• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1216
  • 352
  • 267
  • 160
  • 73
  • 72
  • 52
  • 46
  • 23
  • 19
  • 16
  • 16
  • 16
  • 16
  • 16
  • Tagged with
  • 2784
  • 1050
  • 523
  • 417
  • 336
  • 315
  • 274
  • 272
  • 264
  • 243
  • 216
  • 213
  • 209
  • 201
  • 199
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Characterization of NimA-related Kinase 10 (NEK10): A Role in Checkpoint Control

Moniz, Larissa 31 August 2010 (has links)
Deregulation of the cell cycle is a hallmark of neoplastic transformation and plays a central role in both the initiation and progression of cancer. Members of the NimA-related kinase (NEK) family of protein kinases are emerging as important players in regulation of the eukaryotic cell cycle during normal cell cycle progression and checkpoint activation in response to genotoxic stresses. The focus of this thesis is NEK10, a previously uncharacterized member of the NEK family. While little is known about the biology of NEK10, recent cancer genomics studies have identified NEK10 as a candidate susceptibility gene at chromosome 3p24 in cancer. Work herein describes a role for NEK10 in the cellular response to ultraviolet (UV) irradiation. NEK10 was required for the activation of ERK1/2 signaling upon UV irradiation, but not in response to mitogens, such as the epidermal growth factor. NEK10 interacted with Raf and MEK and enhanced MEK activity through a novel mechanism involving MEK autoactivation. Significantly, appropriate maintenance of the G2/M checkpoint following UV irradiation required NEK10 expression and ERK1/2 activation. In support of a conserved role for NEK10 in the cellular response to UV irradiation, nekl-4, the NEK10 C.elegans homologue, affected embryonic sensitivity to UV-irradiation. In search of regulatory inputs into NEK10, using mass spectrometry, our laboratory identified 19 distinct sites of NEK10 phosphorylation. Characterization of a number of these sites revealed a role for intermolecular autophosphorylation in achieving full NEK10 catalytic activity through activation loop phosphorylation on S684 and S688. Further, a C-terminal phosphorylation site on NEK10, S933, was found to be a 14-3-3 binding site, and was essential for NEK10 cytoplasmic to nuclear translocation following UV irradiation. Taken together, my studies have discovered a role for NEK10 in the engagement of the G2/M cell cycle checkpoint and provided a mechanistic insight into the relationship between NEK10 and the Raf/MEK/ERK cascade, and the control of NEK10 subcellular localization. This work will serve as a foundation for future studies aimed at understanding the molecular mechanism of NEK10 action and its function in development and tumourigenesis.
242

Bioengineering of a TAT-conjugated Peptide to Modulate the Activity of Glycogen Synthase Kinase-3 in Adult and Embryonic Stem Cells

Manceur, Aziza 16 March 2011 (has links)
The intracellular delivery of molecules to modulate signaling pathways and gene expression is a powerful approach to control stem cell fate decision. For applications in gene therapy and regenerative medicine, the use of genetic material and viral vectors raise concerns because stem cells persist throughout life, and long-term effects of uncontrolled genetic modifications could affect the cellular progeny. An alternative is to deliver directly peptides or proteins using cell-permeable peptides (CPPs) which have the ability of crossing the plasma membrane and carrying cargos into cells. CPPs can therefore be used to deliver factors to direct stem cells proliferation, survival and differentiation. This thesis describes an approach to control stem cell fate based on the delivery of a CPP-conjugated bioactive peptide. A first significant contribution from this work is the development of a flow cytometric assay to accurately quantify the uptake of a panel of CPPs. This study revealed that HIV-transactivator of transcription (TAT) and Antennapedia (Antp) offered the highest level of translocation in different cell types. The uptake was improved by treating the cells with a single, low-voltage electrical pulse that selectively enhances the amount of TAT-conjugated peptides and proteins delivered by at least an order of magnitude, without causing cellular toxicity or apoptosis. Subsequently, flow cytometry, confocal microscopy, capillary electrophoresis and mass spectrometry were used to examine the intracellular fate of TAT-conjugated peptides in order to define the parameters that limit their bioactivity and point to specific sequence modifications that can improve their efficacy. The advances described in this thesis were applied to the development of TAT-eIF2B, a peptide-inhibitor of glycogen synthase kinase-3 (GSK-3). TAT-eIF2B was found to be specific for GSK-3 and had a significant positive effect on the formation of neurospheres in embryonic stem cell cultures and on the survival of myeloid progenitors in cytokine-starved fetal liver cell cultures. On the other hand, GSK-3 inhibition reduced the number of neurospheres generated by human olfactory neuroepithelium cells due to lower proliferation and increased neuronal differentiation. In summary, this work describes the development of a peptide-based technology to deliver bioactive cargoes in cells, and it demonstrates its utility for modulating the activity of a master regulator of stem cell fate decision.
243

