• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 14
  • 9
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 86
  • 39
  • 21
  • 16
  • 13
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

A Vertical C60 Transistor with a Permeable Base Electrode

Fischer, Axel 11 September 2015 (has links)
A high performance vertical organic transistor based on the organic semiconductor C60 is developed in this work. The sandwich geometry of this transistor, well known from organic light-emitting diodes or organic solar cells, allows for a short transfer length of charge carriers in vertical direction. In comparison to conventional organic field-effect transistors with lateral current flow, much smaller channel lengths are reached, even if low resolution and low-cost shadow masks are used. As a result, the transistor operates at low voltages (1 V), drives current densities in the range of 10 A/cm², and enables a switching speed in the MHz range. The operation mechanism is studied in detail. It is demonstrated that the transistor can be described by a nano-porous permeable base electrode insulated by a thin native aluminum oxide film on its surface. Thus, the transistor has to be understood as two metal-oxide-semiconductor diodes, sharing a common electrode, the base. Upon applying a bias to the base, charges accumulate in front of the oxide, similar to the channel formation in a field-effect transistor. Due to the increased conductivity in this region, charges are efficiently transported toward and through the pinholes of the base electrode, realizing a high charge carrier transmission. Thus, even a low concentration of openings in the base electrode is sufficient to ensure large transmission currents. The device concept turns out to be ideal for applications where high transconductance and high operation frequency are needed, e.g. in analog amplifier circuits. The full potential of the transistor is obtained if the active area is structured by an insulating layer in order to perfectly align the three electrodes. Besides that, molecular doping near the charge injecting contact is essential to minimize the contact resistance. Due to the high power density in the vertical C60 transistor, Joule self-heating occurs, which is discussed in this work in the context of organic semiconductors. The large activation energies of the electrical conductivity observed cause the presence of S-shaped current-voltage characteristics and result in thermal switching as well as negative differential resistances, as demonstrated for several two-terminal devices. A detailed understanding of these processes is important to determine restrictions and proceed with further optimizations.:CONTENTS Publications, patents and conference contributions 9 1 Introduction 13 2 Theory 19 2.1 From small molecules to conducting thin films . . . . . . . . . . . . . . . . . . . . 19 2.1.1 Aromatic hydrocarbons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.2 Solid state physics of molecular materials . . . . . . . . . . . . . . . . . . . 24 2.1.3 Energetic landscape of an organic semiconductor . . . . . . . . . . . . . . 26 2.1.4 Charge transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2 Semiconductor structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.2.1 Semiconductor statistics and transport . . . . . . . . . . . . . . . . . . . . 42 2.2.2 Charge injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.2.3 Limitations of the current . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.2.4 Metal-oxide-semiconductor structures . . . . . . . . . . . . . . . . . . . . . 57 2.3 Self-heating theory of thermistor device . . . . . . . . . . . . . . . . . . . . . . . . 61 3 Organic transistors 65 3.1 The organic field-effect transistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.1.1 Basic principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.1.2 Device characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.1.3 Device geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.1.4 Device parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.1.5 Issues of OFETs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.1.6 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.2 Overview over vertical organic transistors . . . . . . . . . . . . . . . . . . . . . . . 76 3.2.1 VOTs with an unstructured base electrode . . . . . . . . . . . . . . . . . . . 76 3.2.2 VOTs with structured base electrode . . . . . . . . . . . . . . . . . . . . . . 79 3.2.3 Charge injection modulating transistors . . . . . . . . . . . . . . . . . . . . 82 3.2.4 Vertical organic field-effect transistor . . . . . . . . . . . . . . . . . . . . . . 85 3.2.5 Development of the scientific output . . . . . . . . . . . . . . . . . . . . . . 87 3.2.6 Competing technologies and approaches . . . . . . . . . . . . . . . . . . . 88 3.3 Vertical Organic Triodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.3.1 Stucture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.3.2 Electronic configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.3.3 Energetic alignment of the diodes . . . . . . . . . . . . . . . . . . . . . . . 92 3.3.4 Current flow in the on and the off-state . . . . . . . . . . . . . . . . . . . . 94 3.3.5 Definition and extraction of parameters . . . . . . . . . . . . . . . . . . . . 95 4 Experimental 101 4.1 General processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.1.1 Thermal vapor deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.1.2 Processing tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.1.3 Processing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.2 Mask setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.3 Measurement setups and tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.3.1 Current-voltage measurements . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.3.2 Frequency-dependent measurements . . . . . . . . . . . . . . . . . . . . . 108 4.3.3 Impedance Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.3.4 Ultraviolet and X-ray Photoelectron Spectroscopy . . . . . . . . . . . . . . . 110 4.3.5 Thermal imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4.4 Materials used in C60 triodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.4.1 Buckminsterfullerene C60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.4.2 Tungsten paddlewheel W2(hpp)4 . . . . . . . . . . . . . . . . . . . . . . . . 116 4.4.3 Aluminum and its oxides . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4.4.4 Spiro-TTB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.5 Materials used in Organic Light-emitting Diodes . . . . . . . . . . . . . . . . . . . 