1 |
Mechanics of cellulose nanopapersMao, Rui January 2017 (has links)
Cellulose nanopaper is a fibrous network composed of cellulose nanofibres connected by hydrogen bonds, which shows pronounced mechanical and physical properties. This thesis investigates the mechanics of cellulose nanopaper from various aspects. First, the fracture properties of cellulose nanopaper were investigated using experimental and modelling approaches. It was found that the fracture strength of notched nanopaper is insensitive to notch length. Cohesive zone models were used to describe the fracture behaviour of notched cellulose nanopaper. Fracture energy was extracted from the cohesive zone models and divided into an energy component consumed by damage in materials and a component related to pull-out and bridging of nanofibres between cracked surfaces which is not facilitated by short nanofibres in nanopaper. Strain mapping revealed a small region of highly localized strain ahead of the notch tip with multiple stress concentration sites which are indicative of a stress delocalization mechanism. Secondly the inelastic deformation mechanisms of cellulose nanopaper were investigated. Results indicate that the inelastic deformation of cellulose nanopaper does not originate from fibre slippage and shearing as often suggested in literature but originates from inelastic deformation in amorphous regions in the cellulose nanofibres itself. It is proposed that this mechanism is associated with segmental motion of cellulose molecules facilitated by the breakage of hydrogen bonds within these amorphous regions. Thirdly, the effect of preparation methods on the mechanical properties of cellulose nanopaper was investigated. The influence of processing parameters such as compaction pressure and temperature was investigated and the mechanical properties of these nanopapers were compared with nanopaper prepared by a suspension casting method. Finally, a micromechanical fibrous network model was used to investigate the parameters that determine the elastic modulus of cellulose nanopaper. The effect of fibre size, waviness and modulus, inter-fibre bond density as well as network density on elastic modulus was investigated.
|
2 |
Cellulose network materials - compression molding and magnetic functionalizationGalland, Sylvain January 2012 (has links)
QC 20120315
|
3 |
Transparent paper: Evaluation of chemical modification routes to achieve self-fibrillating fibres / Transparent papper: Utvärdering av kemiska metoder för att tillverka självfibrillerande fibrerSandberg Birgersson, Paulina January 2020 (has links)
Transparenta papper tillverkade av cellulosa nanofibriller (CNF), visar stor potential att kunna ersätta petroleumbaserade plaster inom många användningsområden, till exempel för mat- och varuförpackningar. CNF, även känt som nanocellulosa, kombinerar viktiga cellulosaegenskaper, med unika egenskaper hos nanomaterial. Denna kombination av egenskaper möjliggör tillverkning av ett pappers-liknande material som uppvisar både utmärkta mekaniska egenskaper och hög transparens. Användningen av nanocellulosa är dock förknippad med diverse utmaningar, för att materialet ska kunna bli kommersiellt slagkraftigt. En av de främsta utmaningarna är nanocellulosas höga affinitet för vatten och dess höga specifika yta som försvårar hanteringen av materialet. Avvattningen av nanocellulosadispersioner, för att tillverka transparenta papper, kan ta upp till flera timmar. För att övervinna detta hinder, har avdelningen för Fiberteknologi vid KTH tillsammans med BillerudKorsnäs AB, nyligen utvecklat en metodik för att skapa så kallade själv-fibrillerande fibrer (SFFer). Dessa fibrer möjliggör en snabbavvattnad papperstillverkningsprocess med makroskopiska vedbaserade fibrer, som efter tillverkning av pappret omvandlas till ett nanocellulosapapper, det vill säga ett nanopapper. För att erhålla SFFer krävs det att höga