Gene Duplication and Functional Expansion in the Plant Shikimate Kinase Superfamily

Fucile, Geoffrey 30 August 2011 (has links)
The shikimate pathway links carbohydrate metabolism to the biosynthesis of the aromatic amino acids and an enormous variety of aromatic compounds with essential functions in all kingdoms of life. Aromatic compounds derived from the plant shikimate pathway have substantial biotechnological value and many are essential to the diet of metazoans whose genomes do not encode shikimate pathway enzymes. Despite its importance to the physiology of plants and human health the regulatory mechanisms of the plant shikimate pathway are not well understood. Shikimate kinase (SK) genes encode an intermediate step in the shikimate pathway and were previously implicated in regulation of the plant shikimate pathway. The distribution of SK genes in higher plants was resolved using phylogenetic and biochemical methods. The two SK isoforms of Arabidopsis thaliana, AtSK1 and AtSK2, were functionally characterized. AtSK1 expression is induced by heat stress and the recombinant enzyme was shown to form a homodimer which is important for maintaining the stability and activity of the enzyme at elevated temperatures. The crystal structure of AtSK2, the first reported plant SK structure, identified structural features unique to plant SKs which may perform important regulatory functions. The resolution of bona fide SKs in higher plants led to the discovery of two novel neofunctionalized homologs - Shikimate Kinase-Like 1 (SKL1) and SKL2. These novel genes evolved from SK gene duplicates over 400 million years ago and are found in all major extant angiosperm lineages, suggesting they were important in the development of biological properties required by land plants. The description of albino and variegated skl1 mutants in Arabidopsis thaliana implicate the SKL1 gene product as an important regulator of chloroplast biogenesis. Functional assays were attempted to determine the biochemical function of SKL1 and recombinant constructs of the Arabidopsis thaliana SKL1 protein were crystallized towards structure determination. The results of this thesis further our understanding of the organization and regulation of the plant shikimate pathway. Furthermore, the discovery of SKL1 may yield important insights into chloroplast biogenesis and function. The evolution of the plant SK superfamily highlights the utility of SKs as scaffolds for functional innovation.
244

The Effects of Polo-like Kinase 4 on Chromosomal Stability, Cell Migration and Tumourigenesis