121 5 Introduction of C60 VOTs 123 5.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.2 Diode characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 5.3 Base sweep measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.4 Determination of parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 5.5 Common-base connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 5.6 Output characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.7 Frequency-dependent measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.8 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 6 Effect of annealing 141 6.1 Charge carrier transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 6.2 Sheet resistance and transmittance of the base electrode . . . . . . . . . . . . . . 142 6.3 Investigation of morphological changes . . . . . . . . . . . . . . . . . . . . . . . . 144 6.4 Photoelectron spectroscopy of the base electrode . . . . . . . . . . . . . . . . . . 153 6.5 Influence of air exposure and annealing onto the dopants . . . . . . . . . . . . . . 159 6.6 Electrical characteristics of the diodes . . . . . . . . . . . . . . . . . . . . . . . . . 162 6.7 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 7 Working Mechanism 167 7.1 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 7.2 Diode characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 7.3 Simulation and modeling of the diode characteristics . . . . . . . . . . . . . . . . . 173 7.4 Interpretation of the operation mechanism . . . . . . . . . . . . . . . . . . . . . . . 181 7.5 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 8 Optimization of VOTs 183 8.1 Misalignment of the electrodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 8.2 Use of doping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 8.3 Variation of the intrinsic layer thickness . . . . . . . . . . . . . . . . . . . . . . . . . 190 8.4 Structuring the active area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 8.5 High-frequency operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 8.6 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 9 Self-heating in organic semiconductors 209 9.1 Temperature activation in C60 triodes . . . . . . . . . . . . . . . . . . . . . . . . . . 210 9.2 nin-C60 crossbar structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 9.3 Thermal switching in organic semiconductors . . . . . . . . . . . . . . . . . . . . . 216 9.4 Self-heating in large area devices: Organic LEDs . . . . . . . . . . . . . . . . . . . 218 9.5 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 10 Conclusion and Outlook 227 10.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 10.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 A Appendix 233 A.1 Appendix 1: Accuracy of the current gain . . . . . . . . . . . . . . . . . . . . . . . 233 A.2 Appendix 2: Fit of XRR measurements . . . . . . . . . . . . . . . . . . . . . . . . . 234 A.3 Appendix 3: Atomic force microscopy . . . . . . . . . . . . . . . . . . . . . . . . . 236 A.4 Appendix 4: Transmission electron microscopy . . . . . . . . . . . . . . . . . . . . 236 A.5 Appendix 5: Drift-diffusion simulation of nin devices . . . . . . . . . . . . . . . . . 239 A.6 Appendix 6: A simple parallel thermistor circuit . . . . . . . . . . . . . . . . . . . . 241 List of Figures 245 References 290 / In dieser Arbeit wird ein vertikaler organischer Transistor mit hoher Leistungsfähigkeit vorgestellt, der auf dem organischen Halbleiter C60 basiert. Die von organischen Leuchtdioden und organischen Solarzellen bekannte \'Sandwich’-Geometrie wird verwendet, so dass es möglich ist, für die vertikale Stromrichtung kurze Transferlängen der Ladungsträger zu erreichen. Im Vergleich zum konventionellen organischen Feldeffekttransistor mit lateralem Stromfluss werden dadurch viel kleinere Kanallängen erreicht, selbst wenn preisgünstige Schattenmasken mit geringer Auflösung für die thermische Verdampfung im Vakuum genutzt werden. Daher kann der Transistor bei einer Betriebsspannung von 1 V Stromdichten im Bereich von 10 A/cm² und Schaltgeschwindigkeiten im MHz-Bereich erreichen. Obwohl diese Technologie vielversprechend ist, fehlt bislang ein umfassendes Verständnis des Funktionsmechanismus. Hier wird gezeigt, dass der Transistor eine nanoporöse Basiselektrode hat, die durch ein natives Oxid auf ihrer Oberfläche elektrisch isoliert ist. Daher kann das Bauelement als zwei Metall-Oxid-Halbleiter-Dioden verstanden werden, die sich eine gemeinsame Elektrode, die Basis, teilen. Unter Spannung akkumulieren Ladungsträger vor dem Oxid, ähnlich zur Ausbildung eines Ladungsträgerkanals im Feldeffekttransistor. Aufgrund der erhöhten Leitfähigkeit in dieser Region werden Ladungsträger effizient zu und durch die Öffnungen der Basis transportiert, was zu hohen Ladungsträgertransmissionen führt. Selbst bei einer geringen Konzentration von Löchern in der Basiselektrode werden so hohe Transmissionsströme erzielt. Das Bauelementkonzept ist ideal für Anwendungen, in denen eine hohe Transkonduktanz und eine hohe Schaltgeschwindigkeit erreicht werden soll, z.B. in analogen Schaltkreisen, die kleine Signale verarbeiten. Das volle Potential des Transistors offenbart sich jedoch, wenn die aktive Fläche durch eine Isolatorschicht strukturiert wird, um den Überlapp der drei Elektroden zu optimieren, so dass Leckströme minimiert werden. Daneben ist die Dotierung der Molekülschichten am Emitter essentiell, um Kontaktwiderstände zu vermeiden. Aufgrund der hohen Leistungsdichten in den vertikalen C60-Transistoren kommt es zur Selbsterwärmung, die in dieser Arbeit im Kontext organischen Halbleiter diskutiert wird. Die große Aktivierungsenergie der Leitfähigkeit führt zu S-förmigen Strom-Spannungs-Kennlinien und hat thermisches Umschalten sowie negative differentielle Widerstände zur Folge, was für verschiedene Bauelemente demonstriert wird. Ein detailliertes Verständnis dieser Prozesse ist wichtig, um Beschränkungen für Anwendungen zu erkennen und um entsprechende Verbesserungen einzuführen.:CONTENTS Publications, patents and conference contributions 9 1 Introduction 13 2 Theory 19 2.1 From small molecules to conducting thin films . . . . . . . . . . . . . . . . . . . . 19 2.1.1 Aromatic hydrocarbons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.2 Solid state physics of molecular materials . . . . . . . . . . . . . . . . . . . 24 2.1.3 Energetic landscape of an organic semiconductor . . . . . . . . . . . . . . 26 2.1.4 Charge transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2 Semiconductor structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.2.1 Semiconductor statistics and transport . . . . . . . . . . . . . . . . . . . . 