• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 32
  • 16
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 116
  • 116
  • 39
  • 37
  • 19
  • 17
  • 14
  • 11
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Optimization and reaction kinetics of the production of biodiesel from castor oil via sodium methoxide-catalyzed methanolysis

Crymble, Scott David 01 May 2010 (has links)
This paper studies castor oil’s potential as a biodiesel feedstock. Base-catalyzed transesterification batch reactions were conducted at various experimental conditions while measuring the concentration of the reaction components over time. A gas chromatograph with a flame-ionization detector analyzed these samples. A factorial design of experiments was used to determine how conversion was affected by reaction temperature, sodium methoxide concentration, and ratio of methanol to oil. Conversion was maximized (0.9964) at 30 °C, 0.5% catalyst, and 9:1 molar ratio. The concentration data were used to study the reaction kinetics. Modeling the reaction as three equilibria yielded six rate constants. These values indicate that castor oil transesterifies faster than soybean oil. The fuel properties were determined by ASTM D 6751. Viscosity was excessively high, but specifications were met for the remaining tests. Despite the promising yield and kinetics of the reaction, the fuel viscosity limits castor oil’s viability as a biodiesel feedstock.
42

Redefining Dynamic PET to Improve Clinical Feasibility

Liu, Xiaoli January 2016 (has links)
No description available.
43

Development of a chemical kinetic model for the combustion of a synthesis gas from a fluidized-bed sewage sludge gasifier in a thermal oxidizer

Martinez, Luis 01 January 2014 (has links)
The need for sustainability has been on the rise. Municipalities are finding ways of reducing waste, but also finding ways to reduce energy costs. Waste-to-energy is a sustainable method that may reduce bio-solids volume while also producing energy. In this research study bio-solids enters a bubbling bed gasifier and within the gasifier a synthesis gas is produced. This synthesis gas exits through the top of the gasifier and enters a thermal oxidizer for combustion. The thermal oxidizer has an innovative method of oxidizing the synthesis gas. The thermal oxidizer has two air injection sites and the possibility for aqueous ammonia injection for further NOx reduction. Most thermal oxidizers already include an oxidizer such as air in the fuel before it enters the thermal oxidizer; thus making this research and operation different from many other thermal oxidizers and waste-to-energy plants. The reduction in waste means less volume loads to a landfill. This process significantly reduces the amount of bio-solids to a landfill. The energy produced from the synthesis is beneficial for any municipality, as it may be used to run the waste-to-energy facility. The purpose of this study is to determine methods in which operators may configure future plants to reduce NOx emissions. NOx mixed with volatile organic compounds (VOC) and sunlight, produce ozone (O3) a deadly gas at high concentrations. This study developed a model to determine the best methods to reduce NOx emissions. Results indicate that a fuel-rich then fuel-lean injection scheme results in lower NOx emissions. This is because at fuel-rich conditions not all of the ammonia in the first air ring is converted to NOx, but rather a partial of the ammonia is converted to NOx and N2 and then the second air ring operates at fuel-lean which further oxidizes the remaining ammonia which converts to NOx, but also a fraction to N2. If NOx standards reach more stringency then aqueous ammonia injection is a recommended method for NOx reduction; this method is also known as selective non-catalytic reduction (SNCR). The findings in this study will allow operators to make better judgment in the way that they operate a two air injection scheme thermal oxidizer. The goal of the operator and the organization is to meet air quality standards and this study aims at finding ways to reduce emissions, specifically NOx.
44

Quantification of Pharmacokinetics in Small Animals with Molecular Imaging and Compartment Modeling Analysis

Fang, Yu-Hua 02 April 2009 (has links)
No description available.
45

Chlorine Cycling in Electrochemical Water and Wastewater Treatment Systems

Chen, Linxi 17 October 2014 (has links)
No description available.
46

Phosphate Remediation and Recovery from Lake Water using Modified Iron Oxide-based Adsorbents

Lalley, Jacob 26 June 2015 (has links)
No description available.
47

Electrostatic Charging of Solid and Gas Phases and Application to Controlling Chemical Reactions

