Spelling suggestions: "subject:"readily release poly""
1 |
THE REGULATION AND PACKAGING OF SYNAPTIC VESICLES RELATED TO RECRUITMENT WITHIN CRAYFISH AND FRUIT FLY NEUROMUSCULAR JUNCTIONS: VARIATIONS IN LOW- AND HIGH-OUTPUT TERMINALSWu, Wenhui 01 January 2013 (has links)
Glutamate is the main excitatory neurotransmitter in the CNS and at the neuromuscular junctions (NMJs) of invertebrate. The characteristic similarities to CNS glutamatergic synapses in vertebrate and the anatomical simplicity of invertebrate NMJs favor the investigation of glutamatergic synaptic functions in this system. This dissertation mainly aimed to physiologically separate two functional vesicle groups, the reserve pool (RP) and readily releasable pool (RRP) within presynaptic nerve terminals of Procambarus Clarkii and Drosophila melanogaster. This was addressed in part by blocking the vesicular glutamate transporter (VGlut) with bafilomycin A1. Various frequencies of motor nerve stimulation, exposure time, and concentration of bafilomycin A1 were examined. The low-output tonic opener NMJs in crayfish exposed to 4μM bafilomycin A1 and 20Hz continuous stimulation decreased the EPSP amplitude to 50% in ∼30min with controls lasting 3h. After activity and bafilomycin A1-induced synaptic depression, the EPSPs were rapidly revitalized by serotonin (5-HT, 1μM) in the crayfish preparations. The 5-HT action can be blocked almost completely with a PLC inhibitor, but partially with a cAMP activator. The higher output synapses of the larval Drosophila NMJ when stimulated at 1Hz or 5Hz and exposed to 4μM of bafilomycin A1 showed a depression rate of 50% within ∼10min with controls lasting ∼40min. After low frequency depression and/or exposure to bafilomycin A1 a burst of higher frequency (10Hz) can recruit vesicles from the RP to the RRP. Physiological differences in low- (tonic like) and high-output (phasic like) synapses match many of the expected anatomical features of these terminals, part of this dissertation highlights physiological differences and differential modulation and/or extent of the vesicles in a RP for maintaining synaptic output during evoked depression of the RRP in crayfish abdomen extensor preparation. With the use of bafilomycin A1, the tonic terminal is fatigue resistant due to a large RRP, whereas the phasic depresses rapidly upon continuous stimulation. Upon depression of the tonic terminal, 5-HT has a large RP to act on to recruit vesicles to the RRP; whereas, the phasic terminal, 5-HT can recruit RP vesicles to the RRP prior to synaptic depression but not after depression.
|
2 |
Structural/functional analysis of synaptotagmin 1 in synaptic transmission using hippocampal autapses / Struktuelle und funktionelle Analyse von Synaptotagmin 1 in synaptischer Transmission in hippocampalen AutapsenLiyi, Li 24 May 2005 (has links)
No description available.
|
3 |
Investigation of Endosomal Recycling of Synaptic Vesicles / Untersuchung von endosomalem Recycling von synaptischen VesikelnHoopmann, Peer 02 November 2010 (has links)
No description available.
|
4 |
A Quantitative Description of the Interaction of Enhancement and Depression of Transmitter Release at the Neuromuscular JunctionHolohean, Alice Marie 21 December 2007 (has links)
Synaptic transmission alters the strength of the postsynaptic potential, through a process called short-term synaptic plasticity (STP). In this study, endplate potentials (EPPs) from the frog neuromuscular junction were used to resolve and quantify the presynaptic components involved in enhancement and depression of transmitter release during repetitive stimulation under normal quantal release conditions (2 mM Ca2+, 1mM Mg2+). During trains of stimulation given between 10 - 200 Hz, the amplitude of the EPPs first increased then decreased; a maximum increase of 77% was produced after 2-4 stimuli. EPP amplitudes began to increase at ~ 20 Hz, were maximal at ~ 55 Hz, and thereafter, decreased as the rate of stimulation increased. The integrated total release after 25 stimuli was little changed across frequencies between 10 - 100 Hz. EPPs ran down in two phases: a fast phase, attributed to the depletion of a readily releasable pool (RRP) of synaptic vesicles, followed by a slow phase, attributed to the depletion of vesicles from a depot pool (DP). Depletion of the readily releasable pool of synaptic vesicles (RRP) was determined by quantifying release under the fast and slow time rundowns and subtracting the number of vesicles associated with mobilization to the RRP from the total number of vesicles released during stimulation trains of 50 impulses. Impulses were delivered at 12 different rates ranging from 50 to 200 /s. Estimates of the number of vesicles released from the RRP increased with frequency of stimulation until maximal depletion levels of 5500 - 6000 vesicles were reached at stimulation rates between 90-130/s, assuming a control quantal content of 200 vesicles released per impulse. Depletion was less at lower frequencies when the number of stimuli delivered was identical. When the RRP maximally depleted, release was inversely related to stimulation rate, as would be expected if mobilization from the depot pool was the sole determinate of release during the slow phase. An equation constructed from four known components of enhancement and two components of depression - the depletion of vesicles from a readily releasable pool (RRP) and from the depot pool (DP) that refills the RRP, was used to fit and then simulate EPPs obtained during trains using different patterns of stimulation and varying amounts of extracellular Ca2+; the decay time constant parameters of enhancement, numerically derived from the observed data, were fixed at tau ~ 46, 220, 1600, and 20000 ms. The number of components of enhancement necessary to approximate the data decreased, from four in low (0.14 - 0.2mM) extracellular Ca2+, to one (tau ~ 46 ms) in 2.0 mM extracellular Ca2+, but four components of enhancement were necessary to fit the data when the amplitude of the EPP was not depressed below the control amplitude. This model was able to predict within ~ 3 % EPP amplitudes over a 10-fold range of frequency and Ca2+ concentration.
|
Page generated in 0.0964 seconds