42 2.2.2 Charge injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.2.3 Limitations of the current . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.2.4 Metal-oxide-semiconductor structures . . . . . . . . . . . . . . . . . . . . . 57 2.3 Self-heating theory of thermistor device . . . . . . . . . . . . . . . . . . . . . . . . 61 3 Organic transistors 65 3.1 The organic field-effect transistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.1.1 Basic principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.1.2 Device characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.1.3 Device geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.1.4 Device parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.1.5 Issues of OFETs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.1.6 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.2 Overview over vertical organic transistors . . . . . . . . . . . . . . . . . . . . . . . 76 3.2.1 VOTs with an unstructured base electrode . . . . . . . . . . . . . . . . . . . 76 3.2.2 VOTs with structured base electrode . . . . . . . . . . . . . . . . . . . . . . 79 3.2.3 Charge injection modulating transistors . . . . . . . . . . . . . . . . . . . . 82 3.2.4 Vertical organic field-effect transistor . . . . . . . . . . . . . . . . . . . . . . 85 3.2.5 Development of the scientific output . . . . . . . . . . . . . . . . . . . . . . 87 3.2.6 Competing technologies and approaches . . . . . . . . . . . . . . . . . . . 88 3.3 Vertical Organic Triodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.3.1 Stucture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.3.2 Electronic configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.3.3 Energetic alignment of the diodes . . . . . . . . . . . . . . . . . . . . . . . 92 3.3.4 Current flow in the on and the off-state . . . . . . . . . . . . . . . . . . . . 94 3.3.5 Definition and extraction of parameters . . . . . . . . . . . . . . . . . . . . 95 4 Experimental 101 4.1 General processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.1.1 Thermal vapor deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.1.2 Processing tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.1.3 Processing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.2 Mask setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.3 Measurement setups and tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.3.1 Current-voltage measurements . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.3.2 Frequency-dependent measurements . . . . . . . . . . . . . . . . . . . . . 108 4.3.3 Impedance Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.3.4 Ultraviolet and X-ray Photoelectron Spectroscopy . . . . . . . . . . . . . . . 110 4.3.5 Thermal imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4.4 Materials used in C60 triodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.4.1 Buckminsterfullerene C60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.4.2 Tungsten paddlewheel W2(hpp)4 . . . . . . . . . . . . . . . . . . . . . . . . 116 4.4.3 Aluminum and its oxides . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4.4.4 Spiro-TTB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.5 Materials used in Organic Light-emitting Diodes . . . . . . . . . . . . . . . . . . . 121 5 Introduction of C60 VOTs 123 5.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.2 Diode characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 5.3 Base sweep measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.4 Determination of parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 5.5 Common-base connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 5.6 Output characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.7 Frequency-dependent measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.8 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 6 Effect of annealing 141 6.1 Charge carrier transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 6.2 Sheet resistance and transmittance of the base electrode . . . . . . . . . . . . . . 142 6.3 Investigation of morphological changes . . . . . . . . . . . . . . . . . . . . . . . . 144 6.4 Photoelectron spectroscopy of the base electrode . . . . . . . . . . . . . . . . . . 153 6.5 Influence of air exposure and annealing onto the dopants . . . . . . . . . . . . . . 159 6.6 Electrical characteristics of the diodes . . . . . . . . . . . . . . . . . . . . . . . . . 162 6.7 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 7 Working Mechanism 167 7.1 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 7.2 Diode characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 7.3 Simulation and modeling of the diode characteristics . . . . . . . . . . . . . . . . . 173 7.4 Interpretation of the operation mechanism . . . . . . . . . . . . . . . . . . . . . . . 181 7.5 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 8 Optimization of VOTs 183 8.1 Misalignment of the electrodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 8.2 Use of doping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 8.3 Variation of the intrinsic layer thickness . . . . . . . . . . . . . . . . . . . . . . . . . 190 8.4 Structuring the active area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 8.5 High-frequency operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 8.6 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 9 Self-heating in organic semiconductors 209 9.1 Temperature activation in C60 triodes . . . . . . . . . . . . . . . . . . . . . . . . . . 210 9.2 nin-C60 crossbar structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 9.3 Thermal switching in organic semiconductors . . . . . . . . . . . . . . . . . . . . . 216 9.4 Self-heating in large area devices: Organic LEDs . . . . . . . . . . . . . . . . . . . 218 9.5 Intermediate summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 10 Conclusion and Outlook 227 10.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 10.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 A Appendix 233 A.1 Appendix 1: Accuracy of the current gain . . . . . . . . . . . . . . . . . . . . . . . 233 A.2 Appendix 2: Fit of XRR measurements . . . . . . . . . . . . . . . . . . . . . . . . . 234 A.3 Appendix 3: Atomic force microscopy . . . . . . . . . . . . . . . . . . . . . . . . . 236 A.4 Appendix 4: Transmission electron microscopy . . . . . . . . . . . . . . . . . . . . 236 A.5 Appendix 5: Drift-diffusion simulation of nin devices . . . . . . . . . . . . . . . . . 239 A.6 Appendix 6: A simple parallel thermistor circuit . . . . . . . . . . . . . . . . . . . . 241 List of Figures 245 References 290
82

