chalks throughout the EMET. Similar to ODP site 998 this location also has an abundant assemblage of planktonic foraminifera including Morozovella. Evidence supporting turbidities have been observed at this locale as layers of shell hash and large benthic foraminifera. The Morozovella:Acarinina ratio studied at ODP site 999 is similar to that of ODP site 998 showing a high fluctuating values in the early part of the EMET with low, stable values in the middle Eocene. The presence of fluctuating values of oxygen isotopes, tau, and the Morozovella:Acarinina ratio followed by stable values across the EMET may be related to a change in circulation patterns through the Caribbean caused by a developing oceanic gateway. The widely fluctuating oxygen isotope values in the latest Ypresian may also be related to an influx of freshwater in the North Atlantic associated with the coeval Azolla event in the Arctic Ocean. / Department of Geological Sciences

Page generated in 0.0478 seconds