• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 148
  • 23
  • 8
  • 8
  • Tagged with
  • 187
  • 187
  • 168
  • 168
  • 168
  • 168
  • 168
  • 40
  • 34
  • 32
  • 31
  • 29
  • 22
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Microstructure and mechanical properties of a 5 wt.% Cr cold work tool steel : Influence of heat treatment procedure.

Rehan, Arbab January 2017 (has links)
The demand for Advanced High Strength Steel (AHSS) in the automotive industry is increasing day by day. It is mainly motivated by the fact that AHSS can be used as thin sheets while having high strengths. It enables weight reduction of the automobiles which consequently increases the fuel efficiency and has proven to be less harmful to the environment. It is also expected that AHSS will have even higher strength in the near future. Cold work tools steels with 5 wt.% Cr are commonly used to process AHSS. Therefore, the tool steel must meet the challenges in the future, i.e. have even higher hardness, compressive strength and toughness. One way of increasing the mechanical properties of the tool steel is by improving the heat treatment parameters. However, it is not possible without a deeper understanding of the heat treatment process. Therefore, this work presents investigations related to phase transformations occurring in a 5 wt.% Cr cold work tool steel during heat treatment. Furthermore, the influence of austenitisation and tempering temperatures on the microstructure and mechanical properties were investigated. The studies revealed that a higher austenitisation temperature can be used to achieve a higher hardness, good compressive strength and adequate toughnessof the steel. However, too high austenitisation temperature may result inexcessive coarsening of prior austenite grains which reduced the impact toughness. It was also found that retained austenite can transform during tempering by two different mechanisms. Firstly, when tempering at 525°C, carbides precipitate in retained austenite lowering its stability and permitting a transformation to marten site on cooling. Secondly, when tempering at 600°Cfor extended holding time retained austenite isothermally transforms to ferrite and carbides. This occurs by precipitation of carbides in retained austenite followed by a final transformation to ferrite and carbides.These results were used to understand the standard tempering procedure of the 5 wt.% Cr cold work tool steel. Furthermore, alternative heat treatment procedures are discussed based on the important findings presented in this thesis.
92

Defect formation in laser welded steels after use of corrosion protection coating

Repper, Elias, Carsbring, Amanda January 2017 (has links)
This bachelor thesis was made in collaboration with Scania. The objective was to find the cause for defects found in some rear axle welds. It was known axle material was coated with anti-corrosive oil. Oils were examined through ICP-AES, and then compared to the composition found on the surface of the steel samples. Elements found in the oils vastly differed from one another. One of the oils contains large amounts of aluminium while the other contains high levels of calcium. When samples surfaces were analysed using EDS, phases consisting of aluminium and calcium were observed. These results indicate that the wrong anti-corrosive had been used for the axle material which gave substandard welds. The oil used contained elements with a low vaporisation temperature, such as calcium. This causes instabilities in the keyhole, leading to collapse. Collapse of the keyhole facilitates the formation of defects.
93

Signal processing and high speed imaging as monitoring tools for pulsed laser welding

Olsson, Rickard January 2009 (has links)
In Laser Materials Processing there has always been a need for suitable methods to supervise and monitor the processes on line, to ensure correct production quality or to trigger alarms when failures are detected. Numerous investigations have been made in this field, including experimental and theoretical work. It is common practice in this field to monitor surface temperature, plasma radiation and back-reflected laser light, coaxially with the laser beam. Traditionally, the monitoring systems involved carry out no statistical analysis of the signals received - they merely involve thresholds. This thesis looks at the feedback collected during laser welding using such a co-axial setup from a Digital Signal Processing point of view and also uses high speed video photography to correlate signal perturbations with process anomalies.Modern Digital Signal Processing techniques such as Kalman filtering, Principal Component Analysis and Cluster Analysis have been applied to the measurement data and have generated new ways to describe the weld behaviour using parameters such as reflected pulse shape. The limitations of commercially available welding supervision systems have been studied and design suggestions for the next generation of on line weld monitoring equipment have been formulated.
94

A Study in How Welding Parameters Affect the Porosity in Laser Welded High Pressure Die Cast AM50 Magnesium Alloy

