• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1885
  • 395
  • 1
  • 1
  • 1
  • Tagged with
  • 2284
  • 1667
  • 581
  • 545
  • 348
  • 317
  • 315
  • 309
  • 227
  • 209
  • 185
  • 178
  • 138
  • 103
  • 102
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
661

Design and synthesis of HIV-1 protease inhibitors

Alterman, Mathias January 2001 (has links)
Human Immunodeficiency Virus (HIV) is the causative agent of Acquired Immune Deficiency Syndrome (AIDS). The C2-symmetric HIV-1 protease is one of the prime targets for chemotherapy in the treatment of the HIV infection. Inhibition of HIV-1 protease leads to immature and non-infectious viral particles. Design and synthesis of a number of C2-symmetrical C-terminal duplicated HIV-1 protease inhibitors and subsequent biological evaluation is presented in this thesis. A versatile three step synthetic route has been developed using a carbohydrate as an inexpensive chiral starting material thus allowing inhibitors with the desired stereochemistry to be obtained. By this efficient method a series of tailor-made P2/P2' modified inhibitors were synthesized, and these were evaluated on purified HIV-1 protease and in HIV-1 infected cell assays. Highly active HIV-1 protease inhibitors were identified among the tested compounds. Analyses of the X-ray crystal structures of two of the most active compounds, as complexes with the protease, guided the further design of P1/P1' elongated inhibitors. Substitutions in the para-position of the P1/P1' benzyl groups were promoted efficiently by microwave-irradiated of palladium-catalyzed reactions. Particular modifications in the P1/P1' region of the inhibitors resulted in a 40-fold increase of the anti-viral activity on HIV-1 infected cells. Furthermore, a fast, efficient, and general one-pot microwave enhanced synthesis protocol for transformations of organo-bromides to tetrazoles was developed and applied on the inhibitor scaffold. Attachment of linker molecules to the P1/P1' benzyl groups of one inhibitor was used to develop of sensitivity enhancer tools in surface plasmon resonance biosensor assays. These new assays enable the evaluation of low-molecular weight compounds as HIV-1 protease inhibitors.
662

Labelling of various macromolecules using positron emitting 76Br and 68Ga : Synthesis and characterisation

Yngve, Ulrika January 2001 (has links)
Different prosthetic groups containing a trialkylstannyl- and an electrophilic group have been synthesised and labelled with the accelerator produced 76Br (T1/2=16 h) through oxidative bromination. The labelled prosthetic groups were conjugated to amino-containing macromolecules such as proteins and 5´-modified oligonucleotides. N-Succinimidyl 4-[76Br]bromobenzoate <b>14 </b>was synthesised in 65 % radio-chemical yield and was conjugated to 5´-hexylamino-modified phosphodiester and phosphorothioate oligonucleotides in 12-19 % isolated radiochemical yield. The stability of the 76Br-oligonucleotide-conjugates in vivo in rats was investigated. No degradation from the 5´-end, resulting in labelled, low molecular weight compounds was detected. Compound <b>14</b> has also been used for labelling of different proteins in 23-61% radiochemical yield. N-Succinimidyl-5-[76Br]bromo-3-pyridinecarboxylate <b>17</b> and methyl-4-[76Br]bromo-benzimidate <b>15 </b>were synthesised from the corresponding trimethylstannyl-compound in 25% and 40 % yield respectively. Compounds <b>14 </b>and <b>17</b> were conjugated to ε-Boc-octreotide in 55 and 50% isolated radiochemical yield respectively after microwave heating. Compound <b>15</b> did not react with octreotide under the conditions investigated. The two 76Br-labelled octreotide derivatives showed different lipophilicity and different binding-properties to tissue from meningiomas. Hyaluronic acid, a polysaccharide, was modified with tyramine and labelled by oxidative bromination using 76Br in 10% radiochemical yield. The generator produced 68Ga (T1/2=68 min) was used to label octreotide and oligonucleotides modified with the metal chelating group 1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetic acid (DOTA). 68Ga-DOTA-octreotide was isolated in 65% radiochemical yield and a phosphorothioated 68Ga-DOTA-oligonucleotide was isolated in 35% radio-chemical yield after 30 min synthesis time. Compound<b> 14 </b>was reacted with 3-aminomethylbenzylamine to give compound <b>18</b>. The specific radioactivity<b> </b>of<b> 18 </b>was determined to be 36 GBq/µmol by measuring the ratio between the mass-peaks for the 76Br and 79Br-compounds using packed-capillary LC-MS.
663

Chemical and Electrochemical Characterisation of Oxide/Hydroxide Impurities in the Electrolyte for Magnesium Production

