• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 102
  • 16
  • 14
  • 8
  • 8
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 178
  • 178
  • 78
  • 77
  • 70
  • 64
  • 49
  • 48
  • 48
  • 46
  • 46
  • 41
  • 37
  • 36
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

GENETIC ALGORITHMS FOR SAMPLE CLASSIFICATION OF MICROARRAY DATA

Liu, Dongqing 23 September 2005 (has links)
No description available.
12

Socio-Geographical Mobilities : A Study of Compulsory School Students’ Mobilities within Metropolitan Stockholm’s Deregulated School Market

Wahls, Rina January 2022 (has links)
The Swedish educational reforms of the 1990s introduced a choice- and voucher-based system, which allowed students to choose schools regardless of their proximity to them. As a consequence, new opportunities for geographical disparities in educational provisions as well as in home-to- school mobilities have emerged. The following thesis addresses this development by focusing on compulsory school (grade 9) students’ home-to-school mobility patterns. More specifically, a Bourdieusian lens is applied to understand mobility in terms of both physical and social space. In contrast to the Bourdieusian tradition, articulations between social and physical space are operationalized by constructing individually defined, scalable neighbourhoods. The software EquiPop is used to compute neighbourhood context neighbours in the municipality of Stockholm (n = 779 079) using the k-nearest neighbour algorithm (k = 1 600). A k-means cluster analysis is applied to construct income-based neighbourhood types. On this basis, this thesis asks about the localizations and positions of schools and students as well as about the mobility patterns and predictors of students residing in low-income, and thus economic capital deprived, neighbourhoods (n = 2 346). Utilizing register data, the study finds an unequal distribution of educational provisions in relation to different providers, i.e. municipal schools and independent schools, as well as different school types. Furthermore, the results indicate that students from low-income neighbourhoods are unequally mobilized dependent on migration background and the educational background of mothers. Moreover, independent schools have been found to be a attractive alternative for students from low-income neighbourhoods. / Research project "On the outskirt of the school market" by Håkan Forsberg
13

Comparison of the Utility of Regression Analysis and K-Nearest Neighbor Technique to Estimate Above-Ground Biomass in Pine Forests Using Landsat ETM+ imagery

Prabhu, Chitra L 13 May 2006 (has links)
There is a lack of precise and universally accepted approach in the quantification of carbon sequestered in aboveground woody biomass using remotely sensed data. Drafting of the Kyoto Protocol has made the subject of carbon sequestration more important, making the development of accurate and cost-effective remote sensing models a necessity. There has been much work done in estimating aboveground woody biomass from spectral data using the traditional multiple linear regression analysis approach and the Finnish k-nearest neighbor approach, but the accuracy of these methods to estimate biomass has not been compared. The purpose of this study is to compare the ability of these two methods in estimating above ground biomass (AGB) using spectral data derived from Landsat ETM+ imagery.
14

Is gender encoded in the smile? A computational framework for the analysis of the smile driven dynamic face for gender recognition

Ugail, Hassan, Al-dahoud, Ahmad 05 March 2018 (has links)
Yes / Automatic gender classification has become a topic of great interest to the visual computing research community in recent times. This is due to the fact that computer-based automatic gender recognition has multiple applications including, but not limited to, face perception, age, ethnicity, identity analysis, video surveillance and smart human computer interaction. In this paper, we discuss a machine learning approach for efficient identification of gender purely from the dynamics of a person’s smile. Thus, we show that the complex dynamics of a smile on someone’s face bear much relation to the person’s gender. To do this, we first formulate a computational framework that captures the dynamic characteristics of a smile. Our dynamic framework measures changes in the face during a smile using a set of spatial features on the overall face, the area of the mouth, the geometric flow around prominent parts of the face and a set of intrinsic features based on the dynamic geometry of the face. This enables us to extract 210 distinct dynamic smile parameters which form as the contributing features for machine learning. For machine classification, we have utilised both the Support Vector Machine and the k-Nearest Neighbour algorithms. To verify the accuracy of our approach, we have tested our algorithms on two databases, namely the CK+ and the MUG, consisting of a total of 109 subjects. As a result, using the k-NN algorithm, along with tenfold cross validation, for example, we achieve an accurate gender classification rate of over 85%. Hence, through the methodology we present here, we establish proof of the existence of strong indicators of gender dimorphism, purely in the dynamics of a person’s smile.
15