Rosario, Carla 31 August 2011 (has links)
Plk4 is the most divergent member of the family of polo like kinases (Plks). Plk4-/- embryos arrest at approximately day 7.5 p.c. but Plk4+/- mice are viable and fertile. However, 50% of Plk4+/- mice develop spontaneous tumours of the liver, lung and soft tissues by 2 years of age. Here I investigate the mechanisms that underlie Plk4-related tumourigenesis. Plk4+/- murine embryonic fibroblasts (MEFs) spontaneously become immortal in vitro with increasing passage number and are tumourigenic in vivo when injected into NOD SCID mice. Cytogenetic analysis showed that Plk4 deficient cells are chromosomally unstable with a large number of chromosomal aberrations and increased ploidy. These results demonstrate that early loss of a single Plk4 allele is sufficient to drive cell immortalization, chromosomal instability and tumourigenicity in vivo. In two independent expression array analyses, gene expression patterns that would decrease cell migration were overrepresented in Plk4+/- MEFs. A series of spreading and migration assays functionally validated these results, supporting the hypothesis that Plk4 regulates cell motility. Endogenous Plk4 localized to filopodia and lamellipodia in motile cells and to protrusions of spreading cells; the latter localization was transient and it disappeared by 4h after cell seeding, at which point Plk4 was located in the centrosomes, as typically observed in interphase cells. Transient transfection with Flag-Plk4 enhanced spreading and migration, as well as actin remodeling. Taken together, these data demonstrate temporal regulation of Plk4 in relation to the process of membrane remodeling, and a functional role for Plk4 in cell motility. Plk4 is haploinsufficient for tumour suppression in mice. Plk4 is located at human chromosome 4q28, a region often deleted in primary liver cancer specimens. Here I show that loss-of-heterozygosity (LOH) occurs at the Plk4 locus in ≈50% of human hepatocellular carcinomas (HCC) as well as in preneoplastic cirrhotic liver nodules. LOH at Plk4 is associated with reduced Plk4 expression in HCC tumours, but not with mutations in the remaining allele. These results implicate Plk4 as a potential haploinsufficient tumour suppressor in the genesis of human HCC. With continuing high rates of the predisposing conditions Hepatitis B and non-alcoholic steatohepatitis, and delayed diagnosis, HCC is a global health issue and carries a grave prognosis. A better understanding of genetic predisposition will help guide future screening programs.
245

Characterization of NimA-related Kinase 10 (NEK10): A Role in Checkpoint Control

Moniz, Larissa 31 August 2010 (has links)
Deregulation of the cell cycle is a hallmark of neoplastic transformation and plays a central role in both the initiation and progression of cancer. Members of the NimA-related kinase (NEK) family of protein kinases are emerging as important players in regulation of the eukaryotic cell cycle during normal cell cycle progression and checkpoint activation in response to genotoxic stresses. The focus of this thesis is NEK10, a previously uncharacterized member of the NEK family. While little is known about the biology of NEK10, recent cancer genomics studies have identified NEK10 as a candidate susceptibility gene at chromosome 3p24 in cancer. Work herein describes a role for NEK10 in the cellular response to ultraviolet (UV) irradiation. NEK10 was required for the activation of ERK1/2 signaling upon UV irradiation, but not in response to mitogens, such as the epidermal growth factor. NEK10 interacted with Raf and MEK and enhanced MEK activity through a novel mechanism involving MEK autoactivation. Significantly, appropriate maintenance of the G2/M checkpoint following UV irradiation required NEK10 expression and ERK1/2 activation. In support of a conserved role for NEK10 in the cellular response to UV irradiation, nekl-4, the NEK10 C.elegans homologue, affected embryonic sensitivity to UV-irradiation. In search of regulatory inputs into NEK10, using mass spectrometry, our laboratory identified 19 distinct sites of NEK10 phosphorylation. Characterization of a number of these sites revealed a role for intermolecular autophosphorylation in achieving full NEK10 catalytic activity through activation loop phosphorylation on S684 and S688. Further, a C-terminal phosphorylation site on NEK10, S933, was found to be a 14-3-3 binding site, and was essential for NEK10 cytoplasmic to nuclear translocation following UV irradiation. Taken together, my studies have discovered a role for NEK10 in the engagement of the G2/M cell cycle checkpoint and provided a mechanistic insight into the relationship between NEK10 and the Raf/MEK/ERK cascade, and the control of NEK10 subcellular localization. This work will serve as a foundation for future studies aimed at understanding the molecular mechanism of NEK10 action and its function in development and tumourigenesis.
246

Bioengineering of a TAT-conjugated Peptide to Modulate the Activity of Glycogen Synthase Kinase-3 in Adult and Embryonic Stem Cells

