• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 58
  • 8
  • 4
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 87
  • 87
  • 69
  • 35
  • 23
  • 21
  • 17
  • 16
  • 15
  • 15
  • 13
  • 10
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Studies in Applied and Fundamental Quantum Mechanics: Duality, Tomography, Cryptography and Holography

Bolduc, Eliot January 2013 (has links)
This thesis encompasses a collection of four pieces of work on wave-particle duality, weak-value-assisted tomography, high-dimensional quantum key distribution, and phase-only holograms. In the work on duality, we derive a novel duality relation, and we sketch a thought experiment that leads to an apparent violation of the duality principle. In the project on tomography, we perform a state determination procedure with weak values, and we study the accuracy of the method. In the quantum cryptography project, we optimize an experimental implementation of a quantum cryptography system where two parties share information with the orbital angular momentum degree of freedom of entangled photon pairs. Finally, in the work on holography, we establish the exact solution to the encryption of a phase-only hologram, and experimentally demonstrate its application to spatial light modulators. The four projects provide improvements on measurement procedures in applied and fundamental quantum mechanics.
52

Criptografia quântica com estados comprimidos da luz / Quantum cryptography with squeezed coherent states of light

Souza, Douglas Delgado de, 1987- 04 June 2011 (has links)
Orientador: Antonio Vidiella Barranco / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-18T11:59:35Z (GMT). No. of bitstreams: 1 Souza_DouglasDelgadode_M.pdf: 7468816 bytes, checksum: aba803ba35bfdb89aa8428cc3b6862d3 (MD5) Previous issue date: 2011 / Resumo: Neste trabalho, introduzimos um protocolo para a distribuição quântica de chaves (QKD) que faz uso de três estados comprimidos da luz: dois estados de bit, utilizados para a transmissão de informação, e um estado de Isca, utilizado para a detecção de espionagem. Seu desenvolvimento teve como base o protocolo de P. Horak (H04) para estados comprimidos, que por sua vez consiste de uma generalização do protocolo de R. Namiki e T. Hirano (NH03) para estados coerentes. Analisamos sua segurança considerando dois tipos de ataques: ataque por medida simultânea das quadraturas e ataque por troca do canal por canal superior. Para esta análise utilizamos uma descrição em termos da função de Wigner, obtendo a partir dela distribuições de probabilidade conjuntas e marginais. Da distribuição para os estados de Isca definimos uma Medida da Espionagem M, e discutimos sua utilidade para o cálculo da taxa de informação vazada para Eva em cada ataque. Por fim, para o ataque por troca do canal, analisamos o efeito da introdução de um limiar de pós-seleção sobre as informações de Bob e Eva, demonstrando que maiores distâncias de transmissão (menores transmissividades) podem ser suportadas pelo protocolo com o aumento deste parâmetro, ao custo de menores taxas de aceitação de bits / Abstract: In this work, we introduce a new protocol for Quantum Key Distribution which makes use of three squeezed coherent states of light: two bit states, used for transmission of information, and a Decoy state, used for eavesdropping detection. Its development was based on the protocol for squeezed coherent states suggested by P. Horak [39], which in turn consists of a generalization of the protocol by R. Namiki and T. Hirano [38] for coherent states. We analyze its security by considering two kinds of attack: simultaneous quadrature measurement attack and superior channel attack. For this analysis we use a description in terms of the Wigner function, obtaining from it some joint and marginal probability distributions. From the distribution for the Decoy states we define an Eavesdropping Measure M, and discuss its usefulness in calculating the rate of information leaked to Eve in each attack. Finally, for the superior channel attack, we analyze the influence of a post-selection threshold over the Bob and Eve information, showing that, by raising this parameter, larger transmission distances (smaller transmittivities) can be handled by the protocol at the expense of lower bit acceptance rates / Mestrado / Física Geral / Mestre em Física
53

Cryptographie quantique et applications spatiales / Quantum cryptography and applications to space communications

Amblard, Zoé 05 December 2016 (has links)
Cette thèse réalisée en collaboration avec l’entreprise Thales Alenia Space, qui étudie les protocoles de cryptographie quantique à n parties en dimension d, a un double objectif. D’une part, nous analysons la famille des inégalités de Bell homogènes introduites par par François Arnault dans [1] afin de proposer des outils théoriques pour leur compréhension et leur implémentation à l’aide d’appareils optiques appelés ditters dont une représentation mathématique est donnée par Zukowski et al. dans [2]. Avec ces outils théoriques, nous proposons de nouveaux protocoles cryptographiques en dimension d qui sont décrits dans [3] et qui utilisent ces inégalités. D’autre part, nous étudions les avantages et inconvénients de la cryptographie quantique pour la protection des communications avec un satellite LEO en environnement bruité dans différents scénarios et, pour chacun de ces scénarios, nous concluons sur l’intérêt d’utiliser des protocoles de Distribution Quantique de Clés. / This thesis in collaboration with Thales Alenia Space studies quantum cryptographic protocols for n parties in dimension d. We first analyze the family of Bell inequalities called homogeneous Bell inequalities introduces by François Arnault in [1] and we construct several theoretical tools for a better understanding of these inequalities. With these tools, we show how to implement the measurements required to test these inequalities by using optical devices calleds multiport beamsplitters and described by Zukowski et al. in [2]. We use these devices to construct new cryptographic protocols in dimension d called hdDEB which we describe in [3]. Then, we study advantages and drawbacks of the use of quantum cryptography to protect satellite links in a noisy environment. We consider several scenarios with LEO satellites and, for each of them, we conclude about the interest of using Quantum Key Distribution protocols.
54

