• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 85
  • 18
  • 15
  • 15
  • 8
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 172
  • 27
  • 24
  • 22
  • 19
  • 17
  • 16
  • 14
  • 14
  • 13
  • 13
  • 12
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

LIQUID CRYSTALS NUCLEI COEXISTING WITH AN ISOTROPIC PHASE

Al Qarni, Ali 01 August 2022 (has links)
No description available.
32

Improved Material Models for High Strength Steel

Larsson, Rikard January 2011 (has links)
The mechanical behaviour of the three advanced high strength steel grades, Docol 600DP, Docol 1200M and HyTens 1000, has been experimentally investigated under various types of deformation, and material models have been developed, which account for the experimentally observed behaviour. Two extensive experimental programmes have been conducted in this work. In the first, the dual phase Docol 600DP steel and martensitic Docol 1200M steel were subjected to deformations both under linear and non-linear strain paths. Regular test specimens were made both from virgin materials, i.e. as received, and from materials pre-strained in various directions. The plastic strain hardening, as well as plastic anisotropy and its evolution during deformation of the two materials, were evaluated and modelled with a phenomenological model. In the second experimental program, the austenitic stainless HyTens 1000 steel was subjected to deformations under various proportional strain paths and strain rates. It was shown experimentally that the material is sensitive both to dynamic and static strain ageing. A phenomenological model accounting for these effects was developed, calibrated, implemented in a Finite Element software and, finally,validated. Both direct methods and inverse analyses were used in order to calibrate the parameters in the material models. The agreement between the  numerical and experimental results are in general very good. This thesis is divided into two main parts. The background, theoretical framework and mechanical experiments are presented in the rst part. In the second part, two papers are appended.
33

Mixed-mode partition theories for one-dimensional fracture

Harvey, Christopher M. January 2012 (has links)
Many practical cases of fracture can be considered as one-dimensional, that is, propagating in one dimension and characterised by opening (mode I) and shearing (mode II) action only with no tearing (mode III) action. A double cantilever beam (DCB) represents the most fundamental one-dimensional fracture problem. There has however been considerable confusion in calculating its mixed-mode energy release rate (ERR) partition. In this work, new and completely analytical mixed-mode partition theories are developed for one-dimensional fractures in isotropic homogeneous and laminated composite DCBs, based on linear elastic fracture mechanics (LEFM) and using the Euler and Timoshenko beam theories. They are extended to isotropic homogeneous and laminated composite straight beam structures and isotropic homogeneous plates based on the Kirchhoff-Love and Mindlin-Reissner plate theories. They are also extended to non-rigid elastic interfaces for isotropic homogeneous DCBs. A new approach is used, based on orthogonal pure fracture modes. Two sets of orthogonal pairs of pure modes are found. They are distinct from each other in the present Euler beam and Kirchhoff-Love plate partition theories and coincide on the first set in the present Timoshenko beam and Mindlin-Reissner plate partition theories. After the two sets of pure modes are shown to be unique and orthogonal, they are used to partition mixed modes. Interaction is found between the mode I and mode II modes of the first set in the present Euler beam and Kirchhoff-Love plate partition theories. This alters the ERR partition but does not affect the total ERR. There is no interaction in the present Timoshenko beam or Mindlin-Reissner plate partition theories. The theories distinguish between local and global ERR partitions. Local pureness is defined with respect to the crack tip. Global pureness is defined with respect to the entire region mechanically affected by the crack. It is shown that the global ERR partition using any of the present partition theories or two-dimensional elasticity is given by the present Euler beam or Kirchhoff-Love plate partition theories. The present partition theories are extensively validated using the finite element method (FEM). The present beam and plate partition theories are in excellent agreement with results from the corresponding FEM simulations. Approximate 'averaged partition rules' are also established, based on the average of the two present beam or plate partition theories. They give close approximations to the partitions from two-dimensional elasticity. The propagation of mixed-mode interlaminar fractures in laminated composite beams is investigated using experimental results from the literature and various partition theories. The present Euler beam partition theory offers the best and most simple explanation for all the experimental observations. It is in excellent agreement with the linear failure locus and is significantly closer than other partition theories. It is concluded that its excellent performance is either due to the failure of materials generally being based on global partitions or due to the through-thickness shear effect being negligibly small for the specimens tested. The present partition theories provide an excellent tool for studying interfacial fracture and delamination. They are readily applicable to a wide-range of engineering structures and will be a valuable analytical tool for many practical applications.
34

