• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 102
  • 15
  • 14
  • 8
  • 8
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 177
  • 177
  • 78
  • 77
  • 70
  • 64
  • 48
  • 48
  • 48
  • 46
  • 46
  • 41
  • 37
  • 36
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Improving Estimation Accuracy of GPS-Based Arterial Travel Time Using K-Nearest Neighbors Algorithm

Li, Zheng, Li, Zheng January 2017 (has links)
Link travel time plays a significant role in traffic planning, traffic management and Advanced Traveler Information Systems (ATIS). A public probe vehicle dataset is a probe vehicle dataset that is collected from public people or public transport. The appearance of public probe vehicle datasets can support travel time collection at a large temporal and spatial scale but at a relatively low cost. Traditionally, link travel time is the aggregation of travel time by different movements. A recent study proved that link travel time of different movements is significantly different from their aggregation. However, there is still not a complete framework for estimating movement-based link travel time. In addition, probe vehicle datasets usually have a low penetration rate but no previous study has solved this problem. To solve the problems above, this study proposed a detailed framework to estimate movement-based link travel time using a high sampling rate public probe vehicle dataset. Our study proposed a k-Nearest Neighbors (k-NN) regression method to increase travel time samples using incomplete trajectory. An incomplete trajectory was compared with historical complete trajectories and the link travel time of the incomplete trajectory was represented by its similar complete trajectories. The result of our study showed that the method can significantly increase link travel time samples but there are still limitations. In addition, our study investigated the performance of k-NN regression under different parameters and input data. The sensitivity analysis of k-NN algorithm showed that the algorithm performed differently under different parameters and input data. Our study suggests optimal parameters should be selected using a historical dataset before real-world application.
2

A GENE ONTOLOGY BASED COMPUTATIONAL APPROACH FOR THE PREDICTION OF PROTEIN FUNCTIONS

Kharsikar, Saket 13 September 2007 (has links)
No description available.
3

Mutual k Nearest Neighbor based Classifier

Gupta, Nidhi January 2010 (has links)
No description available.
4

Density Based Clustering using Mutual K-Nearest Neighbors

Dixit, Siddharth January 2015 (has links)
No description available.
5

Estudo da influência de diversas medidas de similaridade na previsão de séries temporais utilizando o algoritmo KNN-TSP / Study of the influence of similarity measures in Time Series Prediction with the kNN-TSP algorithm