koncentrationer av karboxyl- och aldehydgrupper introduceras i cellulosafibrerna. Införandet av dessa funktionella grupper, möjliggör självfibrilleringen då SFFerna utsätts för moderata alkali-koncentrationer. I den ursprungliga studien som utfördes av Gorur m.fl., introducerades de funktionella grupperna med hjälp av sekventiell TEMPO- och periodatoxidation. I detta examensarbete, har alternativa kemiska metoder för att introducera samma kemiska funktionalitet som TEMPO-periodatsystemet undersökts. Huvudsyftet med arbetet är att besvara frågan: Hur påverkar olika kemiska behandlingar vid SFF tillverkningen, de kemiska och fysikaliska egenskaperna hos de modifierade fibrerna, samt de slutgiltiga pappersegenskaperna? För att besvara frågan, preparerades fibrer med liknande karboxyl- och aldehydinnehåll med hjälp av följande tre kemiska metoder: 1) TEMPO- följd av periodatoxidation (detta kommer att användas som referenssystem); 2) periodat- följd av kloritoxidation; 3) karboxymetylering följd av periodatoxidation. Egenskaperna hos fibrerna undersöktes med avseende på aldehyd- och karboxylinnehåll, avvattningspotential och förmåga att självfibrillera. Papper tillverkades med hjälp av en vakuumfiltreringsuppställning och följande egenskaper undersöktes hos pappret: mekaniska egenskaper (dragstyrka, brottsyrka och Young’s modul); optiska (transparens och ytreflektion); samt syrgaspermeabilitet. De erhållna fibrerna från samtliga tre kemiska modifieringar visade på självfibrillerande egenskaper i alkaliska lösningar. Detta beteende styrker hypotesen att ett strategiskt införande av ett högt karboxyl- och aldehydinnehåll leder till självfibrillerande fibrer. Transparenta papper tillverkade av fibrer som utsatts för TEMPO-periodatoxidation samt klorit-periodatoxidation, visade på utmärkta mekaniska egenskaper, hög transparens och bra barriäregenskaper - jämförbara med vad som vanligen kan noteras hos papper tillverkat av nanocellulosa. Samtliga egenskaper förbättrades ytterligare efter fibrillering av fibrerna i papperen. De karboxymetylerade-periodatoxiderade materialet, å andra sidan, uppvisade andra egenskaper jämfört med de två, tidigare nämnda, metoderna. TEMPO-periodat- och periodat-klorit-pappersmassan var halvgenomskinlig och geléliknande, medan den karboxymetylerade-periodatoxiderade massan var mer lik det omodifierade materialet. Detsamma gällde det tillverkade pappret som liknade ett konventionellt papper. Det var inte heller möjligt att åstadkomma en fibrillering av det karboxymetylerade-periodatoxiderade-pappret som utsattes för behandling med alkaliska lösningar. Avvattningstiden vid papperstillverkningen varierad mellan 4 och 60 sekunder, och karboxymetylering-periodat oxidation visade på snabbast avvattningstid. Den förlängda avvattningstiden i jämförelse med studien utförd av Gorur m.fl., tros främst bero på att ett filtreringsmembran med mindre porer användes på vakuumfiltreringsuppställningen, istället för en avvattningsvira som tidigare använts. Sammanfattningsvis så har det visat sig möjligt att tillverka självfibrillerande fibrer med hjälp av samtliga tre undersökta kemiska modifieringar. SFFer möjliggör tillverkning av snabbavvattnade transparenta nanocellulosapapper och visar på så vis på hög potential att kunna ersätta olje-baserade plaster till många förpackningsapplikationer. / Transparent papers made from cellulose nanofibrils (CNF), derived from e.g. wood, show great potential to replace petroleum-based plastics in many application areas, such as packaging for foods and goods. CNF, also known as nanocellulose, combine important cellulose properties with the unique features of nanoscale materials, gaining paper-like materials with outstanding mechanical properties and high transparency. However, nanocellulose faces various challenges in order to make the products commercially competitive. One of the main challenges is accompanied with nanocelluloses’ high affinity for water, which makes processing difficult. Dewatering of a nanocellulose dispersion in order to produce transparent paper may take up to several hours. To overcome this obstacle, the Fibre technology division at KTH Royal Institute of technology and BillerudKorsnäs AB have recently developed a new concept of self-fibrillating fibres (SFFs). This material enables fast-dewatering papermaking using fibres of native dimensions and conversion into nanocellulose after the paper has been prepared. In order to obtain SFFs, proper amounts of charged groups and aldehyde groups need to be introduced into the cellulose backbone. When SFFs are exposed to high alkali concentration, i.e. > pH=10, the fibres self-fibrillates into CNFs. In the original study, the functional groups were introduced through sequential TEMPO oxidation and periodate oxidation. In this work, alternative chemical routes have been examined to prepare SFFs with the same functional groups as introduced with the TEMPO-periodate system. The aim of the thesis has been to answer: how does different chemical routes to prepare transparent nanopaper made from SFFs affect the chemical and physical properties of the modified fibres, as well as the final physical properties of the transparent papers? To answer the question, fibres with similar carboxyl and aldehyde contents were prepared using three chemical routes: 1) TEMPO oxidation followed by periodate oxidation (which was used as reference system); 2) periodate oxidation followed by chlorite oxidation; 3) carboxymethylation followed by periodate oxidation. The properties of the fibres were examined regarding aldehyde and carboxyl content, dewatering potential and self-fibrillating ability. Papers were produced using a vacuum filtration set-up and the properties investigated were the mechanical; tensile strength, strain at failure and Young’s modulus, the optical properties; transparency and haze, as well as the oxygen permeability. In order to investigate the impact of the fibrillation of the papers, the properties were measured for both unfibrillated and fibrillated samples. Furthermore, the gravimetric yield after each chemical modification procedure was examined, as well as the dewatering time during sheet making. Fibres obtained from all three chemistries demonstrated self-fibrillating properties in alkaline solutions. This strengthens the hypothesis that the strategical introduction of aldehydes and carboxyl groups is the main feature responsible for the self-fibrillating ability of the fibres. Transparent papers made from fibres treated through TEMPO-periodate oxidation and periodate-chlorite oxidation showed excellent mechanical, optical and barrier properties, comparable to those seen in nanocellulose papers. The properties were further increased after fibrillation. The carboxymethylated-periodate oxidized fibres, on the other hand, behaved differently from the others. While the TEMPO-periodate and periodate-chlorite pulp was semi-translucent and gel-like, the carboxymethylated-periodate oxidized fibres resembled more the unmodified material. Likewise, the properties of those papers resembled conventional paper and no fibrillationwas experienced after immersing the papers in alkaline solution, according to the same protocol developed for the other two chemistries. The dewatering time during sheet making ranged from 4–60 seconds (carboxymethylation-periodate oxidation showing the fastest dewatering rates). The increased dewatering time compared to earlier studies is believed to mainly be due to the use of a filtration membrane on the vacuum filtration set-up, instead of a metallic wire with larger pores. Overall, SFFs was successfully produced using three different chemical routes. SFFs enables production of fast-dewatering transparent nanocellulose papers that shows the potential to replace oil-based plastics in many packaging applications.
