• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 7
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vattenrening i textilåtervinningsindustri : Reducering av nonylfenol, bromerade flamskyddsmedel och sulfat i re:newcells processvatten / Water purification in textile industry : Reduction of nonylphenol, brominated flame retardants and sulphate

Undin, Klara January 2020 (has links)
Kläder och textilier produceras och konsumeras i allt högre grad med stor påverkan på miljö, klimat och jordens resurser som följd. En attraktiv lösning på det är återvinning av kläder, vilket företaget re:newcell gör. Detta är en förstudie med syfte att undersöka vilka reningsmetoder re:newcell skulle kunna implementera för att förbättra sin vattenreningsprocess i framtiden. Tre ämnen vars halter i nuläget inte reduceras i reningen valdes ut till studien: nonylfenol, bromerade flamskyddsmedel och sulfat. En litteraturstudie kring dessa ämnen och möjliga reningsmetoder resulterade i att tre lämpliga reningsmetoder valdes ut till studien: ozonering, biologisk rening och jonbyte. En försöksplan utformades med målen att ta reda på (1) hur tidigare rapporterade ozondoser påverkade nonylfenolhalten i re:newcells vatten, (2) hur stor andel TOC (Total Organic Carbon) en MBBR (moving body bioreactor) kunde reducera och (3) ifall PBDE (bromerade flamskyddsmedel) och sulfat var möjliga att bryta ner med i en MBBR, (4) hur stort jonbytarfilter som skulle krävas i re:newcells process för att reducera sulfathalten samt (5) i vilken ordning reningsstegen bör implementeras i framtida reningsprocesser. Ozoneringsförsök utfördes på re:newcells laboratorium i Kristinehamn med totalt fem olika ozondoser. En biologisk MBBR utformades i laboratorium på Karlstad Universitet, där två olika uppehållstider testades för reducering av flamskyddsmedel, sulfat och TOC. Beräkningar på jonbytarfilter utfördes teoretiskt. En ozondos på 0,45 mgO3/mgCOD gav en reducering på ca 31 % och 0,75 mgO3/mgCOD gav 78 % reducering vid en nonylfenolhalt på 1100 mg/L. Resultaten från MBBR visar att bakterier trivs i re:newcells vatten och att de kunde reducera TOC med ca 50 %. Däremot kunde ingen reducering av sulfat uppmätas, vilket tyder på att ingen anaerob zon har uppstått. Halten av PBDE reducerades med ca 90 % med en uppehållstid på 45 h i MBBR, men om det beror på nedbrytning eller adsorption till slammet är inte fastställt. Resultaten från beräkningen på jonbytarfiltret visade att filtret behöver vara 5,7-15 m3 vid regenerering en gång per dygn i re:newcells nuvarande pilotskaliga process. Denna metod anses därmed inte vara en lämplig för sulfatreducering. Den framtida reningsprocessen föreslås starta med MBBR och efterföljande sedimentering, följt av kemfällning, sedimentering/flotation, sandfilter, ozonering och sist aktivkolfilter, men vidare studier rekommenderas rörande vilken ordning reningsstegen bör implementeras för optimal effekt. Vidare studier kring vilken ozondos som krävs och vilken uppehållstid som är optimal i MBBR föreslås också. / Clothes and textiles are increasingly produced and consumed causing a major impact on the environment, the climate and the earth's resources. One solution to the problem is to recycle clothes that are no longer used, which is what the company re:newcell does. This is a feasibility study aimed at investigating what purification methods re:newcell could implement to improve their water purification process in the future. Three substances not currently purified sufficiently were selected for the study: nonylphenol, brominated flame retardants and sulfate. A literature review on these substances and possible purification methods for them resulted in that the following methods were selected for the study: ozonation, biological purification and ion exchange. An experimental plan was developed with the aim of finding out (1) how previously reported ozone doses affected the nonylphenol content in re:newcell's water, (2) how much TOC an MBBR (moving body bioreactor) could reduce, (3) and whether the levels of brominated flame retardants and sulphate were possible to reduce in it,  (4) the required size of the ion exchange filter in re:newcells process to reduce sulfateand (5) the order in which the purification steps should be implemented in future purification processes. Ozonation experiments were carried out at re:newcell's laboratory in Kristinehamn with a total of five different ozone doses tested. A biological MBBR was designed in a laboratory at Karlstad University, where two different hydraulic retention times were tested for reducing flame retardants, sulfate and TOC. Calculations on ion exchange filters were performed theoretically. An ozone dose of 0.45 mgO3/mgCOD produced a reduction of about 31% and 0.75 mgO3/mgCOD produced a 78% reduction at a nonylphenol content of 1100 µg / L The results from MBBR showed that bacteria thrived in re:newcell´s water and that they can reduce TOC by about 50 %. However, reduction of sulfate could be measured, suggesting that no anaerobic zone has occured. The content of PBDE was reduced by about 90% with a hydraulic retention time of 45 hours in MBBR, but whether it is due to degradation or adsorbation to the sludge is not determined. The calculation regarding the ion exchange filter show that the filter needs to be 5,7-15 m3 when regenerated once a day in re:newcell's current pilot scale process this method is therefore not considered appropriate  for sulfate reduction for re:newcell. The future purification process is proposed to start with MBBR and subsequent sedimentation, followed by chemical precipitation, sedimentation / flotation, sand filter, ozonation and last activated carbon filter, but further studies are recommended regarding which order the purification steps should be implemented for optimal effect. Further studies on which ozone dose is required and which residence time is optimal in MBBR are also suggested.
2

