• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • Tagged with
  • 11
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

iPathCase

Johnson, Stephen Robert 26 June 2012 (has links)
No description available.
2

PathMeld: A Methodology for The Unification of Metabolic Pathway Databases

Rajasimha, Harsha Karur 29 December 2004 (has links)
A biological pathway database is a database that describes biochemical pathways, reactions, enzymes that catalyze the reactions, and the substrates that participate in these reactions. A pathway genome database (PGDB) integrates pathway information with information about the complete genome of various sequenced organisms. Two of the popular PGDBs available today are the Kyoto Encyclopedia of Genes and Genomes (KEGG) and MetaCyc. The proliferation of biological databases in general raises several questions for the life scientist. Which of these databases is most accurate, most current, or most comprehensive? Do they have a standard format? Do they complement each other? Overall, which database should be used for what purpose? If more than one database is deemed relevant, it is desirable to have a unified database containing information from all the shortlisted databases. There is no standard methodology yet for integrating biological pathway databases and, to the best of our knowledge, no commercial software that can perform such integration tasks. While XML based pathway data exchange standards such as BioPAX and SBML are emerging, these do not address the basic problems such as inconsistent nomenclature and substrate matching between databases in the unification of pathway databases. Here, we present the PathMeld methodology to unify KEGG and MetaCyc databases starting from their flat files. Individual PGDBs are transformed into a unified schema that we design. With individual PGDBs in the common unified schema, the key to the PathMeld methodology is to find the entity correspondences between the KEGG and MetaCyc substrates. We present a heuristic driven approach for one-to-one mapping of the substrates between KEGG and MetaCyc. Using the exact name and chemical formula match criteria, 82.6% of the substrates in MetaCyc were matched accurately to corresponding substrates in KEGG. The substrate names in the MetaCyc database contain html tags and non-characters such as <sub>, <sup>, <i>, <l>, &, and $. The MetaCyc chemical formula are stored in lisp format in the database while KEGG stores them as continuous strings. Hence, we subject MetaCyc chemical formulae to transformation into KEGG format to make them directly comparable. Applying pre-processing to transform MetaCyc substrate names and formulae improved substrate matching by 2%. To investigate how many of the remaining 17:4% substrates are indeed absent from KEGG, we employ a standard UNIX based approximate string matching tool called agrep. The resulting matches are curated into four mutually exlusive groups: 3:83% are correct matches, 3:17% are close matches, and 7:45% are incorrect matches. 3:68% of MetaCyc substrate names are not matched at all. This shows that 11:13% of MetaCyc substrate names are absent in KEGG. We note some of the implementation issues we solved. First, parsing only one flat file to populate one database table is not sufficient. Second, intermediate database tables are needed. Third, transformation of substrate names and chemical formula from one of the component databases is required for comparison. Fourth, a biochemist's intervention is needed in evaluating the approximate substrate matches from agrep. In conclusion, the PathMeld methodology successfully uni¯es KEGG and MetaCyc °at ¯le databases into a uni¯ed PostgreSQL database. Matching substrates between databases is the key issue in the uni¯cation process. About 83% of the substrate correspondences can be computationally achieved, while the remaining 17% substrates require approximate matching and manual curation by a biochemist. We presented several di®erent techniques for substrate matching and showed that about 10% of the MetaCyc substrates do not match and hence are absent from KEGG. / Master of Science
3

ゲノムからのパスウェイ推定の為のバイオインフォマティクス研究

守屋, 勇樹 23 March 2017 (has links)
京都大学 / 0048 / 新制・論文博士 / 博士(理学) / 乙第13083号 / 論理博第1555号 / 新制||理||1618(附属図書館) / 京都大学大学院理学研究科・生物科学専攻 / (主査)准教授 五斗 進, 教授 高田 彰二, 教授 杤尾 豪人 / 学位規則第4条第2項該当 / Doctor of Science / Kyoto University / DFAM
4

Développement d’une méthode bio-informatique permettant de relier les gènes aux métabolites