Optically Active Chiral Mediums Fabricated with Glancing Angle Deposition

Yang, Jian 06 July 2012 (has links)
Optically active helical microparticles are studied in the forms of thin films, suspensions and powders. From fabricated helical porous thin films, microparticle suspensions are obtained by removing the microparticles (film columns) from their substrates and dispersing them into water. For removing microparticles, four methods are explored and compared: sacrificial NaCl layer, gold (Au) layer, buffered oxide etching, and direct ultrasonic agitation. The primary film material studied in this work is amorphous silicon (Si). Physical morphology of the microparticles is examined with scanning electron microscopy (SEM). Methods employed to characterize optical activity of the microparticles include: polarimetry, spectrophotometry, and spectroscopic ellipsometry (SE). The produced chiral microparticles exhibit optical activity: optical rotation (OR) and circular dichroism (CD - in the form of differential circular transmission (DCT)). Significant findings include: (a) we observe the largest optical rotatory power ever reported in scientific literature, 11◦/μm at 610 nm wavelength for a Si film; (b) for the helical thin films, there is one dominant DCT band in the measured wavelength range; however for microparticle suspensions and powders, there exist two DCT bands: one broad band at long wavelengths, and one narrow band in the short wavelength range; compared to their thin film forms, microparticle suspensions and powders have inverted sign for the broad DCT band. A discrete dipole approximation (DDA) model is employed to calculate optical response (e.g. extinction, scattering, and absorption cross-sections) of the microparticles, so as to enable us to understand the effects of different structural parameters of the microparticles on their optical response. Calculation confirms that optical activity of chiral microparticles is due to coherent light scatterings with the chiral structures of the particles. The inversion in sign of the broad DCT bands of microparticle suspensions and powders is likely due to the averaging effect from random orientation of the helical microparticles, as is indicated both from experimental results and from calculation. / Thesis (Ph.D, Physics, Engineering Physics and Astronomy) -- Queen's University, 2012-07-06 09:59:20.751
35

An investigation of isotropic and anisotropic magnetic field effects in fluorescent systems

Ferguson, Kelly-Anne January 2014 (has links)
Interest into the effects of weak static magnetic fields on chemical reactions involving spin correlated radical pairs has increased over the last few decades, particularly as scientists have become more curious about the mechanisms by which animals can sense and respond to small variations in the Earth's weak (50 µT) magnetic field. The magnetosensitivity of radical pairs, as dictated by the radical pair mechanism, lies at the heart of the most heavily supported hypothesis of this magnetoreception phenomenon. This thesis is concerned with the spectroscopic investigations of isotropic and anisotropic magnetic field effects in fluorescent systems. First of all, an introduction to spin chemistry and magnetoreception is presented. In chapter 3, the effects of weak radiofrequency oscillating fields when applied in combination with weak static fields are explored in isotropic solutions. The validity of the high-field model, typically used to describe spin dynamics in magnetic resonance, is tested and the effects of orientation and field strength on magnetic field effects are discussed in detail. In Chapter 4, a range of exciplex systems are studied by fluorescence methods and their energetics are explored. The factors which determine the formation of an exciplex, i.e. the complex equilibrium between the exciplex and the spin-correlated radical pair,are considered and used to assess the existence and magnitude of MFEs. Radical pair systems investigated, using MARY spectroscopy, with respect to their potential to act as model chemical compasses are introduced in chapter 5. Solid-state media are used to align the exciplex systems to detect any magnetic field direction dependence. Finally, in chapter 6, AMELIA, an experiment which can directly measure the anisotropic magnetic field response of a system, is presented and applied successfully to systems to detect directly the anisotropic field response of a photoexcited anthracene crystal.
36