Reduktion av organiskt material med MIEX® / MIEX® Treatment for Removal of Organic Matter

Abrahamsson, Sara January 2012 (has links)
Uppsala- och Stockholmsregionerna använder Mälaren och dess tillflöden som dricksvattenkällor. I Mälaren varierar halten organiskt kol från år till år och kan medföra problem såsom oönskad lukt, smak och färg vid dricksvattenrening. Det kan även vara problem med avseende på bildning av desinfektionsbiprodukter (DPB) och transport av toxiska ämnen med dricksvattnet. I takt med den globala uppvärmningen kan dessutom halten av organiskt kol i Mälarens ytvatten och dess tillflöden öka. Det medför att halten av organiskt material även skulle öka i vattenverkens råvatten och det skulle i sin tur uppstå svårigheter att hålla dagens gränsvärden. I takt med hårdare framtida reningskrav borde nuvarande reningsmetoder för organiskt material därför utvecklas. Anjonbytesprocessen MIEX® (Magnetic Ion Exchange resin process) är en lovande alternativ reningsmetod för vatten innehållande löst organiskt material (DOC).   Syftet med examensarbetet var att undersöka reduktion av DOC med hjälp av MIEX® under förhållanden som efterliknar en fullskaleprocess. Målet var att hitta lämplig kontakttid och lämpligt antal bäddvolymer som ska renas i en fullskaleprocess. Selektivitet mot fluorescerande- och UV-absorberande (254 nm) grupper av DOC undersöktes också.   Fastställda slutsatser är att en kontakttid på 15 minuter bör vara lämplig i en fullskaleprocess och att lämpligt antal renade bäddvolymer bör vara 400-1000 BV. MIEX® är selektiv för terrestert DOC, DOC av humifierat material och för aromatiska grupper av DOC. / The lake Mälaren is the main source of drinking water in Stockholm and Uppsala. The concentration of organic carbon varies from year to year in Mälaren and may affect, during the water purification, the drinking water resulting undesirable smell, taste and color. Another part of the problem is formation of disinfection byproducts (DPB) and transportation of toxic substances. The concentration of organic carbon in Mälaren will probably increase due to issues such as global warming. Increasing concentration of organic carbon results in harder difficulties for purification in water treatment facilities. Therefore accurate water treatment processes have to be developed considered the higher future treatment demand. A promising alternative is the anion exchange process called MIEX® (Magnetic Ion Exchange resin process) which is a process for water containing dissolved organic materials.   The purpose of the project was to investigate MIEX® treatment for removal of dissolved organic matter (DOC). The aim was to find an optimal contact time and the right number of bed volumes for treatments in a water treatment facility. The aim also involved an evaluation of selectivity for fluorescence and UV-absorbing (254 nm) groups of DOC.     The main conclusions of the project are that a contact time of 15 minutes and 400-1000 bed volumes should be treated in a water treatment facility. MIEX® seems to be selective for terrestrial and humified material of DOC as well as aromatic groups of DOC.
3

