• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mucin preparation and assembly into new biomaterials

Zhong, Xueying January 2016 (has links)
Mucins, the main macromolecular constituent responsible for gel-forming property in mucus, have great potential to act as new biological hydrogel for medical applications. Click chemistry reaction is an attractive tool to be applied in both bioconjugation and material science to form covalent bonds between molecules. Herein the click chemistry reaction of tetrazine-norbornene ligation was adapted to form click mucin hydrogel using purified commercial available bovine submaxillary mucin (BSM). This study included the characterization, purification and chemical modification of commercial available BSM. The flow filtration purification was chosen after investigating the effectiveness and yields of four different purification strategies. The reactivity of tetrazine and norbornene-functionalized BSM was evident from the formation of robust mucin hydrogel within minutes after mixing the two components. / Mucin, den viktigaste makromolekylära beståndsdel som ansvarar för den gelbildande egenskapen i slem, har stor potential att fungera som en ny biologisk hydrogel för medicinska tillämpningar. Klick-kemi reaktioner är attraktiva verktyg som kan användas i både biokonjugering och materialvetenskap för att bilda kovalenta bindningar mellan molekyler. I detta projekt användes renat kommersiellt köpt bovint submaxillärt mucin (BSM) i en klick-kemi reaktion för att sammanlänka tetrazin och norbornylen. Denna reaktion anpassades för att bilda en mucin hydrogel. Detta projekt inkluderade karakterisering, rening och kemisk modifiering av kommersiellt köpt BSM. Flödesfiltrering valdes som reningsmetod efter undersöking av effektivitet och utbyte av fyra olika reningsstrategier. Reaktiviteten hos tetrazin och norbornen-funktionaliserad BSM var uppenbar från bildandet av robust mucin hydrogel inom några minuter efter de två komponenterna sammanblandats.
2

Transparent paper: Evaluation of chemical modification routes to achieve self-fibrillating fibres / Transparent papper: Utvärdering av kemiska metoder för att tillverka självfibrillerande fibrer

Sandberg Birgersson, Paulina January 2020 (has links)
Transparenta papper tillverkade av cellulosa nanofibriller (CNF), visar stor potential att kunna ersätta petroleumbaserade plaster inom många användningsområden, till exempel för mat- och varuförpackningar. CNF, även känt som nanocellulosa, kombinerar viktiga cellulosaegenskaper, med unika egenskaper hos nanomaterial. Denna kombination av egenskaper möjliggör tillverkning av ett pappers-liknande material som uppvisar både utmärkta mekaniska egenskaper och hög transparens. Användningen av nanocellulosa är dock förknippad med diverse utmaningar, för att materialet ska kunna bli kommersiellt slagkraftigt. En av de främsta utmaningarna är nanocellulosas höga affinitet för vatten och dess höga specifika yta som försvårar hanteringen av materialet. Avvattningen av nanocellulosadispersioner, för att tillverka transparenta papper, kan ta upp till flera timmar. För att övervinna detta hinder, har avdelningen för Fiberteknologi vid KTH tillsammans med BillerudKorsnäs AB, nyligen utvecklat en metodik för att skapa så kallade själv-fibrillerande fibrer (SFFer). Dessa fibrer möjliggör en snabbavvattnad papperstillverkningsprocess med makroskopiska vedbaserade fibrer, som efter tillverkning av pappret omvandlas till ett nanocellulosapapper, det vill säga ett nanopapper. För att erhålla SFFer krävs det att höga koncentrationer av karboxyl- och aldehydgrupper introduceras i cellulosafibrerna. Införandet av dessa funktionella grupper, möjliggör självfibrilleringen då SFFerna utsätts för moderata alkali-koncentrationer. I den ursprungliga studien som utfördes av Gorur m.fl., introducerades de funktionella grupperna med hjälp av sekventiell TEMPO- och periodatoxidation. I detta examensarbete, har alternativa kemiska metoder för att introducera samma kemiska funktionalitet som TEMPO-periodatsystemet undersökts. Huvudsyftet med arbetet är att besvara frågan: Hur påverkar olika kemiska behandlingar vid SFF tillverkningen, de kemiska och fysikaliska egenskaperna hos de modifierade fibrerna, samt de slutgiltiga