Cherkaoui, Sarah 12 1900 (has links)
L’objectif de ce projet était de faire le lien entre gènes et métabolites afin d’éventuellement proposer des métabolites à mesurer en lien avec la fonction de gènes. Plus particulièrement, nous nous sommes intéressés aux gènes codant pour des protéines ayant un impact sur le métabolisme, soit les enzymes qui catalysent les réactions faisant partie intégrante des voies métaboliques. Afin de quantifier ce lien, nous avons développé une méthode bio-informatique permettant de calculer la distance qui est définie comme le nombre de réactions entre l’enzyme encodée par le gène et le métabolite dans la carte globale du métabolisme de la base de données Kyoto Encyclopedia of Genes and Genomes (KEGG). Notre hypothèse était que les métabolites d’intérêt sont des substrats/produits se trouvant à proximité des réactions catalysées par l’enzyme encodée par le gène. Afin de tester cette hypothèse et de valider la méthode, nous avons utilisé les études d’association pangénomique combinées à la métabolomique (mGWAS) car elles rapportent des associations entre variants génétiques, annotés en gènes, et métabolites mesurés. Plus précisément, la méthode a été appliquée à l’étude mGWAS par Shin et al. Bien que la couverture des associations de Shin et al. était limitée (24/299), nous avons pu valider de façon significative la proximité entre gènes et métabolites associés (P<0,01). En somme, cette méthode et ses développements futurs permettront d’interpréter de façon quantitative les associations mGWAS, de prédire quels métabolites mesurer en lien avec la fonction d’un gène et, plus généralement, de permettre une meilleure compréhension du contrôle génétique sur le métabolisme. / The objective of this project was to link genes and metabolites in order to ultimately predict which metabolites to measure in order to adequately reflect the function of a given gene. Specifically, we were interested in genes, which code for proteins that regulate substrate metabolism, hence enzymes that catalyze reactions that are part of metabolic pathways. In order to quantify this link, we have developed a bioinformatics method to calculate a distance, which is defined as the number of reactions separating a given selected gene-encoded enzyme and its metabolite of interest in Kyoto Encyclopedia of Genes and Genomes (KEGG) database’s metabolic overview map. Our hypothesis was that metabolites of interest are products/substrates found at proximity of the reactions catalyzed by the selected gene-encoded enzyme. In order to test our hypothesis and validate the method, we have used genome-wide association study of metabolites levels (mGWAS) because these studies report associations between genetic variants, annotated to genes, and measured metabolites. More specifically, we used the mGWAS conducted by Shin et al. Even though the coverage of the associations reported by Shin et al. was limited (24/299), we significantly validated the proximity between gene-metabolite associated pairs (P<0.01). Overall, the method and its future developments will allow the quantitative interpretation of mGWAS associations, predict which metabolite to measure with regards to the function of a gene and, in general, enable a better understanding of the genetic control of metabolism.
5

Développement d’un outil bio-informatique pour l’annotation des associations entre gènes et métabolites basée sur les voies métaboliques

Therrien-Laperrière, Sandra 11 1900 (has links)
No description available.
6

Metabolomics database resolver

Csombordi, Rajmund January 2020 (has links)
Metabolomics is a rising field combining bioinformatics and cheminformatics together. A major component of research is having a reliable data source, which usually comes in the form of metabolomic databases. This paper documents arising issues revolving categorizing metabolome compounds within databases, and a possible solution in the form of an R package that is capable of matching up various metabolome identifiers that originate from various metabolome databases. Then, by using this package we reflect on the average coverage of external reference between metabolome databases to highlight the lack of a universal compound primary identifier. / <p>The thesis presentation was held over Zoom due to the recent COVID19 pandemic.</p>
7

Methods for Differential Analysis of Gene Expression and Metabolic Pathway Activity

Temate Tiagueu, Yvette Charly B, Temate Tiagueu, Yvette C. B. 09 May 2016 (has links)
RNA-Seq is an increasingly popular approach to transcriptome profiling that uses the capabilities of next generation sequencing technologies and provides better measurement of levels of transcripts and their isoforms. In this thesis, we apply RNA-Seq protocol and transcriptome quantification to estimate gene expression and pathway activity levels. We present a novel method, called IsoDE, for differential gene expression analysis based on bootstrapping. In the first version of IsoDE, we compared the tool against four existing methods: Fisher's exact test, GFOLD, edgeR and Cuffdiff on RNA-Seq datasets generated using three different sequencing technologies, both with and without replicates. We also introduce the second version of IsoDE which runs 10 times faster than the first implementation due to some in-memory processing applied to the underlying gene expression frequencies estimation tool and we also perform more optimization on the analysis. The second part of this thesis presents a set of tools to differentially analyze metabolic pathways from RNA-Seq data. Metabolic pathways are series of chemical reactions occurring within a cell. We focus on two main problems in metabolic pathways differential analysis, namely, differential analysis of their inferred activity level and of their estimated abundance. We validate our approaches through differential expression analysis at the transcripts and genes levels and also through real-time quantitative PCR experiments. In part Four, we present the different packages created or updated in the course of this study. We conclude with our future work plans for further improving IsoDE 2.0.
8

