• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 262
  • 59
  • 44
  • 29
  • 7
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 521
  • 96
  • 89
  • 78
  • 71
  • 63
  • 56
  • 51
  • 50
  • 42
  • 37
  • 34
  • 30
  • 28
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Investigation of novel functions of a gap junction protein, connexin46

Banerjee, Debarshi January 1900 (has links)
Doctor of Philosophy / Department of Biochemistry / Dolores J. Takemoto / Connexin proteins are the principle structural components of gap junction channels that connect the cytoplasm of two cells and maintain direct intercellular communication through the exchange of ions, small molecules and cellular metabolites. Colocalization and tissue-specific expression of diverse connexin molecules are reported to occur in a variety of organs. Impairment of gap junctional intercellular communication, caused by mutations, gain of function or loss of function of connexins, is involved in a number of diseases including the development of cancer. Here the functions of a gap junction protein, connexin46 (Cx46), have been investigated in two hypoxic tissues, lens and breast tumor. We show that human breast cancer cells, MCF-7 and breast tumor tissues express connexin46 (Cx46) and it plays a critical role in protecting cells against hypoxia-induced death. Interestingly, I find that Cx46 is upregulated in MCF-7 breast cancer cells and human breast cancer tumors. Downregulation of Cx46 by siRNA promotes cell death of human lens epithelial cells (HLEC) and MCF-7 cells under hypoxic conditions. Furthermore, direct injection of anti-Cx46 siRNA into xenograft tumors prevents tumor growth in nude mice. Our result suggests that both normal hypoxic tissue (lens) and adaptive hypoxic tissue (breast tumor) utilize the same protein, Cx46, as a protective strategy against hypoxia. In the last part of the dissertation, we show that over expression of Cx46 induces the degradation of another connexin, connexin43, in rabbit lens epithelial NN1003A cells. Over expression of Cx46 increases ubiquitination of Cx43. Moreover, the Cx46-induced Cx43 degradation is counteracted by inhibitors of proteasome. Taken together, these data indicate that the degradation of Cx43, upon Cx46 over expression, is mediated by the ubiquitin-proteasome pathway. I also provide evidence that that C-terminal tail of Cx46 is essential to induce degradation of Cx43. Therefore, our study shows that Cx46 has a novel function in the regulation of Cx43 turnover in addition to its conventional role as a gap junction protein. This may contribute to protection from hypoxia in both the lens and tumors.
202

Role of protein kinase C-gamma in the regulation of lens gap junctions

Das, Satyabrata January 1900 (has links)
Doctor of Philosophy / Department of Biochemistry / Dolores J. Takemoto / The avascular lens tissue depends on the gap junction channels to facilitate intercellular communication for supplying cells deep within the lens with nutrients and removing waste products of cellular metabolism. In the absence of the protein synthesis machinery in the inner lens fiber cells, the proper regulation of gap junction channels becomes extremely important as disturbance of the lens homeostasis can lead to cataract development. Phosphorylation of gap junction subunit connexin proteins has been shown to play an important channel-modulating role in a variety of tissue. Protein kinase C-[Gamma] (PKC[Gamma]) has been implicated in the phosphorylation of connexins in the lens. Here the role of PKC[Gamma] in the regulation of gap junction coupling in the mouse lens has been investigated. We have compared the properties of coupling in lenses from wild type (WT) and PKC[Gamma] knockout (KO) mice. Western blotting, confocal immunofluorescence microscopy, immunoprecipitation, RT-PCR and quantitative real time PCR were used to study gap junction protein and message expression; gap junction coupling conductance and pH gating were measured in intact lenses using impedance studies. PKC[Gamma]was found to regulate the amount and distribution of Cx43 in the lens. Gap junction coupling conductance in the differentiating fibers (DF) of PKC[Gamma] KO lenses was 34% larger than that of WT. In the mature fiber (MF), the effect was much larger with the KO lenses having an 82% increase in coupling over WT. Absence of PKC[Gamma] in the KO mice also caused abnormal persistence of nuclei in the typical nucleus-free region in the DF. These results suggest a major role for PKC[Gamma] in the regulation of gap junction expression and coupling in the normal lens mediated by phosphorylation of the lens connexins. This becomes very vital in the diabetic lenses which contain a depleted amount of PKC[Gamma] and people suffering from spinocerebellar ataxia type-14 (SCA14) who have a mutated inactive form of PKC[Gamma]. Prolonged exposure of lenses to oxidative stress in these patients can lead to cataract formation. In cultured human lens epithelial cells (HLECs), 12-O-tetradecanoylphorbol-13-acetate (TPA) stimulated the depletion of Cx43 protein level via PKC-mediated phosphorylation of Cx43. At the same time Cx46 protein and message levels were upregulated in response to TPA treatment. So, the PKC activator regulates Cx43 and Cx46 in opposing ways. The possible mitochondria localization of Cx46 reported here could help in finding the non-junctional roles for Cx46.
203