Studium funkčních vlastností tenkých vláken NiTi pro aplikace v smart strukturách a textiliích / Investigation of Functional Properties of Thin NiTi Filaments for Applications in Smart Structures and Hybrid Textiles

Pilch, Jan January 2011 (has links)
PhD thesis focuses the field of textile application of modern functional materials, namely metallic shape memory alloys with unique thermomechanical properties deriving from martensitic transformation in solid state. Particularly, it deals with the development of a nonconventional thermomechanical treatment of thin NiTi filaments via Joule heating by electric current and related basic research involving thermomechanical testing and modeling of functional properties of the filaments, investigation of martensitic transformations and deformation processes in NiTi and investigation of the fast recovery and recrystallization processes in metals heated by short pulses of controlled electric power. The method was developed and called FTMT-EC. In contrast to conventional heat treatment of metallic filaments in environmental furnaces, this method allows for precise control of the raise of the filament temperature and filament stress during the fast heating (rate ~50 000 °C/s). As a consequence, it is possible to precisely control the progress of the fast recovery and recrystallization processes in heat treated filaments. In this way it is possible to prepare filaments with desired nanostructured microstructure and related functional properties. A prototype equipment for application of the method for heat treatment of continuous SMA filaments during respooling in textile processing was designed and built. Comparing to the conventional heat treatment of SMA filaments in tubular environmental furnaces, this approach is faster, saves energy and allows for preparation of filaments with special functional properties. International patent application was filed on the method. It is currently utilized in the research and development of smart textiles for medical applications.
83