QUANTUM KEY DISTRIBUTION USING FPGAS AND LEDS

Gutha, Akash January 2020 (has links)
No description available.
55

Efficient Constructions for Deterministic Parallel Random Number Generators and Quantum Key Distribution

Ritchie, Robert Peter 22 April 2021 (has links)
No description available.
56

INVESTIGATING THE FEASIBILITY OF QUANTUM KEY DISTRIBUTION FOR NUCLEAR REACTOR COMMUNICATIONS

Konstantinos Gkouliaras (16646985) 07 August 2023 (has links)
<p>Recent advancements in reactor designs offer new capabilities, not seen before. To increase flexibility and reduce operation and maintenance costs, modern reactor designs (e.g., microreactors, SMRs) embrace new technologies which would allow revolutionary operational concepts such as remote monitoring and control, semiautonomous or near-autonomous operation, and two-way communications for real-time integration with the upcoming smart electric grid. Such a continuous data transmission from and towards a reactor site could introduce vulnerabilities and necessitates the prioritization of cybersecurity. However, classical IT-based encryption schemes have been shown to be vulnerable to cyberattacks, as they rely on computational complexity. It has been shown (e.g., Shor’s algorithm) that with the advent of quantum computing practically any asymmetric encryption could be broken within hours. To address this challenge, this thesis explores the feasibility of applying Quantum Key Distribution (QKD) to nuclear reactor communications. QKD is a physical-layer security scheme relying on the laws of quantum mechanics instead of mathematical complexity. QKD promises not only unconditional security but also detection of potential intrusion, as it allows the communication parties to become aware of eavesdropping. To test the proposed hypothesis, a novel simulation tool (NuQKD) was developed to allow for real-time simulation of the BB84 QKD protocol between two remote terminals. NuQKD offers new capabilities not currently available in other simulation tools including true random numbers, modeling of equipment imperfections, and modeling of fiber optic and free space quantum channels. NuQKD was rigorously benchmarked against analytical, numerical and experimental data. Then, a reference nuclear reactor scenario is proposed that is generic enough to cover various communications links internal and external to a reactor site. Using NuQKD, the internal and external data links of the nuclear reactor reference scenario were modeled, and the receiver operating characteristics (ROC) curves were calculated for various QKD configurations. It was found that that QKD can provide adequate key rates with low false alarm rates and has the potential of addressing nuclear industry’s high standards of confidentiality up to 100 km distance using fiber optic. As a result, QKD is shown to be compatible with the existing and future point-to-point reactor communication architectures. These results motivate further study of quantum communications for nuclear reactors.</p>
57

The Physics of Spatially Twisted Nematic Liquid Crystals

Sit, Alicia 24 October 2023 (has links)
When nematic liquid crystals are placed between parallel glass plates with differing alignment directions, the bulk will twist in order to match the boundary conditions. This phenomenon of a twisted cell has been used extensively for the development of everyday liquid-crystal displays. However, there has been limited study of the twisted cell beyond the 90-degree twist case. In this thesis, I explore the behaviour of inhomogeneous liquid-crystal devices where the front and back alignment layers are uniquely and spatially patterned. This creates a non-symmetric device which can act on light differently depending on the orientation of the device and an externally applied voltage. The effect on the polarization of light is theoretically modelled using Jones matrices, and elastic continuum theory is employed to fully understand how the twist and tilt distributions of the liquid crystals change with field strength. Different pattern configurations were fabricated, tested, and characterized, revealing the complex behaviour that occurs with an applied electric field. Liquid-crystal devices provide a bespoke way of tailoring the spatial distribution of light and photons. A set of quantum key distribution experiments through underwater channels, leveraging these devices to encode information on structured photons, is also presented.
58

PARALLEL CLUSTER FORMATION FOR SECURED COMMUNICATION IN WIRELESS AD HOC NETWORKS

SHAH, VIVEK January 2004 (has links)
No description available.
59

Nonlinear Optical Properties of Traditional and Novel Materials

Krupa, Sean J. 21 September 2016 (has links)
No description available.
60

A Classical-Light Attack on Energy-Time Entangled Quantum Key Distribution, and Countermeasures

Jogenfors, Jonathan January 2015 (has links)
Quantum key distribution (QKD) is an application of quantum mechanics that allowstwo parties to communicate with perfect secrecy. Traditional QKD uses polarization of individual photons, but the development of energy-time entanglement could lead to QKD protocols robust against environmental effects. The security proofs of energy-time entangled QKD rely on a violation of the Bell inequality to certify the system as secure. This thesis shows that the Bell violation can be faked in energy-time entangled QKD protocols that involve a postselection step, such as Franson-based setups. Using pulsed and phase-modulated classical light, it is possible to circumvent the Bell test which allows for a local hidden-variable model to give the same predictions as the quantum-mechanical description. We show that this attack works experimentally and also how energy-time-entangled systems can be strengthened to avoid our attack.

Page generated in 0.206 seconds