Manceur, Aziza 16 March 2011 (has links)
The intracellular delivery of molecules to modulate signaling pathways and gene expression is a powerful approach to control stem cell fate decision. For applications in gene therapy and regenerative medicine, the use of genetic material and viral vectors raise concerns because stem cells persist throughout life, and long-term effects of uncontrolled genetic modifications could affect the cellular progeny. An alternative is to deliver directly peptides or proteins using cell-permeable peptides (CPPs) which have the ability of crossing the plasma membrane and carrying cargos into cells. CPPs can therefore be used to deliver factors to direct stem cells proliferation, survival and differentiation. This thesis describes an approach to control stem cell fate based on the delivery of a CPP-conjugated bioactive peptide. A first significant contribution from this work is the development of a flow cytometric assay to accurately quantify the uptake of a panel of CPPs. This study revealed that HIV-transactivator of transcription (TAT) and Antennapedia (Antp) offered the highest level of translocation in different cell types. The uptake was improved by treating the cells with a single, low-voltage electrical pulse that selectively enhances the amount of TAT-conjugated peptides and proteins delivered by at least an order of magnitude, without causing cellular toxicity or apoptosis. Subsequently, flow cytometry, confocal microscopy, capillary electrophoresis and mass spectrometry were used to examine the intracellular fate of TAT-conjugated peptides in order to define the parameters that limit their bioactivity and point to specific sequence modifications that can improve their efficacy. The advances described in this thesis were applied to the development of TAT-eIF2B, a peptide-inhibitor of glycogen synthase kinase-3 (GSK-3). TAT-eIF2B was found to be specific for GSK-3 and had a significant positive effect on the formation of neurospheres in embryonic stem cell cultures and on the survival of myeloid progenitors in cytokine-starved fetal liver cell cultures. On the other hand, GSK-3 inhibition reduced the number of neurospheres generated by human olfactory neuroepithelium cells due to lower proliferation and increased neuronal differentiation. In summary, this work describes the development of a peptide-based technology to deliver bioactive cargoes in cells, and it demonstrates its utility for modulating the activity of a master regulator of stem cell fate decision.
247

The Effects of Polo-like Kinase 4 on Chromosomal Stability, Cell Migration and Tumourigenesis

Rosario, Carla 31 August 2011 (has links)
Plk4 is the most divergent member of the family of polo like kinases (Plks). Plk4-/- embryos arrest at approximately day 7.5 p.c. but Plk4+/- mice are viable and fertile. However, 50% of Plk4+/- mice develop spontaneous tumours of the liver, lung and soft tissues by 2 years of age. Here I investigate the mechanisms that underlie Plk4-related tumourigenesis. Plk4+/- murine embryonic fibroblasts (MEFs) spontaneously become immortal in vitro with increasing passage number and are tumourigenic in vivo when injected into NOD SCID mice. Cytogenetic analysis showed that Plk4 deficient cells are chromosomally unstable with a large number of chromosomal aberrations and increased ploidy. These results demonstrate that early loss of a single Plk4 allele is sufficient to drive cell immortalization, chromosomal instability and tumourigenicity in vivo. In two independent expression array analyses, gene expression patterns that would decrease cell migration were overrepresented in Plk4+/- MEFs. A series of spreading and migration assays functionally validated these results, supporting the hypothesis that Plk4 regulates cell motility. Endogenous Plk4 localized to filopodia and lamellipodia in motile cells and to protrusions of spreading cells; the latter localization was transient and it disappeared by 4h after cell seeding, at which point Plk4 was located in the centrosomes, as typically observed in interphase cells. Transient transfection with Flag-Plk4 enhanced spreading and migration, as well as actin remodeling. Taken together, these data demonstrate temporal regulation of Plk4 in relation to the process of membrane remodeling, and a functional role for Plk4 in cell motility. Plk4 is haploinsufficient for tumour suppression in mice. Plk4 is located at human chromosome 4q28, a region often deleted in primary liver cancer specimens. Here I show that loss-of-heterozygosity (LOH) occurs at the Plk4 locus in ≈50% of human hepatocellular carcinomas (HCC) as well as in preneoplastic cirrhotic liver nodules. LOH at Plk4 is associated with reduced Plk4 expression in HCC tumours, but not with mutations in the remaining allele. These results implicate Plk4 as a potential haploinsufficient tumour suppressor in the genesis of human HCC. With continuing high rates of the predisposing conditions Hepatitis B and non-alcoholic steatohepatitis, and delayed diagnosis, HCC is a global health issue and carries a grave prognosis. A better understanding of genetic predisposition will help guide future screening programs.
248