Aikes Junior, Jorge 11 April 2012 (has links)
Made available in DSpace on 2017-07-10T17:11:50Z (GMT). No. of bitstreams: 1 JORGE AIKES JUNIOR.PDF: 2050278 bytes, checksum: f5bae18bbcb7465240488c45b2c813e7 (MD5) Previous issue date: 2012-04-11 / Time series can be understood as any set of observations which are time ordered. Among the many possible tasks appliable to temporal data, one that has attracted increasing interest, due to its various applications, is the time series forecasting. The k-Nearest Neighbor - Time Series Prediction (kNN-TSP) algorithm is a non-parametric method for forecasting time series. One of its advantages, is its easiness application when compared to parametric methods. Even though its easier to define kNN-TSP s parameters, some issues remain opened. This research is focused on the study of one of these parameters: the similarity measure. This parameter was empirically evaluated using various similarity measures in a large set of time series, including artificial series with seasonal and chaotic characteristics, and several real world time series. It was also carried out a case study comparing the predictive accuracy of the kNN-TSP algorithm with the Moving Average (MA), univariate Seasonal Auto-Regressive Integrated Moving Average (SARIMA) and multivariate SARIMA methods in a time series of a Korean s hospital daily patients flow in the Emergency Department. This work also proposes an approach to the development of a hybrid similarity measure which combines characteristics from several measures. The research s result demonstrated that the Lp Norm s measures have an advantage over other measures evaluated, due to its lower computational cost and for providing, in general, greater accuracy in temporal data forecasting using the kNN-TSP algorithm. Although the literature in general adopts the Euclidean similarity measure to calculate de similarity between time series, the Manhattan s distance can be considered an interesting candidate for defining similarity, due to the absence of statistical significant difference and to its lower computational cost when compared to the Euclidian measure. The measure proposed in this work does not show significant results, but it is promising for further research. Regarding the case study, the kNN-TSP algorithm with only the similarity measure parameter optimized achieves a considerably lower error than the MA s best configuration, and a slightly greater error than the univariate e multivariate SARIMA s optimal settings presenting less than one percent of difference. / Séries temporais podem ser entendidas como qualquer conjunto de observações que se encontram ordenadas no tempo. Dentre as várias tarefas possíveis com dados temporais, uma que tem atraído crescente interesse, devido a suas várias aplicações, é a previsão de séries temporais. O algoritmo k-Nearest Neighbor - Time Series Prediction (kNN-TSP) é um método não-paramétrico de previsão de séries temporais que apresenta como uma de suas vantagens a facilidade de aplicação, quando comparado aos métodos paramétricos. Apesar da maior facilidade na determinação de seus parâmetros, algumas questões relacionadas continuam em aberto. Este trabalho está focado no estudo de um desses parâmetros: a medida de similaridade. Esse parâmetro foi avaliado empiricamente utilizando diversas medidas de similaridade em um grande conjunto de séries temporais que incluem séries artificiais, com características sazonais e caóticas, e várias séries reais. Foi realizado também um estudo de caso comparativo entre a precisão da previsão do algoritmo kNN-TSP e a dos métodos de Médias Móveis (MA), Auto-regressivos de Médias Móveis Integrados Sazonais (SARIMA) univariado e SARIMA multivariado, em uma série de fluxo diário de pacientes na Área de Emergência de um hospital coreano. Neste trabalho é ainda proposta uma abordagem para o desenvolvimento de uma medida de similaridade híbrida, que combine características de várias medidas. Os resultados obtidos neste trabalho demonstram que as medidas da Norma Lp apresentam vantagem sobre as demais medidas avaliadas, devido ao seu menor custo computacional e por apresentar, em geral, maior precisão na previsão de dados temporais utilizando o algoritmo kNN-TSP. Apesar de na literatura, em geral, a medida Euclidiana ser adotada como medida de similaridade, a medida Manhattan pode ser considerada candidata interessante para definir a similaridade entre séries temporais, devido a não apresentar diferença estatisticamente significativa com a medida Euclidiana e possuir menor custo computacional. A medida proposta neste trabalho, não apresenta resultados significantes, mas apresenta-se promissora para novas pesquisas. Com relação ao estudo de caso, o algoritmo kNN-TSP, com apenas o parâmetro de medida de similaridade otimizado, alcança um erro consideravelmente inferior a melhor configuração com MA, e pouco maior que as melhores configurações dos métodos SARIMA univariado e SARIMA multivariado, sendo essa diferença inferior a um por cento.
6

Identification of Driving Styles in Buses

Karginova, Nadezda January 2010 (has links)
<p>It is important to detect faults in bus details at an early stage. Because the driving style affects the breakdown of different details in the bus, identification of the driving style is important to minimize the number of failures in buses.</p><p>The identification of the driving style of the driver was based on the input data which contained examples of the driving runs of each class. K-nearest neighbor and neural networks algorithms were used. Different models were tested.</p><p>It was shown that the results depend on the selected driving runs. A hypothesis was suggested that the examples from different driving runs have different parameters which affect the results of the classification.</p><p>The best results were achieved by using a subset of variables chosen with help of the forward feature selection procedure. The percent of correct classifications is about 89-90 % for the k-nearest neighbor algorithm and 88-93 % for the neural networks.</p><p>Feature selection allowed a significant improvement in the results of the k-nearest neighbor algorithm and in the results of the neural networks algorithm received for the case when the training and testing data sets were selected from the different driving runs. On the other hand, feature selection did not affect the results received with the neural networks for the case when the training and testing data sets were selected from the same driving runs.</p><p>Another way to improve the results is to use smoothing. Computing the average class among a number of consequent examples allowed achieving a decrease in the error.</p>
7