Jämförelse av olika jonbytarmassor för avskiljning av NOM via suspenderat jonbyte / Comparison Between Different Ion Exchange Resins for Separation of NOM through Suspended Ion Exchange

Pavlovic, Vladana January 2019 (has links)
Naturligt organiskt material, NOM, har sitt ursprung från nedbrutna växter, alger och mikroorganismer. På grund av bland annat klimatförändringar har halten NOM ökat i Mälaren. Vid dricksvattenproduktion kan NOM ge upphov till smak-, färg- och luktproblematik i vattnet, bilda desinfektionsprodukter, sätta igen membran och aktiva kolfilter i vattenverk samt öka risken för biologisk tillväxt i ledningsnätet. Kommunalförbundet Norrvatten använder vatten från Mälaren för att producera dricksvatten. De undersöker bland annat reningstekniken SIX® för att avskilja NOM från vattnet. SIX® bygger på att vatten flödar genom en kontakttank som innehåller suspenderad jonbytarmassa som binder till NOM. Efter kontakttanken sedimenterar jonbytarmassan i en lamellseparator innan den regenereras och återförs till kontakttanken. Syftet med detta examensarbete var att jämföra olika jonbytarmassor för borttagning av NOM ur vatten. De parametrar som jämfördes var sedimenteringsegenskaper, koncentration av totalt och löst organiskt kol, UV-absorbans, alkalinitet, halt av konkurrerande anjoner samt SUVA (UV-absorbans dividerat med DOC-koncentration) i det jonbytesbehandlade vattnet. Vatten från tre olika delar av Mälaren användes då de har olika SUVA-värden och TOC-halter. Dessutom användes vatten från Görvälnverkets sandfiltreringssteg då det har ett lågt SUVA- värde och en hög sulfathalt. SIX®-pilotanläggningens jonbytarmassa jämfördes med ny jonbytarmassa för att se hur dess prestanda ändrats över tid. Målet var att undersöka om det fanns andra jonbytarmassor som kan prestera bättre än jonbytarmassan LEWATIT® S 5128, vilket är den jonbytarmassa som för tillfället används i pilotanläggningen på Görvälnverket. Målet var även att undersöka om SIX®-processen kan stå emot förändringar i vattensammansättning, samt hur LEWATIT® S 5128 prestanda ändrats med tiden. De jonbytarmassor som analyserades var S5128, MPSR7, SCAV3, S6368, S5528 samt den jonbytarmassa som för närvarande används i pilotanläggningen. Jonbytarmassorna hälldes ner i en bägare med vatten och rördes om med hjälp av en flockulator. Vattnet skickades sedan vidare till kemisk analys. För att undersöka sedimenteringsegenskaperna byggdes en uppställning som liknade en lamellseparator och en visuell bedömning av jonbytarmassornas sedimenteringsegenskaper gjordes. Samtliga jonbytarmassor hade en högre DOC-reduktion än den för S5128. Däremot har S5128 bra desorptionsförmåga och sedimenteringsegenskaper vilket är viktigt för SIX®-processen. Desorption testades inte i detta projekt och därmed är det svårt att avgöra vilken jonbytarmassa som är bäst. Det hade däremot varit intressant att undersöka MPSR7 och S6368A i pilotskala då dessa två jonbytarmassor presterade bra kemiskt. Dock nöts MPSR7 och det skulle vara intressant att undersöka om den nöts med luftomrörning. SCAV3 presterade bra kemiskt men hade dåliga sedimenteringsegenskaper, S5528 presterade inte bra kemiskt men hade goda sedimenteringsegenskaper, dessutom var den för lik S5128. SCAV3 och S5128 är därmed inte intressanta alternativ för vidare studier i pilotskala. Trots olika SUVA-värden presterade jonbytarmassorna likvärdigt vid behandling av de olika typerna av vatten. DOC-reduktionen skiljde sig inte speciellt mycket heller vid de olika typerna av vatten. Skillnaden i DOC-borttagning beror troligtvis mer på varierande DOC-halt än  varierande SUVA-värde. Detta innebär att SIX®-processen skulle kunna motstå ändringar i vattnets sammansättning när det gäller NOM-borttagning. Sandfiltervattnet hade lägst procentuell DOC-minskning vilket förklaras av att den höga sulfathalten gjo rde att jonbytarmassorna band starkare till sulfat än DOC. Vid jämförelse av ny och använd S5128 sjönk affiniteten för samtliga joner, därmed även för DOC. Dock var DOC-borttagningen liten jämfört med alkalinitetsborttagningen som var dubbelt så låg för den använda