Gene Duplication and Functional Expansion in the Plant Shikimate Kinase Superfamily

Fucile, Geoffrey 30 August 2011 (has links)
The shikimate pathway links carbohydrate metabolism to the biosynthesis of the aromatic amino acids and an enormous variety of aromatic compounds with essential functions in all kingdoms of life. Aromatic compounds derived from the plant shikimate pathway have substantial biotechnological value and many are essential to the diet of metazoans whose genomes do not encode shikimate pathway enzymes. Despite its importance to the physiology of plants and human health the regulatory mechanisms of the plant shikimate pathway are not well understood. Shikimate kinase (SK) genes encode an intermediate step in the shikimate pathway and were previously implicated in regulation of the plant shikimate pathway. The distribution of SK genes in higher plants was resolved using phylogenetic and biochemical methods. The two SK isoforms of Arabidopsis thaliana, AtSK1 and AtSK2, were functionally characterized. AtSK1 expression is induced by heat stress and the recombinant enzyme was shown to form a homodimer which is important for maintaining the stability and activity of the enzyme at elevated temperatures. The crystal structure of AtSK2, the first reported plant SK structure, identified structural features unique to plant SKs which may perform important regulatory functions. The resolution of bona fide SKs in higher plants led to the discovery of two novel neofunctionalized homologs - Shikimate Kinase-Like 1 (SKL1) and SKL2. These novel genes evolved from SK gene duplicates over 400 million years ago and are found in all major extant angiosperm lineages, suggesting they were important in the development of biological properties required by land plants. The description of albino and variegated skl1 mutants in Arabidopsis thaliana implicate the SKL1 gene product as an important regulator of chloroplast biogenesis. Functional assays were attempted to determine the biochemical function of SKL1 and recombinant constructs of the Arabidopsis thaliana SKL1 protein were crystallized towards structure determination. The results of this thesis further our understanding of the organization and regulation of the plant shikimate pathway. Furthermore, the discovery of SKL1 may yield important insights into chloroplast biogenesis and function. The evolution of the plant SK superfamily highlights the utility of SKs as scaffolds for functional innovation.
249

Functional characterization of the US3 serine/threonine kinase during BHV-1 infection