|
4 |
Nanofiber networks, aerogels and biocomposites based on nanofibrillated cellulose from woodSehaqui, Houssine January 2011 (has links)
Nanofibrillated cellulose (NFC) from wood is an interesting material constituent of high strength and high aspect ratio, which easily forms networks through interfibril secondary bonding including hydrogen bonds. This has been exploited in preparation of new materials, which extend the range of properties for existing cellulosic materials. The objective is to explore processing-structure and structure-property relationships in NFC materials. Dense networks of NFC, referred to as “nanopaper” having a random-in-the-plane orientation of the fibrils have been successfully prepared by a papermaking-like process involving vacuum filtration and water evaporation using laboratory papermaking equipment. Large, flat and transparent nanopaper sheets have thus been prepared in a relatively short time. Using the same preparation route, NFC was used to reinforce pulped wood fibers in dense network structures. NFC networks formed in the pore space of the wood fiber network give an interesting hierarchical structure of reduced porosity. These NFC/wood fiber biocomposites have greater strength, greater stiffness and greater strain-to-failure than reference networks of wood fibers only. In particular, the work to fracture (area under the stress-strain curve) is doubled with an NFC content of only 2%. The papermaking preparation route was extended to prepare nanocomposites of high NFC content with a cellulose derivative matrix (hydroxyethyl cellulose, HEC) strongly associated to the NFC. Little HEC was lost during filtration. The NFC/HEC composites have high work to fracture, higher than that of any reported cellulose composite. This is related to NFC network characteristics, and HEC properties and its nanoscale distribution and association with NFC. Higher porosity NFC nanopaper networks of high specific surface area were prepared by new routes including supercritical drying, tert-butanol freeze-drying and CO2 evaporation. Light-weight porous nanopaper materials resulted with mechanical properties similar to thermoplastics but with a much lower density and a specific surface area of up to 480 m2/g. Freeze-drying of hydrocolloidal NFC dispersions was used to prepare ultra-high porosity foam structures. The NFC foams have a cellular foam structure of mixed open/closed cells and “nanopaper” cell wall. Control of density and mechanical properties was possible by variation of NFC concentration in the dispersion. A cellulose I foam of the highest porosity ever reported (99.5%) was prepared. The NFC foams have high ductility and toughness and may be of interest for applications involving mechanical energy absorption. Freeze-drying of NFC suspended in tert-butanol gave highly porous NFC network aerogels with a large surface area. The mechanical behavior was significantly different from NFC foams of similar density due to differences in deformation mechanisms for NFC nanofiber networks. / QC 20110406
|
5 |
Processing, Characterization And Performance Of Carbon Nanopaper Based Multifunctional NanocompositesLiang, Fei 01 January 2012 (has links)
Carbon nanofibers (CNFs) used as nano-scale reinforcement have been extensively studied since they are capable of improving the physical and mechanical properties of conventional fiber reinforced polymer composites. However, the properties of CNFs are far away from being fully utilized in the composites due to processing challenges including the dispersion of CNFs and the viscosity increase of polymer matrix. To overcome these issues, a unique approach was developed by making carbon nanopaper sheet through the filtration of well-dispersed carbon nanofibers under controlled processing conditions, and integrating carbon nanopaper sheets into composite laminates using autoclave process and resin transfer molding (RTM). This research aims to fundamentally study the processing-structure-property-performance relationship of carbon nanopaper-based nanocomposites multifunctional applications: a) Vibrational damping. Carbon nanofibers with extremely high aspect ratios and low density present an ideal candidate as vibrational damping material; specifically, the large specific area and aspect ratio of carbon nanofibers promote significant interfacial friction between carbon nanofiber and polymer matrix, causing higher energy dissipation in the matrix. Polymer composites with the reinforcement of carbon nanofibers in the form of a paper sheet have shown significant vibration damping improvement with a damping ratio increase of 300% in the nanocomposites. b) Wear resistance. In response to the iv observed increase in toughness of the nanocomposites, tribological properties of the nanocomposite coated with carbon nanofiber/ceramic particles hybrid paper have been studied. Due to high strength and toughness, carbon nanofibers can act as microcrack reducer; additionally, the composites coated with such hybrid nanopaper of carbon nanofiber and ceramic particles shown an improvement of reducing coefficient of friction (COF) and wear rate. c) High electrical conductivity. A highly conductive coating material was developed and applied on the surface of the composites for the electromagnetic interference shielding and lightning strike protection. To increase the conductivity of the carbon nanofiber paper, carbon nanofibers were modified with nickel nanostrands. d) Electrical actuation of SMP composites. Compared with other methods of SMP actuation, the use of electricity to induce the shape-memory effect of SMP is desirable due to the controllability and effectiveness. The electrical conductivity of carbon fiber reinforced SMP composites can be significantly improved by incorporating CNFs and CNF paper into them. A vision-based system was designed to control the deflection angle of SMP composites to desired values. The funding support from National Science Foundation and FAA Center of Excellence for Commercial Space Transportation (FAA COE CST) is acknowledged.
