1 |
Nonlinear fault detection and diagnosis using Kernel based techniques applied to a pilot distillation colomnPhillpotts, David Nicholas Charles 15 January 2008 (has links)
Fault detection and diagnosis is an important problem in process engineering. In this dissertation, use of multivariate techniques for fault detection and diagnosis is explored in the context of statistical process control. Principal component analysis and its extension, kernel principal component analysis, are proposed to extract features from process data. Kernel based methods have the ability to model nonlinear processes by forming higher dimensional representations of the data. Discriminant methods can be used to extend on feature extraction methods by increasing the isolation between different faults. This is shown to aid fault diagnosis. Linear and kernel discriminant analysis are proposed as fault diagnosis methods. Data from a pilot scale distillation column were used to explore the performance of the techniques. The models were trained with normal and faulty operating data. The models were tested with unseen and/or novel fault data. All the techniques demonstrated at least some fault detection and diagnosis ability. Linear PCA was particularly successful. This was mainly due to the ease of the training and the ability to relate the scores back to the input data. The attributes of these multivariate statistical techniques were compared to the goals of statistical process control and the desirable attributes of fault detection and diagnosis systems. / Dissertation (MEng (Control Engineering))--University of Pretoria, 2008. / Chemical Engineering / MEng / Unrestricted
|
2 |
Sampling Inequalities and Applications / Sampling Ungleichungen und AnwendungenRieger, Christian 28 March 2008 (has links)
No description available.
|
3 |
Apprentissage statistique avec le processus ponctuel déterminantalVicente, Sergio 02 1900 (has links)
Cette thèse aborde le processus ponctuel déterminantal, un modèle probabiliste qui capture
la répulsion entre les points d’un certain espace. Celle-ci est déterminée par une matrice
de similarité, la matrice noyau du processus, qui spécifie quels points sont les plus similaires
et donc moins susceptibles de figurer dans un même sous-ensemble. Contrairement à la sélection
aléatoire uniforme, ce processus ponctuel privilégie les sous-ensembles qui contiennent
des points diversifiés et hétérogènes. La notion de diversité acquiert une importante grandissante
au sein de sciences comme la médecine, la sociologie, les sciences forensiques et les
sciences comportementales. Le processus ponctuel déterminantal offre donc une alternative
aux traditionnelles méthodes d’échantillonnage en tenant compte de la diversité des éléments
choisis. Actuellement, il est déjà très utilisé en apprentissage automatique comme modèle de
sélection de sous-ensembles. Son application en statistique est illustrée par trois articles. Le
premier article aborde le partitionnement de données effectué par un algorithme répété un
grand nombre de fois sur les mêmes données, le partitionnement par consensus. On montre
qu’en utilisant le processus ponctuel déterminantal pour sélectionner les points initiaux de
l’algorithme, la partition de données finale a une qualité supérieure à celle que l’on obtient
en sélectionnant les points de façon uniforme. Le deuxième article étend la méthodologie
du premier article aux données ayant un grand nombre d’observations. Ce cas impose un
effort computationnel additionnel, étant donné que la sélection de points par le processus
ponctuel déterminantal passe par la décomposition spectrale de la matrice de similarité qui,
dans ce cas-ci, est de grande taille. On présente deux approches différentes pour résoudre ce
problème. On montre que les résultats obtenus par ces deux approches sont meilleurs que
ceux obtenus avec un partitionnement de données basé sur une sélection uniforme de points.
Le troisième article présente le problème de sélection de variables en régression linéaire et
logistique face à un nombre élevé de covariables par une approche bayésienne. La sélection
de variables est faite en recourant aux méthodes de Monte Carlo par chaînes de Markov,
en utilisant l’algorithme de Metropolis-Hastings. On montre qu’en choisissant le processus
ponctuel déterminantal comme loi a priori de l’espace des modèles, le sous-ensemble final de
variables est meilleur que celui que l’on obtient avec une loi a priori uniforme. / This thesis presents the determinantal point process, a probabilistic model that captures
repulsion between points of a certain space. This repulsion is encompassed by a similarity
matrix, the kernel matrix, which selects which points are more similar and then less likely to
appear in the same subset. This point process gives more weight to subsets characterized by
a larger diversity of its elements, which is not the case with the traditional uniform random
sampling. Diversity has become a key concept in domains such as medicine, sociology,
forensic sciences and behavioral sciences. The determinantal point process is considered
a promising alternative to traditional sampling methods, since it takes into account the
diversity of selected elements. It is already actively used in machine learning as a subset
selection method. Its application in statistics is illustrated with three papers. The first
paper presents the consensus clustering, which consists in running a clustering algorithm
on the same data, a large number of times. To sample the initials points of the algorithm,
we propose the determinantal point process as a sampling method instead of a uniform
random sampling and show that the former option produces better clustering results. The
second paper extends the methodology developed in the first paper to large-data. Such
datasets impose a computational burden since sampling with the determinantal point process
is based on the spectral decomposition of the large kernel matrix. We introduce two methods
to deal with this issue. These methods also produce better clustering results than consensus
clustering based on a uniform sampling of initial points. The third paper addresses the
problem of variable selection for the linear model and the logistic regression, when the
number of predictors is large. A Bayesian approach is adopted, using Markov Chain Monte
Carlo methods with Metropolis-Hasting algorithm. We show that setting the determinantal
point process as the prior distribution for the model space selects a better final model than
the model selected by a uniform prior on the model space.
|
Page generated in 0.0813 seconds