Studium funkčních vlastností tenkých vláken NiTi pro aplikace v smart strukturách a textiliích / Investigation of Functional Properties of Thin NiTi Filaments for Applications in Smart Structures and Hybrid Textiles

Pilch, Jan January 2011 (has links)
PhD thesis focuses the field of textile application of modern functional materials, namely metallic shape memory alloys with unique thermomechanical properties deriving from martensitic transformation in solid state. Particularly, it deals with the development of a nonconventional thermomechanical treatment of thin NiTi filaments via Joule heating by electric current and related basic research involving thermomechanical testing and modeling of functional properties of the filaments, investigation of martensitic transformations and deformation processes in NiTi and investigation of the fast recovery and recrystallization processes in metals heated by short pulses of controlled electric power. The method was developed and called FTMT-EC. In contrast to conventional heat treatment of metallic filaments in environmental furnaces, this method allows for precise control of the raise of the filament temperature and filament stress during the fast heating (rate ~50 000 °C/s). As a consequence, it is possible to precisely control the progress of the fast recovery and recrystallization processes in heat treated filaments. In this way it is possible to prepare filaments with desired nanostructured microstructure and related functional properties. A prototype equipment for application of the method for heat treatment of continuous SMA filaments during respooling in textile processing was designed and built. Comparing to the conventional heat treatment of SMA filaments in tubular environmental furnaces, this approach is faster, saves energy and allows for preparation of filaments with special functional properties. International patent application was filed on the method. It is currently utilized in the research and development of smart textiles for medical applications.
84

Förlustanalys av Elnätdistribution i Eskilstuna : En noggrann undersökning av elförluster och dess konsekvenser i ett område i Eskilstuna

Hosseani, Omid, George, Touma January 2023 (has links)
This thesis explores the losses occurring in a specific region located in the southern part of Eskilstuna, where ESEM serves as the network owner. The study places particular emphasis on power factor and load factor as key factors. Its objective is to analyze and comprehend the extent of losses in the network and their implications. The results demonstrate that losses in the chosen area of the Eskilstuna network align with prior research and theoretical expectations. Based on calculations, the losses in this network segment amount to approximately 483 MWh per year, corresponding to a cost of approximately 272,000 Swedish Kronor for ESEM in 2022. The method of studies is based on calculations, analyzer, and literature studies to achieve a reliable result. The results show that losses within the selected area of the Eskilstuna network are consistent with previous research and theoretical expectations. Of the total loss, there are some customers who show larger losses compared to the average case. These customers were identified, and a summary analysis was made of their power factor and load factor standard deviation. These losses depend on various factors, such as the existence of reactive power, technical and non-technical losses. Measures to deal with these problems are suggested based on previous research and literature studies. Optimization of transformers, phase compensation and monitoring are some of these measures. This study provides significant insights into power grid losses and proposes potential strategies to mitigate these losses in the examined region. By minimizing such losses, ESEM has the potential to enhance the efficiency of the electrical grid, lower carbon dioxide emissions, and enhance economic outcomes for energy producers, the electricity grid operator, and consumers. For continued progress in the field, further research, and implementation of the proposed measures to streamline the power grid and reduce losses in the future is recommended. / Elnätförluster har konsekvenser för miljön, energisystemet och slutanvändarna. När energi går förlorad i elnätet minskar den totala effektiviteten i systemet och ökar belastningen på kraftgenereringen. Detta kan leda till ökade kostnader för energiproducenter och potentiellt högre priser för konsumenterna. Dessutom kan ökade elnätförluster bidra till en ökning av koldioxidutsläppen från kraftverken och därmed ha en negativ miljöpåverkan. Syftet med studien är att undersöka det befintliga elnätet i det utvalda området genom analys av data från mät-elnätavdelningen i ESEM. Metoden för studien är baserad på beräkningar, analyser och litteraturstudier för att uppnå ett pålitligt resultat. Resultaten visar att förluster inom det valda området av Eskilstunanätverket överensstämmer med tidigare forskning och teoretiska förväntningar. Baserat på beräkningar uppgår förlusterna i detta nätsegment till cirka 483 MWh, vilket motsvarar en kostnad på cirka 272 000 svenska kronor för ESEM 2022. Av den totala förlusten finns det vissa kunder som uppvisar större förluster jämfört med genomsnittsfallet. Dessa kunder identifierades, och en översiktsanalys gjordes av deras effektfaktor och standardavvikelse för belastningsfaktorn. Dessa förluster beror på olika faktorer, såsom existensen av reaktiv effekt, tekniska och icke-tekniska förluster. Åtgärder för att hantera dessa problem föreslås baserat på tidigare forskning och litteraturstudier. Optimering av transformatorer, faskompensering och övervakning är några av dessa åtgärder. Denna studie bidrar med viktig kunskap om elnätförluster och identifierar potentiella åtgärder för att minska förlusterna i det studerade området. Genom att minska förlusterna kan man öka elnätets effektivitet, minska koldioxidutsläppen och förbättra ekonomiska aspekter för energiproducenter, elnätägaren och konsumenter. För fortsatta framsteg inom området rekommenderas ytterligare forskning och implementering av de föreslagna åtgärderna för att effektivisera elnätet och minska förlusterna i framtiden.
85