Bergstedt, Edwin January 2017 (has links)
There are a need for reducing the weight of vehicles, one solution is to implement cast lightweight materials such as the high pressure die cast AM50 magnesium alloy. The weldability of this cast alloy is poor and to implement the use of the alloy commercially a welding process is needed that limits the porosity of the weld. The aim of this thesis is to study the effect of the welding parameters on the porosity in the weld, for three laser welding methods. The welding methods examined are single spot and twin spot laser using either a beam splitter or separate optics. The microstructure of the base material are also examined in order to evaluate relations between the components of the microstructure and the porosity in the weld. It was concluded that the hydrogen in the base material was the main reason for the observed porosity in the weld and that the material contains high pressure gas. The welding parameters did not influence the porosity for the single beam laser process, however, for the dual beam processes the welding parameters could affect the amount of pores. It was found that a double weld reduced the amount of pores and that the size and distribution of the secondary phase particles would benefit from the treatment. The cleaning of the samples prior to welding increased the porosity, however, non-cleaned samples contained more oxide inclusions. The results indicate that a twin beam process could reduce the porosity in the weld of the AM50 alloy. / Det finns ett behov av att reducera vikten på fordon, en lösning är att implementera gjutna lätta material såsom formsprutad AM50-magnesiumlegering. Svetsbarheten hos denna gjutna legering är dålig och för att kommersiellt kunna använda legeringen krävs en svetsprocess som begränsar svetsens porositet. Syftet med detta examensarbete är att studera svetsparametrarnas effekt på svetsens porositet för tre lasersvetsmetoder. De svetsmetoder som undersöks är enkelpunkts och dubbelpunktslaser där antingen en stråldelare eller separat optik använts. Basmaterialets mikrostruktur undersöks också för att utvärdera sambandet mellan mikrostrukturen och porositeten i svetsen. Man drog slutsatsen att väte i basmaterialet var huvudorsaken till den observerade porositeten i svetsen och att materialet innehåller gas under högt tryck. De undersökta svetsparametrarna påverkade inte porositeten för processen med en laserstråle, men för dubbelstråleprocesserna kan svetsparametrarna påverka mängden porer. Det visade sig att en svets utförd med två strålar minskade mängden porer och att storleken och fördelningen av sekundärfaspartiklarna gynnas av behandlingen. Prover som rengjordes före svetsning hade ökad porositet, men icke-rengjorda prover innehöll mer oxidinneslutningar. Resultaten indikerar att en dubbelstråleprocess kan minska porositeten då AM50-legeringen lasersvetsas.
95

Ultrasonic testing of components produced with additive manufacturing : Towards improved detection and classification of defects / Ultraljudsprovning av komponenter tillverkade med additiva metoder : Mot förbättrad detektering och klassificering av defekter

Sahl, Mikael January 2024 (has links)
The focus in this work is on the use of ultrasonic testing as a method for inspecting components manufactured through additive manufacturing (AM) processes. The research is rooted in the need for effective non-destructive testingtechniques that can adapt to the unique challenges posed by AM-produced materials, including complex defect geometries and surface conditions. Ultrasonic testing is a versatile form of non-destructive testing, offering theability to detect internal flaws, such as voids, cracks, and inclusions, with highprecision and in real-time. Unlike many competing methods, ultrasonic testing works on most types of materials. Ultrasonic testing has been applied forinspection purposes for a long time. Now with emerging manufacturing methods, there is a need for evaluation techniques to keep up with this development.New data processing algorithms open up possibilities of extracting more information from the acquired signal. The thesis provides a review of UT’s capabilities in detecting and classifyingdefects within AM components, with a particular emphasis on the subtletiesintroduced by the layer-by-layer construction method inherent to AM technologies. The work advances development and validation of simulation modelsaimed at predicting the ultrasonic response from manufactured defects. Thesemodels are crucial for understanding the interaction between ultrasound wavesand material anomalies, offering insights into the potential for enhanced defectdetection strategies. The research also explores the practical case of integrating UT into the quality assurance processes by relying on mathematical simulation rather than experimental data. The findings suggest avenues for the refinement of creation of inspection procedure, including the the use of meta-models to cheaply acquire worst-case scenario defects, to better accommodate the specificities of AM materials. / Den här avhandlingen handlar om ultraljudsprovning av additivt tillverkade metalkomponenter. Ultraljud är en av flera metoder som används för att detektera defekter i komponenter utan att förstöra komponenten i processen. Samlingsnamnet för dessa metoder är oförstörande provning. Oförstörande provning är en viktig pusselbit i samhällets säkerhet då det möjliggör identifiering och utvärdering av potentiella defekter i material, vilket förebygger olyckor och strukturella fel. Vidare är det en viktig del inom hållbar utveckling genom att maximera nyttjandet av komponenter då dessa inte behöver ersättas med ett överdrivet försiktigt underhållsintervall. Ultraljudsprovning fungerar genomatt ultraljud introduceras in i en komponent, varefter en givare registrerar ekon som uppstår när ljudvågorna interagerar med eventuella defekter. Detta möjliggör både lokalisering och storleksbedömning av defekter, t.ex. sprickor, bindfel eller porer. Resultaten av den här avhandlingen syftar till att ge förutsättningar för att förbättra tolkningen av dessa signaler, dels genom att experimentellt validera simuleringsmodeller, samt tillämpning av dessa modeller för att utveckla en metamodell för att prediktera amplitudsvaret från en mängd defekter inom en viss parameterrymd. Med verktyg som detta kan billigare inspektionsprocedurer möjliggöras genom att man till större del kan förlita sig på simulering av signaler snarare än att skaffa stort underlag med experimentell data. / <p>Paper A, B and C are not included in the eletronic version. Paper C is under submission.</p>
96