Skar, Rolf Alexander January 2001 (has links)
This work is part of a research program where the aim is to develop an electroanalytical technique to determine the amount of dissolved oxide and hydroxide in industrial Mg electrolytes. The systems studied were mixtures of MgCl2 and NaCl, ranging from pure MgCl2 to melts containing 10 mole % MgCl2 / 90 mole % NaCl. To these melts, additions of MgO and MgOHCl were done at temperatures ranging from 475 to 850°C. Voltammetric measurements were performed before and after addition of MgO or MgOHCl and melt samples were taken for analysis. The quenched melt samples wereanalysed by carbothermal reduction analysis and the acid consumption method to obtain the O2- and OH- contents in the samples. Linear sweep voltammetry was performed with a sweep rate of 200 mV/sec in two potential regions to detect the concentration of dissolved MgOHCl and MgO. The experiments were performed inside a glove box having water and oxygen contents of, respectively, &lt;1 ppm and &lt;2 ppm. The results indicate that the rate of decomposition of MgOHCl increases with increasing temperature, as expected. In melts with high content of NaCl the underpotential deposition of sodium has a large influence on the uncertainty in the reading of the current density of MgOHCl reduction. Linear relations between MgO and MgOHCl concentrations and the peak current densities for the electrochemical reactions of the dissolved MgO and MgOHCl species in the melt, respectively, were observed. The diffusion coefficients of MgO and MgOHCl in the different melts were calculated. The diffusion coefficients decrease with increasing content of MgCl2. For MgOHCl the diffusion coefficient decreases from 5.6*10-5 cm2/sec in 20 mole % MgCl2 / 80 mole % NaCl to 2.1*10-5 cm2/sec in pure MgCl2, both measurements done at 800°C. For MgO the diffusion coefficient decreases from 6*10-5 cm2/sec in 41.5 mole % MgCl2 / 58.5 mole % NaCl to 0.8*10-5 cm2/sec in pure MgCl2, both measurements done at 730°C. The results show that it is possible to use cyclic voltammetry for quantitative analysis of MgOHCl in MgCl2 based melts.
664

Surface Phenomena in Li-Ion Batteries

Andersson, Anna January 2001 (has links)
The formation of surface films on electrodes in contact with non-aqueous electrolytes in lithium-ion batteries has a vital impact on battery performance. A basic understanding of such films is essential to the development of next-generation power sources. The surface chemistry, morphology and thermal stability of two typical anode and cathode materials, graphite and LiNi0.8Co0.2O2, have here been evaluated by X-ray photoelectron spectroscopy (XPS), X-ray diffraction, scanning electron microscopy and differential scanning calorimetry, and placed in relation to the electrochemical performance of the electrodes. Chemical and morphological information on electrochemically formed graphite surface films has been obtained accurately by combining XPS measurements with Ar+ ion etching. An improved picture of the spatial organisation, including thickness determination of the surface film and characterisation of individual component species, has been established by a novel sputtering calibration procedure. The stability of the surface films has been shown to depend strongly on temperature and choice of lithium salt. Decomposition products from elevated-temperature storage in different electrolyte systems were identified and coupled to effects such as capacity loss and increase in electrode resistance. Different decomposition mechanisms are proposed for surface films formed in electrolytes containing LiBF4, LiPF6, LiN(SO2CF3)2 and LiCF3SO3 salts. Surface film formation due to electrolyte decomposition has been confirmed on LiNi0.8Co0.2O2 positive electrodes. An overall surface-layer increase with temperature has been identified and provides an explanation for the impedance increase the material experiences on elevated-temperature storage. Surface phenomena are clearly major factors to consider in selecting materials for practical Li-ion batteries.
665

LiMn2O4 as a Li-ion Battery Cathode. From Bulk to Electrolyte Interface

Eriksson, Tom January 2001 (has links)
LiMn2O4 is ideal as a high-capacity Li-ion battery cathode material by virtue of its low toxicity, low cost, and the high natural abundance of Mn. Surface related reactions and bulk kinetics have been the major focus of this work. The main techniques exploited have been: electrochemical cycling, X-ray diffraction, X-ray photoelectron spectroscopy, infrared spectroscopy and thermal analysis. Interface formation between the LiMn2O4 cathode and carbonate-based electrolytes has been followed under different pre-treatment conditions. The variables have been: number of charge/discharge cycles, storage time, potential, electrolyte salt and temperature. The formation of the surface layer was found not to be governed by electrochemical cycling. The species precipitating on the surface of the cathodes at ambient temperature have been determined to comprise a mixture of organic and inorganic compounds: LiF, LixPFy (or LixBFy, depending on the electrolyte salt used), LixPOyFz (or LixBOyFz) and poly(oxyethylene). Additional compounds were found at elevated temperatures: phosphorous oxides (or boron oxides) and polycarbonates. A model has been presented for the formation of these surface species at elevated temperatures. The cathode surface structure was found to change towards a lithium-rich and Mn3+-rich compound under self-discharge. The reduction of LiMn2O4, in addition to the high operating potential, induces oxidation of the electrolyte at the cathode surface. A novel in situ electrochemical/structural set-up has facilitated a study of the kinetics in the LiMn2O4 electrode. The results eliminate solid-phase diffusion as the rate-limiting factor in electrochemical cycling. The electrode preparation method used results in good utilisation of the electrode, even at high discharge rates.
666