Active dielectrophoretic trapping for deterministic single-cell encapsulation in droplet microfluidics

Surana, Prasanna January 2023 (has links)
The research work focuses on optimizing various parameters for controlling cells using negative dielectrophoresis and entrapping them in droplet microfluidics. This is achieved by developing a conductivity medium, combining CytoRecovery, BSA, and EDTA, to maintain a steady count of single cells with good viability over an extended period. The study involves the optimization of frequency and voltage applied to the electrodes to achieve the desired dielectrophoretic forces for long-term cell manipulation. The optimization is based on simulations performed using myDEP and COMSOL software. Additionally, the stability of the conductivity medium is tested during prolonged electric field applications. Considering the significance of working with cells, ensuring the temperature inside the channels remains within physiological limits is vital. Both COMSOL simulations and physical experiments using Rhodamine B dye are conducted to achieve this objective. Moreover, a well-designed process flow is proposed for performing cellular entrapment in droplets. Finally, a novel microfluidic cleaning protocol has been developed to efficiently eliminate both non-biological and biological contaminants from the microfluidic chamber. This innovative protocol has the potential to enable the reuse of any microfluidic chip that does not possess a functionalized surface. / Forskningsarbetet fokuserar på att optimera olika parametrar för att kontrollera celler med hjälp av negativ dielektrofores och fånga in dem i droppmikrofluidik. Detta uppnås genom att utveckla ett konduktivitetsmedium, som kombinerar CytoRecovery, BSA och EDTA, för att upprätthålla ett jämnt antal enstaka celler med god livsduglighet under en längre period. Studien involverar optimering av frekvens och spänning som appliceras på elektroderna för att uppnå de önskade dielektroforetiska krafterna för långvarig cellmanipulation. Optimeringen är baserad på simuleringar utförda med mjukvaran myDEP och COMSOL. Dessutom testas konduktivitetsmediets stabilitet under långvariga elektriska fälttillämpningar. Med tanke på betydelsen av att arbeta med celler är det viktigt att se till att temperaturen inuti kanalerna håller sig inom fysiologiska gränser. Både COMSOL-simuleringar och fysiska experiment med Rhodamine B-färgämne genomförs för att uppnå detta mål. Dessutom föreslås ett väldesignat processflöde för att utföra cellulär infångning i droppar. Slutligen har ett nytt mikrofluidrengöringsprotokoll utvecklats för att effektivt eliminera både icke-biologiska och biologiska föroreningar från mikrofluidkammaren. Detta innovativa protokoll har potential att möjliggöra återanvändning av alla mikrofluidiska chip som inte har en funktionaliserad yta.
86

Low Temperature Waste Energy Harvesting by Shape Memory Alloy Actuator

Hegana, Ashenafi B. 04 October 2016 (has links)
No description available.

Page generated in 0.0235 seconds