Nitride Thin Films for Thermoelectric Applications : Synthesis, Characterization and Theoretical Predictions

Gharavi, Mohammad Amin January 2017 (has links)
Thermoelectrics is the reversible process which transforms a temperature gradient across a material into an external voltage through a phenomenon known as the Seebeck effect. This has resulted in niche applications such as solid-state cooling for electronic and optoelectronic devices which exclude the need for a coolant or any moving parts and long-lasting, maintenance-free radioisotope thermoelectric generators used for deep-space exploration. However, the high price and low efficiency of thermoelectric generators have prompted scientists to search for new materials and/or methods to improve the efficiency of the already existing ones. Thermoelectric efficiency is governed by the dimensionless figure of merit 𝑧𝑇, which depends on the electrical conductivity, thermal conductivity and Seebeck coefficient value of the material and has rarely surpassed unity. In order to address these issues, research conducted on early transition metal nitrides spearheaded by cubic scandium nitride (ScN) thin films showed promising results with high power factors close to 3000 μWm−1K−2 at 500 °C. In this thesis, rock-salt cubic chromium nitride (CrN) deposited in the form of thin films by reactive magnetron sputtering was chosen for its large Seebeck coefficient of approximately -200 μV/K and low thermal conductivity between 2 and 4 Wm−1K−1. The results show that CrN in single crystal form has a low electrical resistivity below 1 mΩcm, a Seebeck coefficient value of -230 μV/K and a power factor close to 5000 μWm−1K−2 at room temperature. These promising results could lead to CrN based thermoelectric modules which are cheaper and more stable compared to traditional thermoelectric material such as bismuth telluride (Bi2Te3) and lead telluride (PbTe). In addition, the project resulting this thesis was prompted to investigate prospective ternary nitrides equivalent to ScN with (hopefully) better thermoelectric properties. Scandium nitride has a relatively high thermal conductivity value (close to 10 Wm−1K−1), resulting in a low 𝑧𝑇. A hypothetical ternary equivalent to ScN may have a similar electronic band structure and large power factor, but with a lower thermal conductivity value leading to better thermoelectric properties. Thus the elements magnesium, titanium, zirconium and hafnium were chosen for this purpose. DFT calculations were used to simulate TiMgN2, ZrMgN2 and HfMgN2. The results show the MeMgN2 stoichiometry to be stable, with two rivaling crystal structures: trigonal NaCrS2 and monoclinic LiUN2. / <p>The series name <em>Linköping Studies in Science and Technology Licentiate Thesis</em> is incorrect. The correct series name is <em>Linköping Studies in Science and Technology Thesis</em>.</p>
97