A Smarter Antenna

Guadiana, Juan, Macias, Fil, Braun, Chris 10 1900 (has links)
ITC/USA 2011 Conference Proceedings / The Forty-Seventh Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2011 / Bally's Las Vegas, Las Vegas, Nevada / The Isotropic radiator, a device capable of radiating energy evenly in all directions is an abstraction, itsʼ real counterpart is called an omnidirectional (omni) antenna. The omnidirectional antenna is found on many vehicles. Ideally, only one receiving system is ever needed to acquire an omni, no matter the vehicle orientation, given the range is not excessive. There are trade-offs with antenna efficiency, with gain typically around -15 dBi (95% coverage). This paper proposes abandoning this paradigm. If a vehicle knows where the ground is why radiate energy up into the sky, where there are no receiving stations. This can be achieved by integrating some instrumentation with a discrete antenna array so that it radiates only from selected elements. The accuracy required is modest, an inexpensive Inertial Measurement Unit (IMU) is sufficient to improve link margin by 10, 20dB or more. These numbers are credible, as outlandish as they are, and substantiated in this paper. Ironically, from the ground this non-isotropic antenna looks very isotropic. Of significant benefit, this Smarter Antenna concept enables spatial discrimination and with that comes spectrum efficiency gains beyond that achieved by other means including advanced modulation formats.
37

Acoustic scattering by cylindrical scatterers comprising isotropic fluid and orthotropic elastic layers

Bao, Chunyan January 1900 (has links)
Doctor of Philosophy / Department of Mechanical and Nuclear Engineering / Liang-Wu Cai / Acoustic scattering by a cylindrical scatterer comprising isotropic acoustic and orthotropic elastic layers is theoretically solved. The orthotropic material is used for the scattering problem because the sound speeds along radial and tangential axes can be different; which is an important property for acoustic cloaking design. A computational system is built for verifying the solutions and conducting simulations. Scattering solutions are obtained based on two theoretical developments. The first one is exact solutions for elastic waves in cylindrically orthotropic elastic media, which are solved using Frobenius method. The second theoretical development is a set of two canonical problems for acoustic-orthotropic-acoustic media. Based on the two theoretical developments, scattering by three specially selected simple multilayer scatterers are analyzed via multiple-scattering approach. Solutions for the three scatterers are then used for solving a “general” multilayer scatterer through a recursive solution procedure. The word “general” means the scatterer can have an arbitrary number of layers and each layer can be either isotropic acoustic or orthotropic elastic. No approximations have been used in the process. The resulting analytically-exact solutions are implemented and verified. As an application example, acoustic scattering by a scatterer with a single orthotropic layer is presented. The effects on the scattering due to changing parameters of the orthotropic layer are studied. Acoustic scattering by a specially designed multilayer scatterer is also numerically simulated. Ratios of the sound speeds of the orthotropic layers along r and θ directions are defined to satisfy the requirement of the Cummer-Schurig cloaking design. The simulations demonstrate that both the formalism and the computational implementation of the scattering solutions are correct.
38

Estudo de estrutura turbulenta gerada por tanque de grade oscilante observada por PIV / Study design generated by turbulent tank grid oscillating observed by PIV