jonbytarmassan, vilket är en fördel för SIX®-processen. / Natural organic matter, NOM, originates from degraded plants, algae and microorganisms. Due to climate change the level of NOM has increased in Lake Mälaren. In drinking water production, NOM can give taste, colour and odor problems in the water, form disinfectant products, lead to fouling of membranes and carbon filters as well as increase the risk of biological growth. Norrvatten uses water from Lake Mälaren to produce drinking water. They examine the SIX® process to separate NOM from water. SIX® is based on water flowing through a contact tank that contains suspended ion exchange resins which bind to NOM. After the contact tank, the ion exchange resins settle in a lamella separator before it is regenerated and returned to the contact tank. The purpose of this thesis was to compare different ion exchange resins for removal of NOM from water. The parameters which were compared are sedimentation properties, concentration of total and dissolved organic carbon, UV-absorbance, alkalinity, concentration of competing anions, and SUVA (UV absorbance divided by DOC-concentration) in the ion exchange treated water. Water from three different parts of Lake Mälaren was used as they have different SUVA- values and TOC-content. In addition, water was used from the sand filtration step in the Görväln water treatment plant since it has a low SUVA-value and a high sulphate concentration. The ion exchange resin of the SIX® pilot plant was compared with new ion exchange resin to see how its performance changed over time. The aim was to investigate whether there were other ion exchange resins that could perform better than LEWATIT® S 5128, which is the ion exchange resin that is currently used in the SIX®-pilot plant at Görvälnverket. The aim was also to investigate whether the SIX®-process can withstand changes in water composition, and how the performance of LEWATIT® S 5128 has changed over time. The ion exchange resins that were analyzed were S5128, MPSR7, SCAV3, S6368, S5528 and the resin that is currently used in the pilot plant. The resins were poured into a beaker of water and stirred using a flocculator. The water was then sent to chemical analysis. In order to investigate the sedimentation properties, an arrangement was built that resembled a lamella separator and an ocular assessment of the ion exchange resins' settling properties was made. All ion exchange resins had a higher DOC-reduction than S5128. However, S5128 has good desorption and sedimentation properties, which is important for the SIX®-process. Desorption was not tested in this project and thus it is difficult to determine which ion exchange resin was the best option. However, it would have been interesting to investigate MPSR7 and S6368A in pilot scale as these two resins had good chemical performance. However, MPSR7 is not mechanically stable and should be examined to see if it is more mechanically stable when air is used for mixing. SCAV3 performed well chemically but had poor sedimentation properties, S5528 did not perform well chemically but had good sedimentation properties, moreover it was similar to S5128. SCAV3 and S5128 are therefore not interesting alternatives for further studies in pilot scale. Despite different SUVA-values, the ion exchange resins performed similarly when treating the different types of water. The DOC-reduction did not differ very much in the different types of water. The difference in DOC-removal is likely to depend more on varying DOC-levels than varying SUVA-values. This means that the SIX®-process could withstand changes in the water composition when it comes to NOM-removal. The sand filter water had the lowest percentage of DOC-reduction, which is explained by the fact that the high sulphate content caused the ion exchange resins to bind more readily to sulphate than to DOC. When comparing new and used S5128, the affinity for all ions decreased, thus also for DOC. However, the DOC-removal was small compared to the alkalinity removal which was twice as low, which is an advantage for the SIX®-process.
4

