• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 2
  • Tagged with
  • 17
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Design and Fabrication of a Micro-Machined Free-Floating Membrane on a Flexible Substrate

Sundani, Harsh 09 September 2010 (has links)
No description available.
12

Process Development For The Fabrication Of Mesoscale Electrostatic Valve Assembly

Dhru, Shailini Rajiv 01 January 2007 (has links)
This study concentrates on two of the main processes involved in the fabrication of electrostatic valve assembly, thick resist photolithography and wet chemical etching of a polyamide film. The electrostatic valve has different orifice diameters of 25, 50, 75 and 100 µm. These orifice holes are to be etched in the silicon wafer with deep reactive ion etching. The photolithography process is developed to build a mask of 15 µm thick resist pattern on silicon wafer. This photo layer acts as a mask for deep reactive ion etching. Wet chemical etching process is developed to etch kapton polyamide film. This etched film is used as a stand off, gap between two electrodes of the electrostatic valve assembly. The criterion is to develop the processed using standard industry tools. Pre post etch effects, such as, surface roughness, etching pattern, critical dimensions on the samples are measured with Veeco profilometer.
13

FABRICATION AND STUDY OF AC ELECTRO-OSMOTIC MICROPUMPS

Guo, Xin 07 May 2013 (has links)
In this thesis, microelectrode arrays of micropumps have been designed, fabricated and characterized for transporting microfluid by AC electro-osmosis (ACEO). In particular, the 3D stepped electrode design which shows superior performance to others in literature is adopted for making micropumps, and the performance of such devices has been studied and explored. A novel fabrication process has also been developed in the work, realizing 3D stepped electrodes on a flexible substrate, which is suitable for biomedical use, for example glaucoma implant. There are three major contributions to ACEO pumping in the work. First, a novel design of 3D “T-shaped” discrete electrode arrays was made using PolyMUMPs® process. The breakthrough of this work was discretizing the continuous 3D stepped electrodes which were commonly seen in the past research. The “T-shaped” electrodes did not only create ACEO flows on the top surfaces of electrodes but also along the side walls between separated electrodes. Secondly, four 3D stepped electrode arrays were designed, fabricated and tested. It was found from the experiment that PolyMUMPs® ACEO electrodes usually required a higher driving voltage than gold electrodes for operation. It was also noticed that a simulation based on the modified model taking into account the surface oxide of electrodes showed a better agreement with the experimental results. It thus demonstrated the possibility that the surface oxide of electrodes had impact on fluidic pumping. This methodology could also be applied to metal electrodes with a native oxide layer such as titanium and aluminum. Thirdly, a prototype of the ACEO pump with 3D stepped electrode arrays was first time realized on a flexible substrate using Kapton polyimide sheets and packaged with PDMS encapsulants. Comprehensive experimental testing was also conducted to evaluate the mechanical properties as well as the pumping performance. The experimental findings indicated that this fabrication process was a promising method to create flexible ACEO pumps that can be used as medical implants and wearable devices. / Thesis (Ph.D, Mechanical and Materials Engineering) -- Queen's University, 2013-05-06 10:57:48.077
14

Vliv vysokého napětí na různé materiály v nízkém a vysokém vakuu / Investigation of high voltage influence on different materials in high and low vacuum

Šedivý, Matúš January 2017 (has links)
The beginning of this thesis contains an overview of properties of the insulators, and description of insulators that were used for in depth research of surface breakdown in vacuum. Furthermore, this work focuses on mechanisms of an electric breakdown initiation at the interface of the solid insulator and surrounding low pressure gas. Multiple methods for measurements of dielectric strength are examined. The experimental part describes the measurements performed in the vacuum chamber. The results of these measurements are then analysed. In conclusion, used insulators are compared and suggestions for further work are given.
15

Synergické účinky kombinovaného stárnutí elektroizolačních materiálů / Synergic effects of multistress ageing of electroinsulating materials

Novák, Lukáš January 2010 (has links)
Submitted work deals with monitoring impact of thermal and electric ageing on the dielectric properties of insulating material NKN 0887. In the course of the experiment five sets of dielectric insulating materials were aged. The voltage range has been set from 1,5 kV till 2,2 kV and temperatures were 23 °C and 200 °C. The capacity and loss factor has been directly measured by RLC meter Agilent with attached electrode system. The electrode system operates on the principle of a plate capacitor. The values of relative permittivity and loss number has been calculated from values of capacity and loss factor. For easier confrontation has been frequency dependences of these values plotted in a chart. The Cole-Cole diagrams has been created and factors of Havriliak-Negami function has been calculated. Data has been compared with each other and the effect of ageing factors has been deduced.
16

Microfabrication of a MEMS piezoresistive flow sensor - materials and processes

Aiyar, Avishek R. 11 July 2008 (has links)
Microelectromechanical systems (MEMS) based artificial sensory hairs for flow sensing have been widely explored, but the processes involved in their fabrication are lithography intensive, making the process quite expensive and cumbersome. Most of these devices are also based on silicon MEMS, which makes the fabrication of out-of plane 3D flow sensors very challenging. This thesis aims to develop new fabrication technologies based on Polymer MEMS, with minimum dependence on lithography for the fabrication of piezoresistive 3D out-of-plane artificial sensory hairs for sensing of air flow. Moreover, the fabrication of a flexible sensor array is proposed and new materials are also explored for the sensing application. Soft lithography based approaches are first investigated for the fabrication of an all elastomer device that is tested in a bench top wind tunnel. Micromolding technologies allow for the mass fabrication of microstructures using a single, reusable mold master that is fabricated by SU-8 photolithography, reducing the need for repetitive processing. Polydimethylsiloxane (PDMS) is used as the device material and sputter deposited gold is used as both the piezoresistive as well as the electrode material for collection of device response. The fabrication results of PDMS to PDMS metal transfer micromolding (MTM) are shown and the limitations of the process are also discussed. A dissolving mold metal transfer micromolding process is then proposed and developed, which overcomes the limitations of the conventional MTM process pertinent to the present application. Testing results of devices fabricated using the dissolving mold process are discussed with emphasis on the role of micro-cr  acking as one failure mode in elastomeric devices with thin film metal electrodes. Finally, a laser microfabrication based approach using thin film Kapton as the device material and an electrically conductive carbon-black elastomer composite as the piezoresistor is proposed and demonstrated. Laminated sheets of thick and thin Kapton form the flexible substrate on which the conductive elastomer piezoresistors are stencil printed. Excimer laser ablation is used to make the micro-stencil as well as to release the Kapton cantilevers. The fluid-structure interaction is improved by the deposition of a thin film of silicon dioxide, which produces a stress-gradient induced curvature, strongly enhancing the device sensitivity. This new approach also enables the fabrication of backside interconnects, thereby addressing the commonly observed problem of flow intrusion while using conventional interconnection technologies like wire-bonding. Devices with varying dimensions of the sensing element are fabricated and the results presented, with smallest devices having a width of 400 microns and a length of 1.5 mm with flow sensitivities as high as 60 Ohms/m/s. Recommendations are also proposed for further optimization of the device.
17

Mesures de precision au LEP et au SppS et instrumentation aupres du LHC

Djama, Fares 29 April 2011 (has links) (PDF)
.

Page generated in 0.0532 seconds