Vieira, Amanara Potykytã de Sousa Dias 15 June 2012 (has links)
Um regime ou fluxo turbulento pode ser definido simplificadamente como uma forma de escoamento no qual o movimento de um fluido ocorre de forma aparentemente aleatória. A natureza caótica desse tipo de regime não possibilita que o problema seja abordado de modo determinístico, consequentemente, não pode ser descrito através de expressões analíticas para descrever seu campo de velocidades. Apesar de ser impossível estudar o movimento de cada partícula, pode-se visualizar o problema de forma macroscópica. Utilizando-se de simplificações e generalizações pode-se fazer uso de estudos numéricos em uma tentativa de encontrar uma face determinística do fenômeno, como por exemplo, verificação da isotropia e homogeneidade. A turbulência com estas características é um regime em que as componentes da velocidade no espaço e as velocidades em diferentes pontos do escoamento apresentam parâmetros estatísticos semelhantes. Tais condições não existem na prática, mas pode-se construir equipamentos que produzem escoamentos que se aproximam desta condição. Este trabalho consistiu na verificação das condições de turbulência isotrópica e homogênea em um tanque de grade oscilante. Foi utilizado o método de trilhagem de partículas por fotografia estereoscópica, PIV (particle imaging velocimeter), para observar e quantificar a turbulência gerada. Observou-se a turbulência gerada por 8 velocidades diferentes de oscilação da grade. Os resultados mostraram que o tanque em estudo aproximou-se de condições homogêneas, porém sua isotropia não pôde ser afirmada. O tanque com grade oscilante foi eficiente na geração de turbulência, reproduzindo o fenômeno real e colaborando para o seu estudo. Também foi realizado uma análise sobre a eficácia do método de velocimetria com o uso de PIV, que mostrou ser adequado para a observação de campos de velocidades de um escoamento, com limitações quanto à região periférica da área alvo. / Turbulence or turbulent flow can be defined in a simplified way as a flow with random moviment. The chaotic behavior of this regime does not allow a deterministic approach, therefore, it can not be described by analytical formulas for the velocity field. Although it is impossible to study the movement of each particle, the problem can be studied in a macroscopic way. Simplifications and generalizations can be used in numerical studies in an attempt to find a deterministic view of the phenomenon, for example, checking the isotropy and homogeneity. The turbulence with these characteristics is a regime in which the components of velocity in space and velocity at different points of the flow have similar statistical parameters. Such conditions do not exist in practice, but equipment can be built in order to produces flow approaching the condition. This work consisted of verify the conditions of homogeneous isotropic turbulence in a tank with oscillating grid. It was used the method of particule tracking by stereoscopic photography, PIV (particle imaging velocimetry), to observe and quantifying the generated turbulence. It was observed turbulence generated by 8 different speeds of oscillation of the grid. The results showed that the tank approached homogeneous conditions, but its isotropy can not be affirmed. The tank with an oscillating grid was efficient in the generation of turbulence, reproducing a real phenomenon and contribute to its study. Analysis was also conducted on the effectiveness of velocimetry method using PIV, shown to be suitable for observation of a flow velocity field with limitations on the peripheral region of the target area.
39

Color wideline detector and local width estimation / Um detector de linhas largas para imagens coloridas e estimativa local de largura de linha

Jorge, Vitor Augusto Machado January 2012 (has links)
Algoritmos de detecção de linhas são usados em muitos campos de aplicação, tais como visão computacional e automação como base para análises mais complexas. Por exemplo, a informação de linha pode ser usada como dado de entrada para algoritmos de detecção de objetos ou mesmo para a estimativa da orientação espacial de robôs aéreos. Uma das formas de detectar linhas é através do uso de um processo de filtragem não linear chamado deWide Line Detector (WLD). Esse algoritmo é eficaz na marcação de pixels de linha em imagens em tons de cinza, separando linhas claras ou linhas escuras. Contudo, os algoritmos de detecção de linha não estão normalmente preocupados com a estimativa de largura local individual associada a um pixel. Se disponível, tal informação poderia ser explorada por algoritmos de visão computacional. Além do mais, a informação de cor também é extensivamente usada em visão computacional como um discriminante de objetos, mas o WLD não a usa. Neste Trabalho, nós propusemos a extensão do WLD para imagens em cores. Nós também desenvolvemos um novo kernel monotonicamente crescente que é mais eficiente e mais robusto para detectar linhas do que que os kernels monotonicamente decrescentes usados pelo WLD. Por fim, desenvolvemos uma maneira de obter uma estimativa de largura de linha partindo da densidade local associada a similaridade entre pixels, revertendo o processo usado pelo WLD para estimar qual kernel deve ser usado. Diversos experimentos foram realizados com o método proposto considerando diferentes parâmetros, além da comparação com o WLD tradicional, para analizar a eficácia do método. / Line detection algorithms are used by many application fields, such as computer vision and automation, as a basis for more complex analysis. For instance, line information can be used as input to object detection algorithms or even attitude estimation in flying robots. One way to detect lines is to use an isotropic nonlinear filtering procedure called the Wide Line Detector (WLD). This algorithm is effective to highlight the line pixels in gray scale images, separating dark or bright lines. However, line detection algorithms are not normally concerned with the pixel-wise estimation of thickness. If available, such information could be further explored by computer vision algorithms. Furthermore, color is extensively used in computer vision as an object discriminant, but not by the WLD. In this work, we propose the extension of the WLD to color images. We also develop a method that allows the estimation of the line width locally using only the density information and no border or center line information. Finally, we develop a new monotonically increasing kernel that is more efficient and yet effective to detect lines than the monotonically decreasing kernels used by the WLD. Finally, we devise a way ro obtain the wideline thickness from the density estimate obtained from the similarity between pixels, reverting the process used by the WLD to determine which kernel should be used. We perform several experiments with the proposed method, considering different parameters, and comparing it to the traditional WLD algorithm to assess the effectiveness of the method.
40