Arsenic removal using biosorption with Chitosan : Evaluating the extraction and adsorption performance of Chitosan from shrimp shell waste

Westergren, Robin January 2006 (has links)
<p>Nicaragua is a country in which the toxic metal contamination of freshwater resources has become an increasingly important problem in certain regions posing a threat to the environment as well as to human health. Among the metals found in the waters of Nicaragua, arsenic is one of the most problematic since its long time consumption is connected to serious health problems such as cancer and neurological disorders. The arsenic contamination of water recourses in Nicaragua is mostly attributable natural factors, even though anthropogenic activities including gold mining may be a contributing factor.</p><p>In this work the biopolymer Chitosan was studied as a potential adsorption material for the removal of arsenic from aqueous solutions for water treatment design purposes.</p><p>The Chitosan used in this study was extracted from shrimp shells with an overall yield of 40% and a deacetylation grade of 59%. The maximum adsorption capacity was determined to 20.9 mg As/g at a controlled pH of 5.5 using the Langmuir isotherm. The adsorption was found to be strongly pH dependant with a fourfold increase in adsorption capacity when pH was well under the pKa of Chitosan. The pH dependence indicates that ionic exchange was the most important mechanism. No difference in adsorption capacity with respect to the initial pH of the solution was detected in the pH range 3-7. This was attributed to the ability of Chitosan to act as a weak base in water solutions.</p><p>The arsenic was desorbed from Chitosan using NaOH, (NH4) 2SO 4 and NaCl, with a 1M NaOH solution being the most efficient displaying a concentration ratio of 1.08. The NaOH and (NH4) 2SO 4 solutions displayed a steep desorption curvature with a large fraction of the arsenic being easily desorbed. The arsenic was, however, not completely desorbed from the Chitosan implying that the adsorption capacity would decrease for the coming cycles. Being a biopolymer the Chitosan is quite easily degraded in acid and alkali solutions, which might be a limiting step for the process applicability.</p>
5

Arsenic removal using biosorption with Chitosan : Evaluating the extraction and adsorption performance of Chitosan from shrimp shell waste

Westergren, Robin January 2006 (has links)
Nicaragua is a country in which the toxic metal contamination of freshwater resources has become an increasingly important problem in certain regions posing a threat to the environment as well as to human health. Among the metals found in the waters of Nicaragua, arsenic is one of the most problematic since its long time consumption is connected to serious health problems such as cancer and neurological disorders. The arsenic contamination of water recourses in Nicaragua is mostly attributable natural factors, even though anthropogenic activities including gold mining may be a contributing factor. In this work the biopolymer Chitosan was studied as a potential adsorption material for the removal of arsenic from aqueous solutions for water treatment design purposes. The Chitosan used in this study was extracted from shrimp shells with an overall yield of 40% and a deacetylation grade of 59%. The maximum adsorption capacity was determined to 20.9 mg As/g at a controlled pH of 5.5 using the Langmuir isotherm. The adsorption was found to be strongly pH dependant with a fourfold increase in adsorption capacity when pH was well under the pKa of Chitosan. The pH dependence indicates that ionic exchange was the most important mechanism. No difference in adsorption capacity with respect to the initial pH of the solution was detected in the pH range 3-7. This was attributed to the ability of Chitosan to act as a weak base in water solutions. The arsenic was desorbed from Chitosan using NaOH, (NH4) 2SO 4 and NaCl, with a 1M NaOH solution being the most efficient displaying a concentration ratio of 1.08. The NaOH and (NH4) 2SO 4 solutions displayed a steep desorption curvature with a large fraction of the arsenic being easily desorbed. The arsenic was, however, not completely desorbed from the Chitosan implying that the adsorption capacity would decrease for the coming cycles. Being a biopolymer the Chitosan is quite easily degraded in acid and alkali solutions, which might be a limiting step for the process applicability.
6

Sustainability assessment of urine concentration technologies / Hållbarhetsanalys av urinkoncentreringsteknik