New Fullerene Materials Obtained in Solution and by High Pressure High Temperature Treatment

Talyzin, Alexandr January 2001 (has links)
Crystallization of C60 and C70 from organic solution often leads to the formation of new solvates and other fullerene compounds. In the present thesis, a number of such solvates were obtained and their phase transitions studied using in situ "in solution" techniques. New fullerene materials can be also obtained using High Pressure High Temperature (HPHT) treatment. The formation of C60 polymers in thin films and bulk samples has been studied in situ over a wide pressure-temperature range. New methods for single-crystal growth of fullerenes and their compounds have been developed. It was found by in situ "in solution" XRD and Raman spectroscopy that solvate C60 crystals with benzene, toluene and hexane are stable only in equilibrium with their solution. Their melting points coincide with the maximum in the temperature dependence of solubility. C70 solvates grown from these solutions are stable out of solution, and decompose above the boiling points of the solvents. Vibrational signatures were found for the C60 and C70 solvates which are very similar to these for fullerene-sulfur compounds obtained as thin films and single crystals. A new C70S8 compound was obtained as relatively large single crystals. C60 polymerisation under HPHT conditions was studied on thin films and showed a thickness effect on the phase transition around 20 GPa. Superhard and superelastic films were obtained by treatment at 23 GPa and 570K. In situ Raman and XRD studies were performed on bulk samples at pressures up to 27 GPa and temperatures up to 850K. Below 13 GPa, only one- and two-dimensional polymers were found to form during the heating. The observed polymerisation pathway suggests a gradual increase in polymerisation. Above 18 GPa, the in situ Raman spectra obtained during heating remained almost unchanged. The XRD study showed that heating at 830K and 13 GPa leads to the formation of a rhombohedral phase with a volume per C60 molecule of 560-570 Å3/M, which is below the value for two-dimensional polymers. Nevertheless, no superhard, highly dense phases were observed under these conditions, in contrast to previous studies.
667

Microfabrication of Tungsten, Molybdenum and Tungsten Carbide Rods by Laser-Assisted CVD

Björklund, Kajsa January 2001 (has links)
Thin films of refractory metals and carbides have been studied extensively over many years because of their wide range of application. The two major techniques used are Chemical Vapour Deposition (CVD) and Physical Vapour Deposition (PVD). These can result in the deposition of two-dimensional blanket or patterned thin films. Laser-assisted Chemical Vapour Deposition (LCVD) can provide a maskless alternative for localised deposition in two and three dimensions. This thesis describes LCVD of micrometer-sized tungsten, molybdenum and tungsten carbide rods. The kinetics, phase composition and microstructure have been studied as a function of in situ measured laser induced deposition temperature. Tungsten and molybdenum rods were deposited by hydrogen reduction of their corresponding hexafluorides, WF6 and MoF6, respectively. Single crystal and polycrystalline tungsten rods were obtained, depending on the H2/WF6 molar ratio and deposition temperature. The molybdenum rods were either single crystals or dendritic in form depending on experimental conditions. The field emission characteristics of the tungsten single crystals were investigated. The results showed LCVD to be a potential fabrication technique for field emitting cathodes. Nanocrystalline tungsten carbide rods were deposited from WF6, C2H4 and H2. TEM analysis showed that the carbide rods exhibited a layered structure in terms of phase composition and grain size as a result of the temperature gradient induced by the laser beam. With decreasing WF6/C2H4 molar ratio, the carbon content in the rods increased and the phase composition changed from W/W2C to WC/WC1-x and finally to WC1-x/C.
668