pappersegenskaperna? För att besvara frågan, preparerades fibrer med liknande karboxyl- och aldehydinnehåll med hjälp av följande tre kemiska metoder: 1) TEMPO- följd av periodatoxidation (detta kommer att användas som referenssystem); 2) periodat- följd av kloritoxidation; 3) karboxymetylering följd av periodatoxidation. Egenskaperna hos fibrerna undersöktes med avseende på aldehyd- och karboxylinnehåll, avvattningspotential och förmåga att självfibrillera. Papper tillverkades med hjälp av en vakuumfiltreringsuppställning och följande egenskaper undersöktes hos pappret: mekaniska egenskaper (dragstyrka, brottsyrka och Young’s modul); optiska (transparens och ytreflektion); samt syrgaspermeabilitet. De erhållna fibrerna från samtliga tre kemiska modifieringar visade på självfibrillerande egenskaper i alkaliska lösningar. Detta beteende styrker hypotesen att ett strategiskt införande av ett högt karboxyl- och aldehydinnehåll leder till självfibrillerande fibrer. Transparenta papper tillverkade av fibrer som utsatts för TEMPO-periodatoxidation samt klorit-periodatoxidation, visade på utmärkta mekaniska egenskaper, hög transparens och bra barriäregenskaper - jämförbara med vad som vanligen kan noteras hos papper tillverkat av nanocellulosa. Samtliga egenskaper förbättrades ytterligare efter fibrillering av fibrerna i papperen. De karboxymetylerade-periodatoxiderade materialet, å andra sidan, uppvisade andra egenskaper jämfört med de två, tidigare nämnda, metoderna. TEMPO-periodat- och periodat-klorit-pappersmassan var halvgenomskinlig och geléliknande, medan den karboxymetylerade-periodatoxiderade massan var mer lik det omodifierade materialet. Detsamma gällde det tillverkade pappret som liknade ett konventionellt papper. Det var inte heller möjligt att åstadkomma en fibrillering av det karboxymetylerade-periodatoxiderade-pappret som utsattes för behandling med alkaliska lösningar. Avvattningstiden vid papperstillverkningen varierad mellan 4 och 60 sekunder, och karboxymetylering-periodat oxidation visade på snabbast avvattningstid. Den förlängda avvattningstiden i jämförelse med studien utförd av Gorur m.fl., tros främst bero på att ett filtreringsmembran med mindre porer användes på vakuumfiltreringsuppställningen, istället för en avvattningsvira som tidigare använts. Sammanfattningsvis så har det visat sig möjligt att tillverka självfibrillerande fibrer med hjälp av samtliga tre undersökta kemiska modifieringar. SFFer möjliggör tillverkning av snabbavvattnade transparenta nanocellulosapapper och visar på så vis på hög potential att kunna ersätta olje-baserade plaster till många förpackningsapplikationer. / Transparent papers made from cellulose nanofibrils (CNF), derived from e.g. wood, show great potential to replace petroleum-based plastics in many application areas, such as packaging for foods and goods. CNF, also known as nanocellulose, combine important cellulose properties with the unique features of nanoscale materials, gaining paper-like materials with outstanding mechanical properties and high transparency. However, nanocellulose faces various challenges in order to make the products commercially competitive. One of the main challenges is accompanied with nanocelluloses’ high affinity for water, which makes processing difficult. Dewatering of a nanocellulose dispersion in order to produce transparent paper may take up to several hours. To overcome this obstacle, the Fibre technology division at KTH Royal Institute of technology and BillerudKorsnäs AB have recently developed a new concept of self-fibrillating fibres (SFFs). This material enables fast-dewatering papermaking using fibres of native dimensions and conversion into nanocellulose after the paper has been prepared. In order to obtain SFFs, proper amounts of charged groups and aldehyde groups need to be introduced into the cellulose backbone. When SFFs are exposed to high alkali concentration, i.e. > pH=10, the fibres self-fibrillates into CNFs. In the original study, the functional groups were introduced through sequential TEMPO oxidation and periodate oxidation. In this work, alternative chemical routes have been examined to prepare SFFs with the same functional groups as introduced with the TEMPO-periodate system. The aim of the thesis has been to answer: how does different chemical routes to prepare transparent nanopaper made from SFFs affect the chemical and physical properties of the modified fibres, as well as the final physical properties of the transparent papers? To answer the question, fibres with similar carboxyl and aldehyde contents were prepared using three chemical routes: 1) TEMPO oxidation followed by periodate oxidation (which was used as reference system); 2) periodate oxidation followed by chlorite oxidation; 3) carboxymethylation followed by periodate oxidation. The properties of the fibres were examined regarding aldehyde and carboxyl content, dewatering potential and self-fibrillating ability. Papers were produced using a vacuum filtration set-up and the properties investigated were the mechanical; tensile strength, strain at failure and Young’s modulus, the optical properties; transparency and haze, as well as the oxygen permeability. In order to investigate the impact of the fibrillation of the papers, the properties were measured for both unfibrillated and fibrillated samples. Furthermore, the gravimetric yield after each chemical modification procedure was examined, as well as the dewatering time during sheet making. Fibres obtained from all three chemistries demonstrated self-fibrillating properties in alkaline solutions. This strengthens the hypothesis that the strategical introduction of aldehydes and carboxyl groups is the main feature responsible for the self-fibrillating ability of the fibres. Transparent papers made from fibres treated through TEMPO-periodate oxidation and periodate-chlorite oxidation showed excellent mechanical, optical and barrier properties, comparable to those seen in nanocellulose papers. The properties were further increased after fibrillation. The carboxymethylated-periodate oxidized fibres, on the other hand, behaved differently from the others. While the TEMPO-periodate and periodate-chlorite pulp was semi-translucent and gel-like, the carboxymethylated-periodate oxidized fibres resembled more the unmodified material. Likewise, the properties of those papers resembled conventional paper and no fibrillationwas experienced after immersing the papers in alkaline solution, according to the same protocol developed for the other two chemistries. The dewatering time during sheet making ranged from 4–60 seconds (carboxymethylation-periodate oxidation showing the fastest dewatering rates). The increased dewatering time compared to earlier studies is believed to mainly be due to the use of a filtration membrane on the vacuum filtration set-up, instead of a metallic wire with larger pores. Overall, SFFs was successfully produced using three different chemical routes. SFFs enables production of fast-dewatering transparent nanocellulose papers that shows the potential to replace oil-based plastics in many packaging applications.
3

Structural modifications of polyester fibres induced by thermal and chemical treatments to obtain high-performance fibres / Strukturella modifieringar av polyesterfibrer inducerade av termiska och kemiska behandlingar för att erhålla högpresterande fibrer

Sharma, Kartikeya January 2021 (has links)
Del A: Polyetylentereftalat fibrer I detta arbete presenteras olika metoder för att framställa monofilament av polyetylentereftalat (PET) (diameter: 30-50 µm) med en radiell gradient. Nyutvecklad Raman-spektroskopiteknik har använts för att kartlägga dessa inducerade radiella gradienter i t.ex. kristallinitet. På liknande sätt har FTIR-ATR teknik modifierats och anpassats för att studera ytegenskaperna hos dessa filament. Industriella filamentprover och egna smältspunna PET-filament har framgångsrikt modifierats med användning av olika termiska och kemiska behandlingar för att erhålla fibrer med förbättrade mekaniska egenskaper och minskad fibrillering. De strukturella förändringar som uppträdde i filamenten på mikroskopisk nivå karakteriserades med bl a infraröd analys, termisk analys, Raman-mikroskopi och röntgenteknik (SAXS och WAXD). Tester av fibrilleringsegenskaper utfördes av industriella partners med egenutvecklad teknik följt av testning av masterbatch-fibrer på en vävningssimulator. Resultaten i laboratorieskala avslöjade fibrernas strukturella anisotropi och radiella gradienter, vilka visade en minskad fibrillering med en viss inverkan på de mekaniska egenskaperna.  