Relative Contributions Of Tobacco Associated Factors And Diabetes To Shaping The Oral Microbiome

Ganesan, Sukirth M. 27 December 2018 (has links)
No description available.
9

A signal transduction score flow algorithm for cyclic cellular pathway analysis, which combines transcriptome and ChIP-seq data

Isik, Zerrin, Ersahin, Tulin, Atalay, Volkan, Aykanat, Cevdet, Cetin-Atalay, Rengul 08 April 2014 (has links) (PDF)
Determination of cell signalling behaviour is crucial for understanding the physiological response to a specific stimulus or drug treatment. Current approaches for large-scale data analysis do not effectively incorporate critical topological information provided by the signalling network. We herein describe a novel model- and data-driven hybrid approach, or signal transduction score flow algorithm, which allows quantitative visualization of cyclic cell signalling pathways that lead to ultimate cell responses such as survival, migration or death. This score flow algorithm translates signalling pathways as a directed graph and maps experimental data, including negative and positive feedbacks, onto gene nodes as scores, which then computationally traverse the signalling pathway until a pre-defined biological target response is attained. Initially, experimental data-driven enrichment scores of the genes were computed in a pathway, then a heuristic approach was applied using the gene score partition as a solution for protein node stoichiometry during dynamic scoring of the pathway of interest. Incorporation of a score partition during the signal flow and cyclic feedback loops in the signalling pathway significantly improves the usefulness of this model, as compared to other approaches. Evaluation of the score flow algorithm using both transcriptome and ChIP-seq data-generated signalling pathways showed good correlation with expected cellular behaviour on both KEGG and manually generated pathways. Implementation of the algorithm as a Cytoscape plug-in allows interactive visualization and analysis of KEGG pathways as well as user-generated and curated Cytoscape pathways. Moreover, the algorithm accurately predicts gene-level and global impacts of single or multiple in silico gene knockouts. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
10

A signal transduction score flow algorithm for cyclic cellular pathway analysis, which combines transcriptome and ChIP-seq data

Isik, Zerrin, Ersahin, Tulin, Atalay, Volkan, Aykanat, Cevdet, Cetin-Atalay, Rengul January 2012 (has links)
Determination of cell signalling behaviour is crucial for understanding the physiological response to a specific stimulus or drug treatment. Current approaches for large-scale data analysis do not effectively incorporate critical topological information provided by the signalling network. We herein describe a novel model- and data-driven hybrid approach, or signal transduction score flow algorithm, which allows quantitative visualization of cyclic cell signalling pathways that lead to ultimate cell responses such as survival, migration or death. This score flow algorithm translates signalling pathways as a directed graph and maps experimental data, including negative and positive feedbacks, onto gene nodes as scores, which then computationally traverse the signalling pathway until a pre-defined biological target response is attained. Initially, experimental data-driven enrichment scores of the genes were computed in a pathway, then a heuristic approach was applied using the gene score partition as a solution for protein node stoichiometry during dynamic scoring of the pathway of interest. Incorporation of a score partition during the signal flow and cyclic feedback loops in the signalling pathway significantly improves the usefulness of this model, as compared to other approaches. Evaluation of the score flow algorithm using both transcriptome and ChIP-seq data-generated signalling pathways showed good correlation with expected cellular behaviour on both KEGG and manually generated pathways. Implementation of the algorithm as a Cytoscape plug-in allows interactive visualization and analysis of KEGG pathways as well as user-generated and curated Cytoscape pathways. Moreover, the algorithm accurately predicts gene-level and global impacts of single or multiple in silico gene knockouts. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.

Page generated in 0.0286 seconds