Radical Cyclization Approaches to Pyrrolidines

Beşev, Magnus January 2002 (has links)
Five-membered rings are readily prepared by 5-exo-trig radical cyclization. This thesis is concerned with novel methodology for pyrrolidine synthesis. We have synthesised selenium containing radical precursors from aziridines and α-phenylseleno ketones, and cyclized them to 2,4- and 3,4-disubstituted pyrrolidines. A few examples of 5-exo-dig cyclization were also demonstrated. In another study we investigated the capacity of the nitrogen protecting group to direct diastereoselectivity in the formation of 2,4-disubstituted pyrrolidines. The diphenylphosphinoyl protecting group directed cyclization to occur in a highly cis-selective manner. When cyclizations were performed at 17 oC, cis/trans-ratios as high as 24/1 were obtained. In contrast, cyclization of the unprotected pyrrolidine precursor afforded the trans-diastereomer as the major product (cis/trans = 1/3.3 – 1/20). We also examined the use of a hydroxyl auxiliary for controlling diastereoselectivity in radical cyclization. The required selenium containing radical precursors were synthesised from 2-cyanoaziridines by addition of organometallic reagents, reduction of the resulting aziridine ketone, and benzeneselenol ring-opening of the aziridine. Cyclization at 17 oC produced 2,4-disubstituted pyrrolidines substantially enriched in the trans-isomer (cis/trans = 1/9 – 1/12). Novel radical cyclization approaches to thiazolines and pyrrolines were also tried. The thesis also describes attempts to improve the Hassner aziridine synthesis by employing stannous chloride as a functional group tolerant reducing agent.
669

Synthesis of carbon-covered iron nanoparticles by photolysis of ferrocene

Elihn, Karine January 2002 (has links)
One important driving force in nanotechnology today is the change which can be made in the properties of a material when the dimensions of its individual building blocks are decreased below approximately 100 nm. Such small building blocks, typically nanoparticles, may induce new and unique properties compared to those of the corresponding bulk material. The challenge in nanotechnology is to make nanoparticles with a discrete particle size within the range 1-10 nm. It is also important to develop appropriate assembly methodologies in order to construct devices composed of such small building blocks. This thesis reports iron nanoparticle synthesis using laser-assisted photolysis of ferrocene. The particles were protected against oxidation by a carbon shell formed in situ during their growth. By varying the experimental conditions such as fluence, repetition rate and laser beam area, particles could be synthesized in the size range 1 to 100 nm. Their size was measured using a differential mobility analyser (DMA), transmission electron microscopy (TEM) and X-ray diffraction (XRD). DMA was also used successfully to size-select particles to facilitate the deposition of monodisperse nanoparticle films. A theoretical "residence time approach (RTA)" model was developed to relate particle volume to the laser parameters used. The growth of these particles was studied in situ using optical emission spectroscopy; the results were compared with those from quantum mechanical calculations. The particles were characterised ex situ by TEM, convergent beam electron diffraction, XRD, X-ray photoelectron spectroscopy and Raman spectroscopy. Results from the TEM investigations revealed that the carbon shell was graphitic close to the iron core, while the outer part of the carbon shell was amorphous, indicating different growth mechanisms. Both bcc and fcc iron particles were observed.
670