Study on the ballistic performance of quasi-isotropic (QI) panels made from woven and unidirectional (UD) structures

Yuan, Zishun January 2018 (has links)
Quasi-isotropic (QI) structure for multi-layer fabric panel is believed to be a promising construction to manufacture soft body armour with higher efficiency of ballistic protection based on two hypotheses. The first one is that QI structure panel could involve more secondary yarns in transverse deformation, and the second one is that the more involvement of the secondary yarns could result in the corresponding increase of the energy absorption. However, recent study found that the advantage of QI panel made from Dyneema® woven fabrics was very limited over the aligned panel and potential reasons have not been identified for the lack of systematic studies. Accordingly, this research aims to provide explicit guidance on how to improve the QI structure panels for ballistic protection by studying the mechanisms of aligned and QI panels of multi-layer Dyneema® woven fabrics. The two hypotheses were tested to identify the mechanisms. The ballistic performance of the aligned and QI panels of 2-layer, 3-layer and 4-layer Dyneema® woven fabrics were experimentally investigated using a ballistic test apparatus and a panel clamping system to evaluate the energy absorption of specimens. In order to further study the response of the ballistic panel, a yarn-level Dyneema® woven fabric model was developed. The shear moduli of the yarn (G13 and G23) was found to be the most important elastic constants in simulating ballistic fabrics using orthogonal experiments in this study, and were identified to 0.27GPa and 0.80GPa. The model was agreeably validated by comparing the FE modelling results of multi-layer panels under ballistic impact with the experimental counterparts. Based on this validated model, the areas, shapes of the transverse deformation bases were specifically evaluated. The first hypothesis was verified that the areas of the deformation bases of the back layer fabrics in QI panels of 2-layer, 3-layer, and 4-layer fabric models were more than 10% larger than the areas of the corresponding parts in aligned panel models, especially at medium and late stages. Moreover, the increases of the areas were attributed to the more involvements of the secondary yarns in the deformation, and more circular shapes of the deformation bases of the fabrics in QI panels were identified by using a mathematic measurement method created in this study. The kinetic energy (KE) and total strain energy (IE) evolution of primary yarns and secondary yarns in two panels were further specified. It was found that altering the aligned panel to QI panel not only changed the energy absorption of secondary yarns, also significantly changed that of primary yarns. This indicated that the second hypothesis was not suitable for the cases of panels of the Dyneema® woven fabrics for the influence of the primary yarns after the panel structure changed were neglected. The reason of the alterations of the primary yarns was that the slip-off time or failure time of most primary yarns was changed. The morphology evolution of primary yarns in 2-layer aligned and QI panels were investigated and the results showed that the space between adjacent warp or weft primary yarns and the interactions between some primary yarns and the adjacent primary yarns in another layer significantly affected the slip-off time and failure time of most primary yarns. The influence of these two factors derived from the feature of woven fabrics, which was the crimp. In order to verify the new understanding of the QI ballistic panels from the numerical analysis, a non-crimp fabric, namely Dyneema® SB51, was used to investigate the ballistic performance of the aligned and QI panels. It was found that the energy taken by QI panels was approximately 25% higher than the energy taken by the corresponding aligned panels. This result verifies the analysis conclusion and paves the solid way for further investigation of QI structure panels made up of biaxial fabrics.

Page generated in 0.0294 seconds