Gender and smile dynamics

Ugail, Hassan, Al-dahoud, Ahmad 20 March 2022 (has links)
No / This chapter is concerned with the discussion of a computational framework to aid with gender classification in an automated fashion using the dynamics of a smile. The computational smile dynamics framework we discuss here uses the spatio-temporal changes on the face during a smile. Specifically, it uses a set of spatial and temporal features on the overall face. These include the changes in the area of the mouth, the geometric flow around facial features and a set of intrinsic features over the face. These features are explicitly derived from the dynamics of the smile. Based on it, a number of distinct dynamic smile parameters can be extracted which can then be fed to a machine learning algorithm for gender classification.
16

A k-nearest neighbour technique for experience-based adaptation of assembly stations

Scrimieri, Daniele, Ratchev, S.M. 04 March 2020 (has links)
Yes / We present a technique for automatically acquiring operational knowledge on how to adapt assembly systems to new production demands or recover from disruptions. Dealing with changes and disruptions affecting an assembly station is a complex process which requires deep knowledge of the assembly process, the product being assembled and the adopted technologies. Shop-floor operators typically perform a series of adjustments by trial and error until the expected results in terms of performance and quality are achieved. With the proposed approach, such adjustments are captured and their effect on the station is measured. Adaptation knowledge is then derived by generalising from individual cases using a variant of the k-nearest neighbour algorithm. The operator is informed about potential adaptations whenever the station enters a state similar to one contained in the experience base, that is, a state on which adaptation information has been captured. A case study is presented, showing how the technique enables to reduce adaptation times. The general system architecture in which the technique has been implemented is described, including the role of the different software components and their interactions.
17

Método híbrido de detecção de intrusão aplicando inteligência artificial / Hybrid intrusion detection applying artificial inteligence

Souza, Cristiano Antonio de 09 February 2018 (has links)
Submitted by Miriam Lucas (miriam.lucas@unioeste.br) on 2018-04-06T14:31:39Z No. of bitstreams: 2 Cristiano_Antonio_de_Souza_2018.pdf: 2020023 bytes, checksum: 1105b369d497031759e007333c20cad9 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-04-06T14:31:39Z (GMT). No. of bitstreams: 2 Cristiano_Antonio_de_Souza_2018.pdf: 2020023 bytes, checksum: 1105b369d497031759e007333c20cad9 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-02-09 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The last decades have been marked by rapid technological development, which was accelerated by the creation of computer networks, and emphatically by the spread and growth of the Internet. As a consequence of this context, private and confidential data of the most diverse areas began to be treated and stored in distributed environments, making vital the security of this data. Due to this fact, the number and variety of attacks on computer systems increased, mainly due to the exploitation of vulnerabilities. Thence, the area of intrusion detection research has gained notoriety, and hybrid detection methods using Artificial Intelligence techniques have been achieving more satisfactory results than the use of such approaches individually. This work consists of a Hybrid method of intrusion detection combining Artificial Neural Network (ANN) and K-Nearest Neighbors KNN techniques. The evaluation of the proposed Hybrid method and the comparison with ANN and KNN techniques individually were developed according to the steps of the Knowledge Discovery in Databases process. For the realization of the experiments, the NSL-KDD public database was selected and, with the attribute selection task, five sub-bases were derived. The experimental results showed that the Hybrid method had better accuracy in relation to ANN in all configurations, whereas in relation to KNN, it reached equivalent accuracy and showed a significant reduction in processing time. Finally, it should be emphasized that among the hybrid configurations evaluated quantitatively and statistically, the best performances in terms of accuracy and classification time were obtained by the hybrid approaches HIB(P25-N75)-C, HIB(P25-N75)-30 and HIB(P25-N75)-20. / As últimas décadas têm sido marcadas pelo rápido desenvolvimento tecnológico, o qual foi acelerado pela criação das redes de computadores, e enfaticamente pela disseminação e crescimento da Internet. Como consequência deste contexto, dados privados e sigilosos das mais diversas áreas passaram a ser tratados e armazenados em ambientes distribuídos, tornando-se vital a segurança dos mesmos. Decorrente ao fato, observa-se um crescimento na quantidade e variedade de ataques a sistemas computacionais, principalmente pela exploração de vulnerabilidades. Em função desse contexto, a área de pesquisa em detecção de intrusão tem ganhado notoriedade, e os métodos híbridos de detecção utilizando técnicas de Inteligência Artificial vêm alcançando resultados mais satisfatórios do que a utilização de tais abordagens de modo individual. Este trabalho consiste em um método Híbrido de detecção de intrusão combinando as técnicas Redes Neurais Artificiais (RNA) e K-Nearest Neighbors (KNN). A avaliação do método Híbrido proposto e a comparação com as técnicas de RNA e KNN isoladamente foram desenvolvidas de acordo com as etapas do processo de Knowledge Discovery in Databases (KDD) . Para a realização dos experimentos selecionou-se a base de dados pública NSL-KDD, sendo que com o processo de seleção de atributos derivou-se cinco sub-bases. Os resultados experimentais comprovaram que o método Híbrido teve melhor acurácia em relação a RNA em todas as configurações, ao passo que em relação ao KNN, alcançou acurácia equivalente e apresentou relevante redução no tempo de processamento. Por fim, cabe ressaltar que dentre as configurações híbridas avaliadas quantitativa e estatisticamente, os melhores desempenhos em termos de acurácia e tempo de classificação foram obtidos pelas abordagens híbridas HIB(P25- N75)-C, HIB(P25-N75)-30 e HIB(P25-N75)-20.
18