Gunnarsson, Matilda January 2021 (has links)
The majority of the nutrients in household wastewater are found in the urine and in order to facilitate the use the nutrients in the urine as fertilizer, the urine can be can be concentrated. To extract the nutrients from the urine, various technologies for urine concentration are being developed today. As the technologies are relatively new, urine concentration systems have not been installed on a larger scale. In this study, sustainability of three different urine concentration technologies was evaluated through a fictional case study for 2100 people that took inspiration from a planned residential area in Malmö, Sweden, where technology for urine concentration will be implemented in at least one of the buildings. The technologies were evaluated through a multi-criteria assessment (MCA), where different criteria within sustainability categories environment, technical, economic and health were determined based on the Sustainable Development Goals (SDGs). The technologies examined were alkaline dehydration, nitrification-distillation and ion-exchange using a pre-step of struvite precipitation. For the alkaline dehydration technology, fresh urine is added to an alkaline medium, in order to prevent nitrogen losses, and then dried. In the nitrification-distillation technology, stored urine is treated by first being stabilized by a partial nitrification and then distilled in order to reduce the volume. For the ion-exchange and struvite precipitation system, phosphorus is first precipitated from stored urine and nitrogen is then extracted through ion-exchange. The urine concentration technologies were assumed to be installed in semi-centralized treatment plants in basements in the residential area. The other household wastewater was assumed to be treated in the local wastewater treatment plant (WWTP). The results showed that all three urine concentration technologies may contribute to a significant increase in nitrogen recovery from the household sewer. However, this may come at the expense of increased annual costs for the population. Before it is possible to determine whether urine concentration can be an alternative as a complement to the existing wastewater treatment, further studies of the urine concentration technologies and their sustainability are required. However, this study indicated that urine concentration technologies perform well in many of the sustainability criteria examined and therefore have potential to contribute to the SDGs, especially regarding nitrogen recovery. This study can therefore be an incentive for further studies, where the sustainability of an implementation of urine concentration in Sweden is addressed. / Majoriteten av näringen i hushållsavloppsvattnet finns i urinen och för att underlätta användningen av växtnäringsämnena i urinen som gödningsmedel kan den koncentreras. För att utvinna näringen ur urinen utvecklas idag olika tekniker för urinkoncentrering. Då teknikerna är relativt nya har system för urinkoncentrering inte installerats i en större skala. Därför utvärderades hållbarheten för tre olika urinkoncentreringsmetoder genom en fiktiv fallstudie som innefattade 2100 personer. Fallstudien fick inspiration från ett planerat bostadsområde i Malmö, Sverige, där teknik för urinkoncentrering ska implementeras i minst en av byggnaderna. Teknikerna utvärderades genom en multikriterieanalys (MKA), där kriterier inom hållbarhetskategorierna miljö, teknik, ekonomi och hälsa valdes utifrån de Globala målen. De tekniker som utvärderades var alkalisk urintorkning, nitrifikations-destillering och jonbyte där struvitutfällning tillämpades som förbehandling. För den alkaliska urintorkningen tillförs färsk urin till ett alkaliskt medium, för att förhindra kväveförluster, och torkas sedan. I nitrifikations-destillerings tekniken behandlas lagrat urin genom att det först stabiliseras genom en partiell nitrifikation för att sedan destilleras för att reducera volymen. För systemet med jonbyte och struvitfällning, fälls först fosfor från lagrat urin ut och sedan utvinns kvävet genom jonbyte. Urinkoncentreringsteknikerna antogs anläggas i semi-centraliserade reningsverk i källare i bostadsområdet. Övrigt hushållsvatten antogs renas i det lokala avloppsreningsverket. Resultatet visade att samtliga av de tre teknikerna för urinkoncentrering kan bidra till en betydande ökning kväveåtervinning från hushållsavloppet. Dock kan detta komma på bekostnad av ökade årliga kostnader för de boende i området. Innan det är möjligt att avgöra om urinkoncentrering kan vara ett alternativ som ett komplement till den befintliga avloppsreningen i Sege Park krävs vidare studier av urinkoncentreringsteknikerna och deras hållbarhet. Däremot visade denna studie att urinkoncentreringsteknikerna presterar bra i många av de undersökta hållbarhetskriterierna och har därför potential att bidra till de Globala målen, främst när det gäller kväveåtervinning. Denna studie kan därför vara ett incitament för vidare studier som behandlar hållbarheten av en implementering av urinkoncentrering i Sverige.
7

Rening av rökgaskondensat i ett fjärrvärmeverk : Återanvändning av rökgaskondensat som spädvatten / Purification of flue gas condensate in heat plants : Reuse of flue gas condensate as feed water