2013 August 1900 (has links)
Bovine herpesvirus 1 (BHV-1) is a member of the Alphaherpesvirinae subfamily and is the prototype ruminant herpesvirus. BHV-1 causes a number of complications in cattle including upper respiratory tract disorders, conjunctivitis, genital disorders, abortions, and immune suppression. Like all herpesviruses, reactivation from latency can occur throughout the animal’s life. Of particular economic importance is the bovine respiratory disease complex (BRDC) or ‘shipping fever’, in which BHV-1 plays a major role. BRDC is an enormous economic concern as it costs the US cattle industry approximately one billion dollars annually. In order to generate improved gene-deleted vaccines against BHV-1, there is a need to understand the contributions of viral gene products during infection. US3 is a serine/threonine kinase present in BHV-1 and is thought to play major roles during viral infection. As in other herpesviruses, US3 in BHV-1 is expected to phosphorylate several cellular and/or viral proteins. We recently presented evidence that BHV-1 US3 phosphorylates both VP8 and VP22; however, further functional characteristics of BHV-1 US3 during viral infection have not been elucidated. The hypothesis of this project is that the deletion of the US3 gene leads to reduced BHV-1 fitness. To explore this hypothesis, we generated a US3-deleted (ΔUS3) and subsequent US3-rescued (US3R) BHV-1 virus. Using these viral mutants, we characterized the growth properties of the viruses, evaluated the effect of the US3 deletion on major structural BHV-1 proteins, characterized the protein composition of the mature virions, and, identified viral processes that were impaired in the deletion mutant. Initially, the ∆US3 virus was generated through a 3-step PCR strategy which replaced the gene of interest with an antibiotic resistance cassette. Following this, the US3 gene was rescued via a two-step en passant mutagenesis strategy which has been previously used to generate insertions, deletions, and substitutions in herpesvirus-containing bacterial artificial chromosome (BAC) DNA. In vitro characterization of ∆US3 BHV-1 has demonstrated that US3 deletion affects BHV-1 growth characteristics, expression kinetics of major structural proteins, mature virion composition, cell to cell spread, and the subcellular localization of key viral proteins during infection. Growth kinetics of ∆US3 BHV-1 were impaired compared to wild-type (WT) BHV-1, especially at late times post-infection. Plaque sizes formed by ∆US3 BHV-1 were significantly smaller than those formed by either WT or US3R BHV-1, demonstrating that US3 is important for cell to cell spread. The expression kinetics of major structural and regulatory BHV-1 proteins were different between cells infected with ∆US3 or WT BHV-1, and incorporation of these proteins into the mature viruses differed, demonstrating that US3 is instrumental in ensuring proper protein expression and mature virus composition in vitro. Of particular importance, glycoprotein B (gB), was shown to be expressed in higher quantities earlier during infection in the absence of US3, and that this protein was incorporated in significantly higher amounts in mature virions which lacked US3. Qualitative analysis of ∆US3 BHV-1 infected monolayers suggested the abolishment of cell to cell projections characteristic of WT BHV-1 infection. Finally, the disruption of gB in ∆US3 BHV-1 infected cells was confirmed by confocal microscopy and fluorescence-activated cell sorting (FACS) analysis. Through confocal microscopy, evidence was provided that infection with ∆US3 BHV-1 possibly results in earlier expression of gB on the surface of cells and less intracellular accumulation of this protein during late stages of infection. The observed effect on the localization of intracellular gB in ∆US3 BHV-1 infected cells was quantified by flow cytometry. ∆US3 BHV-1 infected cells had approximately 25% higher gB expression on the surface of cells and a corresponding 25% decrease in intracellular gB. Although these differences have not yet been demonstrated to be statistically significant and not confirmed through infection with US3R BHV-1, this suggests that US3 may influence the synthesis and cellular trafficking of gB in vitro.
250

Role of Skp2 in epithelial dysplasia and carcinoma of the cervix

Chen, Tzu-Ping 09 September 2003 (has links)
The F-box protein Skp2 (S-phase kinase associated protein 2) positively regulates the G1-S transition by controlling the cell cycle inhibitor p27Kip1. The p42/p44 mitogen-activated protein (MAP) kinase activation is also necessary for the cell cycle progression. p27Kip1 acts as a negative regulator of the cell cycle by inhibiting the activity of cyclin/cdk complexes during G0 and G1. RT-PCR, Western blotting and immunohistochemical staining were used to assay their relationship with cervical lesion development. In RT-PCR and western blotting, Skp2 mRNA and protein were expressed mostly in carcinoma tissues. At Fisher¡¦s exact test showed that Skp2, p27Kip1 and p42/p44 MAP Kinase are strongly associated with disease progession respectively (P < 0.0001, P < 0.0001, P = 0.0043). We also found a postive correlation between the expression of Skp2 and p42/p44 MAP Kinase (P = 0.0097).

Page generated in 0.0545 seconds