Datautvinning av klickdata : Kombination av klustring och klassifikation / Data mining of click data : Combination of clustering and classification

Zhang, Xianjie, Bogic, Sebastian January 2018 (has links)
Ägare av webbplatser och applikationer tjänar ofta på att användare klickar på deras länkar. Länkarna kan bland annat vara reklam eller varor som säljs. Det finns många studier inom dataanalys angående om en sådan länk kommer att bli klickad, men få studier fokuserar på hur länkarna kan justeras för att bli klickade. Problemet som företaget Flygresor.se har är att de saknar ett verktyg för deras kunder, resebyråer, att analysera deras biljetter och därefter justera attributen för resorna. Den efterfrågade lösningen var en applikation som gav förslag på hur biljetterna skulle förändras för att bli mer klickade och på såsätt kunna sälja fler resor. I detta arbete byggdes en prototyp som använder sig av två olika datautvinningsmetoder, klustring med algoritmen DBSCAN och klassifikation med algoritmen k-NN. Algoritmerna användes tillsammans med en utvärderingsprocess, kallad DNNA, som analyserade resultatet från dessa två algoritmer och gav förslag på förändringar av artikelns attribut. Kombinationen av algoritmerna tillsammans med DNNA testades och utvärderades som lösning till problemet. Programmet lyckades förutse vilka attribut av biljetter som behövde justeras för att biljetterna skulle bli mer klickade. Rekommendationerna av justeringar var rimliga men eftersom andra liknande verktyg inte hade publicerats kunde detta arbetes resultat inte jämföras. / Owners of websites and applications usually profits through users that clicks on their links. These can be advertisements or items for sale amongst others. There are many studies about data analysis where they tell you if a link will be clicked, but only a few that focus on what needs to be adjusted to get the link clicked. The problem that Flygresor.se have is that they are missing a tool for their customers, travel agencies, that analyses their tickets and after that adjusts the attributes of those trips. The requested solution was an application which gave suggestions about how to change the tickets in a way that would make it more clicked and in that way, make more sales. A prototype was constructed which make use of two different data mining methods, clustering with the algorithm DBSCAN and classification with the algorithm knearest neighbor. These algorithms were used together with an evaluation process, called DNNA, which analyzes the result from the algorithms and gave suggestions about changes that could be done to the attributes of the links. The combination of the algorithms and DNNA was tested and evaluated as the solution to the problem. The program was able to predict what attributes of the tickets needed to be adjusted to get the tickets more clicks. ‘The recommendations of adjustments were reasonable but this result could not be compared to similar tools since they had not been published.
19