Dabrowski, Patrik January 2017 (has links)
Arvika Fjärrvärme AB is manufacturing and distributing district heating to around 300 customers in Arvika. Heat production consists of a BFB boiler fed with GROT fuel (branches and peaks) and delivers a maximum power of 30 MW. In order to operate the plant, an average of 60 m3 of water per day is consumed from the urban water network. The water consumption is divided between water treatment, sooting and process cooling. In the processes, sulfur is dosed to obtain a more complete combustion of the hazardous flue gases that can occur. This is a result of previous thesis made for Arvika fjärrvärme. GROT is a fuel that contains high levels of moisture, which means that a high amount of condensate is formed during combustion, averaging 100 m3 per day. At present, condensate is sufficient to meet the condensate limit values ​​to be flushed into the drain. This is achieved by sand filtration and pH neutralization. Today, Arvika heat production is equipped with a purification stage for the feed water consisting of a softening filter and membrane filtration. This creates good conditions for cleaning the condensate and recirculating it in the process. Questions for this study are which hazardous substances the condensate can contain and how the condensate composition affected due to sulfur dosage. In addition, Arvika fjärrvärme wants to find out whether the purified condensate can replace the use of the urban water and, finally, if the condensate can be purified and used as feed water in the process. The execution of the work was based on a full-scale attempt in two operating cases of 9 and 18 MW. The tank collecting all condensate after purification in the sand filter and pH neutralization was coupled to the feed water purification stage. Thus, the condensate was pumped and purified in the softening filter and membrane filter. Assay substrates were collected before and after purification of the condensate. In addition to the topics that Arvika investigates, high levels of alkalinity were found in the condensate. The sulfur dosage that Arvika technology works with can be the cause of the high concentrations of sulphate. However, it appears that both the sulfate and alkalinity were purified in the membrane filter. The amount of condensate formed cannot completely replace the entire water requirement, but definitely large parts. The condensate can be used as feed water based on the retention rate for all substances. However, it appears that two substances, chloride and sulphate can create problems for the membrane filter. To investigate this, the condensate should be tested over a longer period of time to see the affect the chloride as well as the sulphate in the long run. / Arvika Fjärrvärme AB bedriver produktion och distribution av fjärrvärme till ca 300 kunder runt om i Arvika. Värmeproduktionen består av en BFB-panna som matas med bränslet GROT (grenar och toppar) och levererar en maxeffekt på 30 MW. För att driva anläggningen förbrukas i snitt 60 m3 vatten per dag från stadsvattennätet för spädvattenförberedning, sotning och processkylning. I denna typ av värmeproduktion som Arvika Fjärrvärme bedriver doseras svavel. Detta är ett resultat av ett tidigare examensarbete som visade att vid en dosering av svavel bildas det färre farliga rökgaser som kan uppstå vid förbränningen. GROT är ett bränsle som innehåller höga halter fukt vilket innebär att höga mängder kondensat bildas vid förbränningen, i snitt 100 m3 per dag. I dagsläget renas kondensatet tillräckligt för att möta de gränsvärden för att kondensatet ska få spolas ner i avloppet. Detta uppnås genom en sandfiltrering och pH-neutralisering. Idag är Arvika Fjärrvärme utrustade med ett reningssteg för spädvattnet bestående av ett avhärdningsfilter samt membranfilter. Detta skapar goda förutsättningar för att rena kondensatet och återcirkulera det i processen. Funderingar som uppstår är vilka farliga ämnen som kondensatet kan innehålla samt hur kondensatsammansättningen påverkas av svaveldoseringen. Dessutom ställer sig värmeverket frågan om det renade kondensatet kan ersätta förbrukningen av stadsvattnet och slutligen om kondensatet kan renas och användas som spädvatten i processen. Genomförandet av arbetet baserades på ett fullskaligt försök under två driftfall på 9 samt 18 MW. Tanken som samlar upp allt kondensat efter rening i sandfiltret och pH neutraliseringen kopplades på i steget för spädvattenrening. På så sätt pumpades kondensatet igenom och renades i avhärdningsfiltret samt membranfiltret. Analysunderlag samlades in före samt efter rening av kondensatet. Förutom de ämnen som Arvika fjärrvärme undersöker förkommer höga halter alkalinitet i kondensatet som bidrar till bildning av pannsten. Svaveldoseringen som Arvika fjärrvärme jobbar med kan vara orsaken till de höga koncentrationerna av sulfat. Det visar sig dock att både sulfatet och alkaliniteten renas bort i membranfiltret. Mängden kondensat som bildas kan inte helt ersätta hela vattenbehovet men definitivt stora delar. Kondensatet kan användas som spädvatten om retentionsgraden för ämnena anses hög nog. Det visar sig dock att två ämnen, klorid och sulfat, kan skapa problem för membranfiltret. För att undersöka detta bör kondensatet testas under en längre tidsperiod för att se vilken påverkan klorid och sulfat har i längden.

Page generated in 0.0269 seconds