Identification of Driving Styles in Buses

Karginova, Nadezda January 2010 (has links)
It is important to detect faults in bus details at an early stage. Because the driving style affects the breakdown of different details in the bus, identification of the driving style is important to minimize the number of failures in buses. The identification of the driving style of the driver was based on the input data which contained examples of the driving runs of each class. K-nearest neighbor and neural networks algorithms were used. Different models were tested. It was shown that the results depend on the selected driving runs. A hypothesis was suggested that the examples from different driving runs have different parameters which affect the results of the classification. The best results were achieved by using a subset of variables chosen with help of the forward feature selection procedure. The percent of correct classifications is about 89-90 % for the k-nearest neighbor algorithm and 88-93 % for the neural networks. Feature selection allowed a significant improvement in the results of the k-nearest neighbor algorithm and in the results of the neural networks algorithm received for the case when the training and testing data sets were selected from the different driving runs. On the other hand, feature selection did not affect the results received with the neural networks for the case when the training and testing data sets were selected from the same driving runs. Another way to improve the results is to use smoothing. Computing the average class among a number of consequent examples allowed achieving a decrease in the error.
8

Location Sensing Using Bluetooth for GPS Suppression

Mair, Nicholas 06 September 2012 (has links)
With the ubiquity of mobile devices, there has been increased interest in determining how they can be used with location-based services. These types of services work best when the device has the ability to sense its location frequently, while still maintaining enough battery life to carry out its normal daily functions. Since the life of the battery on a mobile device is already so limited, ways of preserving that energy has become an important issue. The goal of this thesis is to demonstrate that Bluetooth can assist in providing energy efficient mobile device localization. This goal is achieved through a proposed Bluetooth Location Service Discovery framework which provides an API that can be incorporated into third party applications. The API allows BlackBerry devices to use surrounding Bluetooth devices in order to make a prediction about its current location. Predictions are completed with the assistance of the K-Nearest Neighbour data mining algorithm, and can be used as an alternative to invoking the GPS. The results obtained through experiments demonstrate that the results are comparable to those obtained with GPS.
9

Classification Analytics in Functional Neuroimaging: Calibrating Signal Detection Parameters

Fisher, Julia Marie January 2015 (has links)
Classification analyses are a promising way to localize signal, especially scattered signal, in functional magnetic resonance imaging data. However, there is not yet a consensus on the most effective analysis pathway. We explore the efficacy of k-Nearest Neighbors classifiers on simulated functional magnetic resonance imaging data. We utilize a novel construction of the classification data. Additionally, we vary the spatial distribution of signal, the design matrix of the linear model used to construct the classification data, and the feature set available to the classifier. Results indicate that the k-Nearest Neighbors classifier is not sufficient under the current paradigm to adequately classify neural data and localize signal. Further exploration of the data using k-means clustering indicates that this is likely due in part to the amount of noise present in each data point. Suggestions are made for further research.
10

k-Nearest Neighbour Classification of Datasets with a Family of Distances

Hatko, Stan January 2015 (has links)
The k-nearest neighbour (k-NN) classifier is one of the oldest and most important supervised learning algorithms for classifying datasets. Traditionally the Euclidean norm is used as the distance for the k-NN classifier. In this thesis we investigate the use of alternative distances for the k-NN classifier. We start by introducing some background notions in statistical machine learning. We define the k-NN classifier and discuss Stone's theorem and the proof that k-NN is universally consistent on the normed space R^d. We then prove that k-NN is universally consistent if we take a sequence of random norms (that are independent of the sample and the query) from a family of norms that satisfies a particular boundedness condition. We extend this result by replacing norms with distances based on uniformly locally Lipschitz functions that satisfy certain conditions. We discuss the limitations of Stone's lemma and Stone's theorem, particularly with respect to quasinorms and adaptively choosing a distance for k-NN based on the labelled sample. We show the universal consistency of a two stage k-NN type classifier where we select the distance adaptively based on a split labelled sample and the query. We conclude by giving some examples of improvements of the accuracy of classifying various datasets using the above techniques.

Page generated in 0.0466 seconds