[en] INTTELIGENT SYSTEM TO SUPPORT BASKETBALL COACHES / [pt] SISTEMA INTELIGENTE DE APOIO A TÉCNICOS DE BASQUETE

EDUARDO VERAS ARGENTO 12 September 2024 (has links)
[pt] Em meio ao avanço expressivo da tecnologia e às evoluções contínuas observadas no ramo de inteligência artificial, esta última se mostrou ter potencial para ser aplicada a diferentes setores da sociedade. No contexto de extrema competitividade e relevância crescente nos esportes mais famosos ao redor do mundo, o basquete se apresenta como um esporte interessante para a aplicação de mecanismos de apoio à decisão capazes de aumentar a eficácia e consistência de vitórias dos times nos campeonatos. Diante desse contexto, este estudo propõe o desenvolvimento de sistemas de apoio à decisão baseados em modelos de redes neurais e k-Nearest Neighbors (kNNs). O objetivo é avaliar, para cada substituição durante um jogo de basquete, qual grupo de jogadores em quadra, conhecido por quinteto, apresenta mais chances de ter uma maior vantagem sobre o adversário. Para tal, foram treinados modelos para classificar, ao final de uma sequência de posses de bola, a equipe que conseguiria vantagem, e prever a magnitude dessa vantagem. A base de dados foi obtida de partidas do Novo Basquete Brasil (NBB), envolvendo estatísticas de jogadores, detalhes de jogo e contextos diversos. O modelo apresentou uma acurácia de 76,99 por cento das posses de bola nas projeções de vantagem entre duas equipes em quadra, demonstrando o potencial da utilização de métodos de inteligência computacional na tomada de decisões em esportes profissionais. Por fim, o trabalho ressalta a importância do uso de tais ferramentas em complemento à experiência humana, instigando pesquisas futuras para o desenvolvimento de modelos ainda mais sofisticados e eficazes na tomada de decisões no âmbito esportivo. / [en] In light of the recent significant growth in technological capabilities andthe observed advancements in the field of computational intelligence, the latterhas demonstrated potential for application in various sectors of society. Inthe context of extreme competitiveness and increasing relevance in the mostfamous sports around the world, basketball presents itself as an interestingsport for the application of decision-support mechanisms capable of enhancingthe efficacy and consistency of team victories in championships. In this context,this study proposes the development of decision-support systems, such asneural networks and k-Nearest Neighbors (kNNs). The goal is to evaluate, foreach substitution during a match, which group of players in the field, knownas lineup, presents the most probability to be superior to their opponent. Forthis, models were trained to predict, during a sequence of possessions, theteam that would have advantage and the magnitude of this advantage. Thedatabase was obtained from Novo Basquete Brasil (NBB) matches, involvingplayers statistics, match details and different contexts.. The model achieved anaccuracy of 76,99 percent in projections of superiority between the playing lineups,demonstrating the potential of using computational intelligence methods indecision-making applied to professional sports. Finally, the study highlightsthe importance of using such tools in conjunction with human experience,encouraging future research for the development of even more sophisticatedand effective models for decision-making in the sports field.
20

Nonparametric tests to detect relationship between variables in the presence of heteroscedastic treatment effects

Tolos, Siti January 1900 (has links)
Doctor of Philosophy / Department of Statistics / Haiyan Wang / Statistical tools to detect nonlinear relationship between variables are commonly needed in various practices. The first part of the dissertation presents a test of independence between a response variable, either discrete or continuous, and a continuous covariate after adjusting for heteroscedastic treatment effects. The method first involves augmenting each pair of the data for all treatments with a fixed number of nearest neighbors as pseudo-replicates. A test statistic is then constructed by taking the difference of two quadratic forms. Using such differences eliminate the need to estimate any nonlinear regression function, reducing the computational time. Although using a fixed number of nearest neighbors poses significant difficulty in the inference compared to when the number of nearest neighbors goes to infinity, the parametric standardizing rate is obtained for the asymptotic distribution of the proposed test statistics. Numerical studies show that the new test procedure maintains the intended type I error rate and has robust power to detect nonlinear dependency in the presence of outliers. The second part of the dissertation discusses the theory and numerical studies for testing the nonparametric effects of no covariate-treatment interaction and no main covariate based on the decomposition of the conditional mean of regression function that is potentially nonlinear. A similar test was discussed in Wang and Akritas (2006) for the effects defined through the decomposition of the conditional distribution function, but with the number of pseudo-replicates going to infinity. Consequently, their test statistics have slow convergence rates and computational speeds. Both test limitations are overcome using new model and tests. The last part of the dissertation develops theory and numerical studies to test for no covariate-treatment interaction, no simple covariate and no main covariate effects for cases when the number of factor levels and the number of covariate values are large.

Page generated in 0.0498 seconds