The current-voltage and noise properties of high temperature superconductor SNS and grain boundary junctions

McGordon, Andrew January 1999 (has links)
No description available.
204

Structure-borne sound transmission in wall-floor timber junctions with damping elastomers

Stenberg, Sarah, Vercruysse, Adrien January 2016 (has links)
The wooden multi-storey building industry is facing persistent sound transmission problems at low frequencies. Inserting elastomers within wall-floor junctions is common usage nevertheless no accurate studies have elucidated the real behavior of those nonlinear combined materials yet. Deeper knowledge is needed to create a relevant FE model which will help industry to use those materials efficiently.The nonlinear dynamic behavior of the elastomers inserted in wooden junctions is analyzed while the static load acting on them is varying. The specific situation where those elastomers were tested is a scaled room made of two walls and one floor.An experimental study was conducted on this prototype wooden construction and a numerical analysis was performed on the Finite Element model of it. The frequency response functions of several positions were measured on the physical setup.The study showed that loaded structures (up to 2 times the load of the floor) had a lower damping ratio. Having the structure standing on really stiff or elastic material does not differ when comparing experimental and analytical modal parameters.Those results depict the behavior of elastomers for different load cases and are definitely a step forward for the conception of a reliable FE model.
205

A study of fluxons propagating in annular Josephson junctions

Hyland, Luke January 2013 (has links)
In this research we looked at how fluxons propagate in an annular Josephson junction containing a microshort. We studied this from a theoretical stance and looked at how a single fluxon based on the sine-Grodon soliton equation propagates in this type of junction. It has been seen from a variety of studies that fluxons have many applications through the use of Josephson junctions. The aim of this thesis was to see whether a fluxon will show new properties whilst coming into contact with a microshort located in the junction. We also explored the different geometries a Josephson junction can have and whether that would show the fluxon to present new phenomena. We will also examine point particle systems. With this in mind we took a keen interest in how the interaction between two of these particles in a double well potential would present itself and whether a relationship would become apparent. Alongside the point particle system we modelled fluxons in a double well potential and comment on the similarities with the point particle system. With the aid of the computer programmes Mathematica and COMSOL Multiphysics we were able to compute these different theoretical models and present the work in a logical order with a progression from a single point particle in a double well potential to a fluxon in a heart-shaped Josephson junction. We have looked at current theories and ideas present in this area of condensed matter physics and have explained these in the subsequent thesis.
206

The fabrication of PBCO buffered step-edge Josephson junctions

Van Staden, Wynand Fourie 03 1900 (has links)
Thesis (MScEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2007. / A major challenge in the design and operation of High Temperature Superconducting (HTS) devices is the fabrication of reproducible Josephson junctions with good IcRn products. One objective of this thesis was to fabricate successfully HTS step-edge junctions. This objective necessitated a critical evaluation of the available facilities to provide much needed improvements. These improvements included a newly optimised photolithography process, the incorporation of a three-gridded extraction system into the in-house argon ion mill as well as alterations to the Pulsed Laser Deposition (PLD) system to improve thin film quality. These process modifications finally allowed for the fabrication of novel PrBa2Cu3O7−δ buffered step-edge junctions. These junctions were tested for dc and ac Josephson effects and displayed IcRn products of 1.5 mV at 55 K as well as well-defined Shapiro steps. A second objective was to introduce a high quality thin film deposition system that could produce smooth superconducting films for use in filters and multilayer technology. An Inverted Cylindrical Magnetron system was built and optimised to grow YBa2Cu3O7−δ thin films on MgO (001) substrates. A complete optimisation process of these films are presented by utilising several growth and electrical characterisation methods such as XRD, RBS and AFM.
207

A process for the manufacture of high-temperature bi-epitaxial Josephson junctions

De Villiers, Hendrik Adrianus Cornelis 03 1900 (has links)
Thesis (MScEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2007. / This thesis is concerned with the fabrication of high temperature bi-epitaxial grain boundary Josephson junctions for use in superconducting microelectronic circuits. It aims to provide a proof-of-concept manufacturing process which can serve as a basis for future research at the University of Stellenbosch. The work in this thesis integrates ...
208

Cell-cell interactions and cell junction dynamics in the mammalian testis

Wong, Ching-hang., 黃政珩. January 2005 (has links)
published_or_final_version / abstract / Zoology / Doctoral / Doctor of Philosophy
209