Influence of deformation and environmental degradation of Inconel 792

Kanesund, Jan-erik January 2017 (has links)
Industrial gas turbines are often used as a mechanical drive for pumps and compressors or in power generation as an electric power supply. The gas turbine has for many years been a popular engine due to its flexibility with respect to different types of fuel and due to a design, that enables a high power-to-weight ratio. A simplified description of a gas turbine is that the engine consists of a cold and hot section. The turbo compressor section belongs to cold section and the combustion chamber together with the turbine section belongs to the hot section. In the hot section of a gas turbine, the condition is extremely severe because of an aggressive environment characterized by high temperatures, increased temperature gradients, high pressure and centrifugal forces resulting in large stresses on individual components together with an oxidizing and corroding atmosphere. Materials used in the high temperature section (hot gas path) of a modern gas turbine are different types of superalloys, as single crystal, directionally solidified or polycrystalline alloys, depending on temperature and load conditions. In the first turbine stage, temperature is very high due to exposure to the combustion gas. To handle the problem with creep, single crystal superalloys are often used in this section. In the second row of turbine blades, the temperature of the gas is lower and polycrystalline superalloys are typically used. IN-792 is a cast polycrystalline superalloy with high strength, good resistance to hot corrosion and a cheaper option than single crystals. In the hot section of gas turbine, IN-792 is a suitable material for components such as turbine blades and vans where a complex load condition, high temperature and severe environment prevails. Due to startup and shutdown of the gas turbine engine during service, the components in the hot section are exposed to cyclic load and temperature. This will generate mechanical and thermal fatigue damage in gas turbine components. Steady state temperature gradient arises by the cooling system acting at cold spots during service to introduce tensile stress, which indirectly gives rise to creep damage in the component. This work includes tree studies of deformation and damage mechanisms of superalloy IN-792. The first study is made on test bars exposed to thermomechanical fatigue in laboratory environment, the second and the third study is made on turbine blades used during service. In the second study, the machines are placed off-shore and exposed to marine environment. In the third study the machine is landbased and exposed to an industrial environment. In the second study, the deformation and damage mechanisms are compared between the turbine blades used during service and the test bars exposed to thermomechanical fatigue testing in the first study.
98

FüMoTeC 2015

05 November 2015 (has links) (PDF)
Fügen und Montieren spielt seit jeher eine entscheidende Rolle in der Herstellung von Alltags- bis hin zu Hochtechnologieprodukten. Die Füge- und Montagetechnik ist an der Technischen Universität Chemnitz fast seit ihrer Gründung eine etablierte Wissenschaftsdisziplin. So wurde bereits 1922 an der damaligen staatlichen Gewerbeakademie als erste Hochschule Deutschlands das Fachgebiet Schweißtechnik in Lehre und Forschung eingerichtet. Mit der wissenschaftlichen Fachkonferenzreihe FüMoTeC will das Institut für Füge- und Montagetechnik (IFMT) der Technischen Universität Chemnitz seine laufenden Erkenntnisse in Wissenschaft und Forschung einem breiten Publikum zugänglich machen aber auch eine Plattform für Industrie und Wissenschaft zur Diskussion füge- und montagetechnischer Aspekte bieten. / Joining and Assembly has always played a crucial role in the production of everyday up to high-technology products. These research priorities are well-established scientific disciplines at the Technische Universität Chemnitz almost since its foundation. Already in 1922 at the former state “Gewerbeakademie” the field of welding technology was set up in teaching and research for the first time in Germany. With the scientific conference series FüMoTeC the institute for joining and assembly technology (IFMT) of the Technische Universität Chemnitz wants to present current findings in science and research to a broad audience as well as offering a platform for industry and academia for discussions.
99