Equilibrium and Non-Equilibrium Thermodynamics of Natural Gas Processing

Solbraa, Even January 2002 (has links)
The objective of this work has been to study equilibrium and non equilibrium situations during high pressure gas processing operations with emphasis on utilization of the high reservoir pressure. The well stream pressures of some of the condensate and gas fields in the North Sea are well above 200 bar. Currently the gas is expanded to a specified processing condition, typically 40-70 bar, before it is recompressed to the transportation conditions. It would be a considerable environmental and economic advantage to be able to process the natural gas at the well stream pressure. Knowledge of thermodynamic- and kinetic properties of natural gas systems at high pressures is needed to be able to design new high pressure process equipment. Nowadays, reactive absorption into a methyldiethanolamine (MDEA)solution in a packed bed is a frequently used method to perform acid gas treating. The carbon dioxide removal process on the Sleipner field in the North Sea uses an aqueous MDEA solution and the operation pressure is about 100 bar. The planed carbon dioxide removal process for the Snøhvit field in the Barents Sea is the use of an activated MDEA solution. The aim of this work has been to study high-pressure effects related to the removal of carbon dioxide from natural gas. Both modelling and experimental work on high-pressure non-equilibrium situations in gas processing operations have been done. Few experimental measurements of mass transfer in high pressure fluid systems have been published. In this work a wetted wall column that can operate at pressures up to 200 bar was designed and constructed. The wetted wall column is a pipe made of stainless steel where the liquid is distributed as a thin liquid film on the inner pipewall while the gas flows co- or concurrent in the centre of the pipe. The experiments can be carried out with a well-defined interphase area and with relatively simple fluid mechanics. In this way we are able to isolate the effects we want to study in a simple and effective way. Experiments where carbon dioxide was absorbed into water and MDEA solutions were performed at pressures up to 150 bar and at temperatures 25 and 40°C. Nitrogen was used as an inert gas in all experiments. A general non-equilibrium simulation program (NeqSim) has been developed. The simulation program was implemented in the object-oriented programming language Java. Effort was taken to find an optimal object-oriented design. Despite the increasing popularity of object-oriented programming languages such as Java and C++, few publications have discussed how to implement thermodynamic and fluid mechanic models. A design for implementation of thermodynamic, mass transfer and fluid mechanic calculations in an object-oriented framework is presented in this work. NeqSim is based on rigorous thermodynamic and fluid mechanic models. Parameter fitting routines are implemented in the simulation tool and thermodynamic-, mass transfer- and fluid mechanic models were fitted to public available experimental data. Two electrolyte equations of state were developed and implemented in the computer code. The electrolyte equations of state were used to model the thermodynamic properties of the fluid systems considered in this work (non-electrolyte, electrolyte and weak-electrolyte systems). The first electrolyte equation of state (electrolyte ScRK-EOS) was based on a model previously developed by Furst and Renon (1993). The molecular part of the equation was based on a cubic equation of state (Scwarzentruber et.al. (1989)’s modification of the Redlich-Kwong EOS) with the Huron-Vidal mixing rule. Three ionic terms were added to this equation – a short-range ionic term, a long-range ionic term (MSA) and a Born term. The thermodynamic model has the advantage that it reduces to a standard cubic equation of state if no ions are present in the solution, and that public available interaction parameters used in the Huron-Vidal mixing rule could be utilized. The originality of this electrolyte equation of state is the use of the Huron-Vidal mixing rule and the addition of a Born term. Compared to electrolyte models based on equations for the gibbs excess energy, the electrolyte equation of state has the advantage that the extrapolation to higher pressures and solubility calculations of supercritical components is less cumbersome. The electrolyte equation of state was able to correlate and predict equilibrium properties of CO2-MDEA-water solutions with a good precision. It was also able to correlate high pressure data of systems of methane-CO2-MDEA and water. The second thermodynamic model (electrolyte CPA-EOS) evaluated in this work is a model where the molecular interactions are modelled with the CPA (cubic plus association) equation of state (Kontogeorgios et.al., 1999) with a classical one-parameter Van der Walls mixing rule. This model has the advantage that few binary interaction parameters have to be used (even for non-ideal solutions), and that its extrapolation capability to higher pressures is expected to be good. In the CPA model the same ionic terms are used as in the electrolyte ScRK-EOS. A general non-equilibrium two-fluid model was implemented in the simulation program developed in this work. The heat- and mass-transfer calculations were done using an advanced multicomponent mass transfer model based on non-equilibrium thermodynamics. The mass transfer model is flexible and able to simulate many types of non-equilibrium processes we find in the petroleum industry. A model for reactive mass transfer using enhancement factors was implemented for the calculation of mass transfer of CO2 into amine solutions. The mass transfer model was fitted to the available mass transfer data found in the open literature. The simulation program was used to analyse and perform parameter fitting to the high pressure experimental data obtained during this work. The mathematical models used in NeqSim were capable of representing the experimental data of this work with a good precision. From the experimental and modelling work done, we could conclude that the mass transfer model regressed to pure low-pressure data also was able to represent the high-pressure mass transfer data with an acceptable precision. Thus the extrapolation capability of the model to high pressures was good. For a given partial pressure of CO2 in the natural gas, calculations show a decreased CO2 capturing capacity of aqueous MDEA solutions at increased natural gas system pressure. A reduction up to 40% (at 200 bar) compared to low pressure capacity is estimated. The pressure effects can be modelled correctly by using suitable thermodynamic models for the liquid and gas. In a practical situation, the partial pressure of CO2 in the natural gas will be proportional to the total pressure. In these situations, it is shown that the CO2 capturing capacity of the MDEA solution will be increased at rising total pressures up to 200 bar. However, the increased capacity is not as large as we would expect from the higher CO2 partial pressure in the gas. The reaction kinetics of CO2 with MDEA is shown to be relatively unaffected by the total pressure when nitrogen is used as inert gas. It is however important that the effects of thermodynamic and kinetic non- ideality in the gas and liquid phase are modelled in a consistent way. Using the simulation program NeqSim – some selected high-pressure non-equilibrium processes (e.g. absorption, pipe flow) have been studied. It is demonstrated that the model is capable of simulating equilibrium- and non-equilibrium processes important to the process- and petroleum industry.

Page generated in 0.0474 seconds