|
6 |
Processing, Optimization And Characterization Of Fire Retardant Polymer NanocompositesZhuge, Jinfeng 01 January 2010 (has links)
Fiber reinforced polymeric composites (FRPC) have superior physical and mechanical properties, such as high specific strength, light weight, and good fatigue and corrosion resistance. They have become competitive engineering materials to replace conventional metallic materials in many important sectors of industry such as aircraft, naval constructions, ships, buildings, transportation, electrical and electronics components, and offshore structures. However, since FRPC contain polymer matrix, the polymer composites and their structures are combustible. FRPC will degrade, decompose, and sometimes yield toxic gases at high temperature or subject to fire conditions. The objective of this study is to design and optimize fire retardant nanopaper by utilizing the synergistic effects of different nanoparticles. A paper-making technique that combined carbon nanofiber, nanoclay, polyhedral oligomeric silsesquioxanes, graphite nanoplatelet, and ammonium polyphosphate into self-standing nanopaper was developed. The fire retardant nanopaper was further incorporated into the polymer matrix, in conjunction with continuous fiber mats, through resin transfer molding process to improve fire retardant performance of structural composites. The morphology, thermal stability, and flammability of polymer composites coated with hybrid nanopaper were studied. The cone calorimeter test results indicated that the peak heat release rate of the composites coated with a CNF-clay nanopaper was reduced by 60.5%. The compact char material formed on the surface of the residues of the CNF-clay nanopaper was analyzed to understand the fire retardant mechanism of the nanopaper. The financial support from Office of Naval Research is acklowdged.
|
7 |
Effects of Carbon Nanoparticles on Properties of Thermoset Polymer SystemsMovva, Siva Subramanyam 25 October 2010 (has links)
No description available.
|
8 |
Cellulose nanopapers with improved preparation time, mechanical properties, and water resistanceSethi, J. (Jatin) 11 December 2018 (has links)
Abstracts
Cellulose nanopapers are the strongest polymeric material known to us, and in the near future, they are likely to be a backbone of numerous functional materials. Cellulose nanopapers have gained much attention due to qualities such as their environmentally friendly nature, renewable raw material source and biodegradability. Additionally, they offer an industrially adaptable, water-based processing route, which is similar to current paper production. Functionally, besides being tougher than any known plastic, cellulose nanopapers remain foldable like a paper. Despite their fascinating properties, cellulose nanopapers are still far from commercialisation – mainly due to two obstacles. Firstly, it can take up to hours to prepare a nanopaper due to poor draining of cellulosic nanofibres. Secondly, cellulose nanopapers have extremely poor water and humidity resistance, as up to 90% of their stiffness is lost in the presence of water.
The purpose of this dissertation is to address both obstacles and suggest an eco-friendly yet industrially relevant solution. Two approaches are employed: increasing the hydrophobicity of cellulose nanofibres with lactic acid and ultrasonication (Paper I and II), and combining cellulose nanofibres with hydrophobic materials, such as polyurethane (Paper III) and lignin-rich entities (Paper IV). By using these methods, the preparation time was improved by 75% (Paper II) and by 70% (Paper IV) respectively. All reported nanopapers were significantly more tolerant of water and moisture than the reference nanopaper. The mechanical properties were also improved in Paper I and IV. Additionally, all reported nanopapers were thermally stable. This thesis also discusses the importance of quick draining in cellulose nanofibre-reinforced paper products. The results of this study are likely to aid the commercialisation of cellulose nanopapers in practical applications and the use of cellulose nanofibres in other materials, such as reinforcing paperboards. All methods used in this thesis are water-based. / Tiivistelmä
Selluloosapohjaiset nanopaperit ovat lujimpia tunnettuja polymeerimateriaaleja ja lähitulevaisuudessa niiden voidaan odottaa luovan perustan useille funktionaalisille materiaaleille. Nanopaperit ovat saaneet paljon huomiota ympäristöystävällisyytensä, uusiutuvan raaka-aineensa ja biohajoavuutensa ansiosta. Lisäksi niiden valmistusprosessi on vesipohjainen ja samankaltainen kuin tavallisen paperin valmistukseen käytetty teollinen prosessi. Käyttöominaisuuksiltaan ne ovat erinomaisia, sillä vaikka niiden sitkeys on parempi kuin tunnetuilla muoveilla, ovat ne silti paperin tavoin taiteltavia. Kiehtovista ominaisuuksistaan huolimatta selluloosapohjaiset nanopaperit ovat kuitenkin vielä kaukana kaupallistamisesta ja tähän vaikuttavat pääosin kaksi tekijää. Tärkein syy on selluloosananokuitujen kuivattamisen ja näin ollen nanopaperin muodostamisen vaatima huomattavan pitkä aika. Nykyisillä menetelmillä nanopaperin valmistaminen kestää useita tunteja. Toinen syy on niiden erittäin huono veden- ja kosteudenkestävyys. Ne menettävät jopa 90 % jäykkyydestään veden vaikutuksesta, mikä rajoittaa niiden käyttöä kosteissa ja vesiroiskeille alttiissa kohteissa.