FABRICATION AND CHARACTERIZATION OF MOLECULAR SPINTRONICS DEVICES

Tyagi, Pawan 01 January 2008 (has links)
Fabrication of molecular spin devices with ferromagnetic electrodes coupled with a high spin molecule is an important challenge. This doctoral study concentrated on realizing a novel molecular spin device by the bridging of magnetic molecules between two ferromagnetic metal layers of a ferromagnetic-insulator-ferromagnetic tunnel junction on its exposed pattern edges. At the exposed sides, distance between the two metal electrodes is equal to the insulator film thickness; insulator film thickness can be precisely controlled to match the length of a target molecule. Photolithography and thin-film deposition were utilized to produce a series of tunnel junctions based on molecular electrodes of multilayer edge molecular electrodes (MEME) for the first time. In order to make a microscopic tunnel junction with low leakage current to observe the effect of ~10,000 molecules bridged on the exposed edge of a MEME tunnel barrier, growth conditions were optimized; stability of a ~2nm alumina insulator depended on its ability to withstand process-induced mechanical stresses. The conduction mechanism was primarily 1) tunneling from metal electrode to oranometalic core by tunneling through alkane tether that acts as a tunnel barrier 2) rapid electron transfer within the oranometalic Ni-CN-Fe cube and 3) tunneling through alkane tether to the other electrode. Well defined spin-states in the oranometalic Ni-CN-Fe cube would determine electron spin-conduction and possibly provide a mechanism for coupling. MEME with Co/NiFe/AlOx/NiFe configurations exhibited dramatic changes in the transport and magnetic properties after the bridging of oranometalic molecular clusters with S=6 spin state. The molecular cluster produced a strong antiferromagnetic coupling between two ferromagnetic electrodes to the extent, with a lower bound of 20 erg/cm,2 that properties of individual magnetic layers changed significantly at RT. Magnetization, ferromagnetic resonance and magnetic force microscopy studies were performed. Transport studies of this configuration of MEME exhibited molecule-induced current suppression by ~6 orders by blocking both molecular channels and tunneling between metal leads in the planar 25μm2 tunnel junction area. A variety of control experiments were performed to validate the current suppression observation, especially critical due to observed corrosion in electrochemical functionalization step. The spin devices were found to be sensitive to light radiation, temperature and magnetic fields. Along with the study of molecular spin devices, several interesting ideas such as ~9% energy efficient ultrathin TaOx based photocell, simplified version of MEME fabrication, and chemical switching were realized. This doctoral study heralds a novel molecular spin device fabrication scheme; these molecular electrodes allow the reliable study of molecular components in molecular transport.
210

THE REGULATION AND PACKAGING OF SYNAPTIC VESICLES RELATED TO RECRUITMENT WITHIN CRAYFISH AND FRUIT FLY NEUROMUSCULAR JUNCTIONS: VARIATIONS IN LOW- AND HIGH-OUTPUT TERMINALS

Wu, Wenhui 01 January 2013 (has links)
Glutamate is the main excitatory neurotransmitter in the CNS and at the neuromuscular junctions (NMJs) of invertebrate. The characteristic similarities to CNS glutamatergic synapses in vertebrate and the anatomical simplicity of invertebrate NMJs favor the investigation of glutamatergic synaptic functions in this system. This dissertation mainly aimed to physiologically separate two functional vesicle groups, the reserve pool (RP) and readily releasable pool (RRP) within presynaptic nerve terminals of Procambarus Clarkii and Drosophila melanogaster. This was addressed in part by blocking the vesicular glutamate transporter (VGlut) with bafilomycin A1. Various frequencies of motor nerve stimulation, exposure time, and concentration of bafilomycin A1 were examined. The low-output tonic opener NMJs in crayfish exposed to 4μM bafilomycin A1 and 20Hz continuous stimulation decreased the EPSP amplitude to 50% in ∼30min with controls lasting 3h. After activity and bafilomycin A1-induced synaptic depression, the EPSPs were rapidly revitalized by serotonin (5-HT, 1μM) in the crayfish preparations. The 5-HT action can be blocked almost completely with a PLC inhibitor, but partially with a cAMP activator. The higher output synapses of the larval Drosophila NMJ when stimulated at 1Hz or 5Hz and exposed to 4μM of bafilomycin A1 showed a depression rate of 50% within ∼10min with controls lasting ∼40min. After low frequency depression and/or exposure to bafilomycin A1 a burst of higher frequency (10Hz) can recruit vesicles from the RP to the RRP. Physiological differences in low- (tonic like) and high-output (phasic like) synapses match many of the expected anatomical features of these terminals, part of this dissertation highlights physiological differences and differential modulation and/or extent of the vesicles in a RP for maintaining synaptic output during evoked depression of the RRP in crayfish abdomen extensor preparation. With the use of bafilomycin A1, the tonic terminal is fatigue resistant due to a large RRP, whereas the phasic depresses rapidly upon continuous stimulation. Upon depression of the tonic terminal, 5-HT has a large RP to act on to recruit vesicles to the RRP; whereas, the phasic terminal, 5-HT can recruit RP vesicles to the RRP prior to synaptic depression but not after depression.

Page generated in 0.0593 seconds