Del B: Poly(3-hydroxybutyrat) fibrer Detta arbete presenterar studier av poly(3-hydroxybutyrat) (P3HB) fibrer med reversibla strukturförändringar. Tidigare studier har visat att kristallisationen hos P3HB fibrer i huvudsakligen sker i ortorombisk α-kristallform. Stress-anlöpning resulterar dock i en förändring i beteendet hos P3HB-materialet. Strukturen hos P3HB fibrer består av amorfa och kristallina regioner samt en mesofas. Mesofasen antas vara belägen mellan α-kristallerna och uppträder som starkt orienterade bindningskedjor, s k “tie-chains”. Denna studie syftar till att observera effekten av stress-anlöpning på mesofasen och dess beroende av anlöpningsförhållandena. Förändringarna i mesofasen observeras med en anpassad och polariserad Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR) samt med Differential Scanning Calorimetry (DSC). Resultaten från ATR-FTIR visar att mesofasen är närvarande i spunna och högt stress-anlöpta fibrer, medan den är frånvarande i fibrer som är lågt stress-anlöpta. Mesofasen kan emellertid återupptas i lågt stress-anlöpta fibrer genom dragning. In situ ATR-FTIR användes för att studera förändringarna i materialbeteendet under en dragningsprocess för att observera periodiciteten i förekomsten av mesofasen. Det visade sig att förekomsten av mesofasen är en starkt reversibel process som observeras som en funktion av topparnas intensitet i ATR-FTIR. / Part A: Poly(ethylene terephthalate) fibres In this work, various methods to produce Poly(ethylene terephthalate) (PET) monofilaments (diameter: 30-50µm) with a radial gradient are presented along with a newly developed Raman spectroscopy technique to map these induced radial gradients in e.g. crystallinity. On similar lines, FTIR-ATR technique has been modified and adapted to study the surface properties of these fine filaments. Industrial filament samples and in-house melt-spun PET filaments have been successfully modified using various thermal and chemical treatments to obtain fibres with improved mechanical properties and reduced fibrillation. The structural changes occurring in the filaments on the microscopic level were characterized using infrared analysis, thermal analysis, Raman microscopy and X-ray techniques (SAXS and WAXD) among others. The fibrillation properties were tested by the industrial partners using a technique developed in-house followed by testing of masterbatch fibres on a weaving simulator. Lab-scale results revealed the structural anisotropy and radial gradient maps of the fibres which also demonstrated reduced fibrillation with some impact on mechanical properties also being observed. Part B: Poly(3-hydroxybutyrate) fibres This work presents studies on poly(3-hydroxybutyrate) (P3HB) fibres with reversible structural changes. Previously reported literature shows that crystallization of P3HB fibres takes place majorly in the orthorhombic α-crystal form. However, the stress-annealing results in a change of the material behaviour of P3HB. P3HB fibres compose of amorphous regions, crystalline regions and mesophase in their structure. The mesophase is supposed to be located in between the α-crystals of the material as highly oriented tie-chains. This study targets to observe the effect of stress-annealing of the mesophase present in the P3HB fibres and its dependence on the annealing conditions. The changes in the mesophase content are observed with the help of a highly adapted polarized Attenuated Total Reflection Fourier Transform Infrared spectroscopy (ATR-FTIR) and Differential Scanning Calorimetry (DSC). The presented results from polarized ATR-FTIR show that the mesophase is present in as-spun and high stress annealed fibres while it is absent in fibres annealed with low stress. However, the mesophase can be re-obtained in low stress annealed fibres through tensile drawing. In-situ ATR-FTIR was utilized to study the changes in the material behaviour during a tensile drawing process to observe the cyclicity in the occurrence of the mesophase. It was found that the existence of mesophase is a highly reversible process observed as a function of the peak intensities of the polarized ATR-FTIR spectroscopy.

Page generated in 0.1096 seconds