Tämän väitöskirjatutkimuksen päätavoitteena on löytää ekologisesti kestävä ja teollisuudessa hyödynnettävissä oleva menetelmä molempien edellä mainittujen ongelmien ratkaisemiseksi. Työssä noudatetaan kahta eri lähestymistapaa: lisätään selluloosananokuitujen hydrofobisuutta maitohapon ja ultrasonikoinnin avulla (Artikkelit I ja II), ja yhdistetään selluloosananokuituihin hydrofobisia materiaaleja, kuten polyuretaania (PU) (Artikkeli III) ja ligniinipitoisia yhdisteitä (Artikkeli IV). Näitä menetelmiä käyttämällä valmistusaikaa saatiin lyhennettyä 75 % (Artikkeli II) ja 70 % (Artikkeli IV). Kaikki valmistetut nanopaperit olivat huomattavasti veden- ja kosteudenkestävämpiä kuin verrokkinäytteet sekä osoittivat lämpöstabiiliutta. Lisäksi mekaanisia ominaisuuksia saatiin parannettua Artikkeleissa I ja IV. Tässä työssä käsitellään myös nopean kuivattamisen tärkeyttä selluloosananokuitulujitteisten paperituotteiden valmistuksessa. Saadut tulokset todennäköisesti edistävät selluloosapohjaisten nanopaperien kaupallistamista ja selluloosananokuitujen hyödyntämistä esimerkiksi kartongin lujitemateriaalina. Kaikki työssä käytetyt menetelmät ovat vesipohjaisia.
|
9 |
Numerical simulation of fracture of a nano-paper coated e-glass/polyester composite with thermal damageGraham, Zachary 01 May 2013 (has links)
Aerospace research for next-generation travel increasingly focuses on the use of advanced composites to reduce weight and cost while retaining strength. One subset of materials with great potential is based on the combination of resin matrix and glass-fiber reinforcement. This research explores the application of a candidate nanopaper coating with a given composite. Prior research applied a set of given heat fluxes to the top surface of the composite for a set of given periods of time, and subsequently performed a 3-point flexural test to determine the elastic modulus for both the coated and uncoated composite for all of the combinations of heat flux and time. A finite element (FE) model is developed using the ANSYS general purpose finite element analysis (FEA) software that models the degradation in strength/stiffness properties based on heating condition and with the goal of predicting cracking using the element death feature in ANSYS. This thesis describes the prior research suggesting both the need for and novelty of this model, and the procedures used to form the model. The loading conditions of the 3-point flexural test are replicated, and four measures of accuracy are developed based on the force versus displacement curve of the test and the FE model. It is envisioned that continuum-level models developed as a part of these research be applied for design of next-generation space components These measurements are used to verify the FE model, and this model is then employed to extrapolate beyond the context of experimental conditions.
|
Page generated in 0.0608 seconds