Microstructure Modelling of Additive Manufacturing of Alloy 718

Kumara, Chamara January 2018 (has links)
In recent years, additive manufacturing (AM) of Alloy 718 has received increasing interest in the field of manufacturing engineering owing to its attractive features compared to those of conventional manufacturing methods. The ability to produce complicated geometries, low cost of retooling, and control of the microstructure are some of the advantages of the AM process over traditional manufacturing methods. Nevertheless, during the building process, the build material undergoes complex thermal conditions owing to the inherent nature of the process. This results in phase transformation from liquid to solid and solid state. Thus, it creates microstructural gradients in the built objects, and as a result,heterogeneous material properties. The manufacturing process, including the following heat treatment that is used to minimise the heterogeneity, will cause the additively manufactured material to behave differently when compared to components produced by conventional manufacturing methods. Therefore, understanding the microstructure formation during the building and subsequent post-heat treatment is important, which is the objective of this work. Alloy 718 is a nickel-iron based super alloy that is widely used in the aerospace industry and in the gas turbine power plants for making components subjected tohigh temperatures. Good weldability, good mechanical properties at high temperatures, and high corrosion resistance make this alloy particularly suitablefor these applications. Nevertheless, the manufacturing of Alloy 718 components through traditional manufacturing methods is time-consuming and expensive. For example, machining of Alloy 718 to obtain the desired shape is difficult and resource-consuming, owing to significant material waste. Therefore, the application of novel non-conventional processing methods, such as AM, seems to be a promising technique for manufacturing near-net-shape complex components.In this work, microstructure modelling was carried out by using multiphase-field modelling to model the microstructure evolution in electron beam melting (EBM) and laser metal powder directed energy deposition (LMPDED) of Alloy 718 and x subsequent heat treatments. The thermal conditions that are generated during the building process were used as input to the models to predict the as-built microstructure. This as-built microstructure was then used as an input for the heat treatment simulations to predict the microstructural evolution during heat treatments. The results showed smaller dendrite arm spacing (one order of magnitude smaller than the casting material) in these additive manufactured microstructures, which creates a shorter diffusion length for the elements compared to the cast material. In EBM Alloy 718, this caused the material to have a faster homogenisation during in-situ heat treatment that resulting from the elevated powder bed temperature (&gt; 1000 °C). In addition, the compositional segregation that occurs during solidification was shown to alter the local thermodynamic and kinetic properties of the alloy. This was observed in the predicted TTT and CCT diagrams using the JMat Pro software based on the predicted local segregated compositions from the multiphase-field models. In the LMPDED Alloy 718 samples, this resulted in the formation of δ phase in the interdendritic region during the solution heat treatment. Moreover, this resulted in different-size precipitation of γ'/γ'' in the inter-dendritic region and in the dendrite core. Themicro structure modelling predictions agreed well with the experimental observations. The proposed methodology used in this thesis work can be an appropriate tool to understand how the thermal conditions in AM affect themicro structure formation during the building process and how these as-built microstructures behave under different heat treatments.
100

Stark, starkare, starkast : en jämförelse av fasta tappar och centrumtappar med utgångspunkt i tappens dimensioner, inpassning, komprimering, antal och limning / Optimizing the stability : an investigation of tenon and dowel joints regarding their dimensions, fitting, compression, number and glueing

Berglund, Jonas January 2018 (has links)
I mitt examensarbete jämför jag styrkan för sammanfogningar i trämöbler med fasta tappar och centrumtappar utifrån fem parametrar: tappens dimensioner, tappens inpassning, tappens komprimering, tappens antal och tappens limning. Den övergripande frågan har varit, ”är fasta tappar eller centrumtappar starkast?” Målet har varit att sålla i olika teorier rörande dessa två typer av sammanfogningar och skapa ett underlag i syfte att hjälpa möbelsnickare och formgivare att kunna ta medvetna beslut vad gäller sina val av dessa typer av sammanfogningar. Genom litteraturstudier och verkstads besök har jag samlat kunskap som ligger till grund för det hållfasthets test jag sedan gjort i materiallabbet på Linköpings universitet. Testet har utgått från ett scenario där en stols bakben ska fogas samman med en sarg. Testet visar, utifrån ett antal angivna avgränsningar, att fasta tappar utan undantag är starkare än centrumtappar.Det visar också att en dubbel fast tapp fördelar belastningen bättre än en enkel fast tapp och bidrar till en betydligt starkare fog. För c-tappar gäller generellt att ökat antal tappar ökar fogens seghet men inte nödvändigtvis maxbelastningen. Inpassning och komprimering har betydelse för hur seg en fog är. / I have in my thesis compared the strength of mortise and tenon joints and dowel joints in wooden furniture. I´ve made the comparison based on five parameters: the dimensions of the tenon or dowel, the fit of the tenon or dowel, the compression of the tenon or dowel, the number of tenons or dowels and the gluing of the tenon or dowel. The bigger question has been, “is the mortise and tenon joint or the dowel joint the strongest?” The goal has been to go through different theories regarding these two types of joinery and making a foundation to help cabinet makers and designers to make conscious decisions regarding their choices of these two types of joinery. Through studies of literature and visiting workshops I´ve gathered knowledge that lies as a foundation for a test of strength of different joinery made in the material testing facility of Linköping University. The test was based on a scenario of joining the back leg and side rim of a chair. The test shows, from the given definitions, that mortise and tenon joints are without exceptions stronger than dowel joints. It also shows that double tenons better will distribute the load and make for a stronger and tougher joint. Dowel joints will get tougher with an increased number of dowels but it will not necessarily make for a stronger joint. The fit and compression of the tenon or dowel will affect the joints strength.

Page generated in 0.1922 seconds