Shen, Xiaozhou 07 September 2017 (has links)
No description available.
48

Modeling the Nucleation and Growth of Colloidal Nanoparticles

Mozaffari, Saeed 05 February 2020 (has links)
Controlling the size and size distribution of colloidal nanoparticles have gained extraordinary attention as their physical and chemical properties are strongly affected by size. Ligands are widely used to control the size and size distribution of nanoparticles; however, their exact roles in controlling the nanoparticle size distribution and the way they affect the nucleation and growth kinetics are poorly understood. Therefore, understanding the nucleation and growth mechanisms and developing theoretical/modeling framework will pave the way towards controlled synthesis of colloidal nanoparticles with desired sizes and polydispersity. This dissertation focuses on identifying the possible roles of ligands and size on the kinetics of nanoparticle formation and growth using in-situ characterization tools such as small-angle X-ray scattering (SAXS) and kinetic modeling. The presented work further focuses on developing kinetic models to capture the main nucleation and growth reactions and examines how ligand-metal interactions could potentially alter the rate of nucleation and growth rates, and consequently the nanoparticle size distribution. Additionally, this work highlights the importance of using multi-observables including the concentration of nanoparticles, size and/or precursor consumption, and polydispersity to differentiate between different nucleation and growth models and extract accurate information on the rates of nanoparticle nucleation and growth. Specifically, during the formation and growth of colloidal nanoparticles, complex reactions are occurring and as such nucleation and growth can take place through various reaction pathways. Therefore, sensitivity analysis was applied to effectively compare different nucleation and growth models and identify the most important reactions and obtain a reduced model (e.g. a minimalistic model) required for efficient data analysis. In the following chapters, a more sophisticated modeling approach is presented (population balance model) capable of capturing the average-properties of nanoparticle size distribution. PBM allows us to predict the growth rate of nanoparticles of different sizes, the ligand surface coverage for each individual size, and the parameters involved in altering the size distribution. Additionally, thermodynamic calculations of nanoparticle growth and ligand-metal binding as a function of size and ligand surface coverage were conducted to further shed light on the kinetics of nanoparticle formation and growth. The combination of kinetic modeling, in-situ SAXS and thermodynamic calculations can significantly advance the understanding of nucleation and growth mechanisms and guide toward controlling size and polydispersity. / Doctor of Philosophy / The synthesis of colloidal metal nanoparticles with superior control over size and size distribution, and has attracted much attention given the wide applications of these nanomaterials in the fields of catalysis, photonics, and electronics. Obtaining nanoparticles with desired sizes and polydispersity is vital for enhancing the consistency and performance for specific applications (e.g., catalytic converters for automotive emission). Ligands are often employed to prevent agglomeration and also control the nanoparticle size and size distribution. Ligands can affect the precursor reactivity and therefore the reduction/nucleation by binding with the metal precursor. Nucleation refers to the assimilation of few atoms to form initial nuclei acting as templates for nanoparticle growth. Additionally, ligands can bind with the nanoparticle surface sites and change the rate of surface growth and therefore the final nanoparticle size. Despite strong effects of ligands in the colloidal nanoparticle synthesis, their exact role in the nucleation and growth kinetics is yet to be identified. Additionally, nucleation and growth models capable of unraveling the underlying mechanisms of nucleation and growth in the presence of ligands are still lacking in the literature. Therefore, obtaining nanoparticles with desired sizes and polydispersity mostly relies on trial-and-error approach making the synthesis costly and inefficient. As such, developing models capable of predicting suitable synthesis conditions is contingent upon understanding the chemistry and mechanism involved during nanoparticles formation. Therefore, in this study, novel kinetic models were developed to capture the nucleation and growth kinetics of colloidal metal nanoparticles under different synthetic conditions (different types of solvents, different concentrations of ligand and metal). In-situ SAXS was further employed to measure the average diameter, concentration of nanoparticles, and polydispersity during the synthesis and extract the nucleation and growth rates (evolution of concentration of nanoparticles and size). First, an average-property model was developed to account for ligand-metal bindings and capture the size and concentration of nanoparticles during the synthesis. Then, a more complex modeling approach; PBM, accompanied by the thermodynamic calculations of surface growth and ligand-nanoparticle binding enthalpies was implemented to capture the size distribution. As it will be shown later, the determination of the underlying mechanisms resulted in a highly predictive kinetic model capable of predicting the synthetic conditions to obtain nanoparticles with desired sizes. The proposed methodology can serve as a powerful tool to synthesize nanoparticles with specific sizes and polydispersity.
49

Etude et modélisation de la dégradation pyrolytique des mélanges complexes de composés organiques / Modeling of pyrolitic degradation of organic compunds in complex mixtures

Şerbănescu, Cristina 03 November 2010 (has links)
La pyrolyse et la gazéification sont les deux procédés les plus prometteurs pour une valorisation thermique des déchets organiques solides en réponse aux objectifs énergétiques environnementaux actuels et futurs. Si pour la pyrolyse, les déchets traités sont aussi synthétiques (plastiques, composites) que naturels (biomasse), pour la gazéification c'est la biomasse qui est la matière première la plus rencontrée. Les travaux expérimentaux de cette thèse ont été réalisés dans deux types d'installations : une installation à échelle laboratoire (analyseur thermique : TG, ATD, EGA) et une installation à échelle pilote (nommée four « Aubry »). Les traitements thermiques ont été effectués dans les conditions spécifiques pour la pyrolyse (atmosphère d'azote) et la gazéification (vapeurs d'eau). Les matériaux testés ont été le polychloroprène, les composés de la biomasse (hémicellulose, lignine, cellulose), seuls où en mélange, ainsi qu'un bois naturel (le bouleau) et son « modèle » (mélange en proportions équivalents de ses constituants). Deux modèles cinétiques pour la pyrolyse du polychloroprène ont été choisis de littérature et testés. La différence primordiale entre les deux modèles est leur degré de complexité. Le premier est un modèle empirique simplifié, tandis que le deuxième, très détaillé, est un modèle radicalaire Le modèle cinétique utilisé pour modéliser le processus de pyrolyse de la cellulose, pris aussi de la littérature, a montré une concordance très bonne avec nos résultats expérimentaux. L'étude hôte de la gazéification à la vapeur d'eau a nécessité des modifications de nos installations expérimentales, tout particulièrement à l'échelle pilote, pour assurer une atmosphère confinée en vapeur d'eau. Les expériences réalisées en conditions expérimentales spécifiques ont données des résultats excellents pour la composition finale du gaz de synthèse. La simulation, à l'échelle pilote, de la gazéification a été obtenue par adaptation d'un modèle existant, à la réalisation de nos conditions opératoires, prenant en compte les transferts matières et basé sur l'évolution de la porosité d'une particule sphérique équivalente. Le modèle a montré une concordance raisonnable avec nos données expérimentales. La dernière partie de cette thèse présente une étude dans lequel on compare les analyses thermiques pour les constituants purs, un modèle de bois et un bois naturel afin d'établir les interactions possibles entre ces composants lors de la dégradation thermique du bois naturel. Les résultats ont montré que pour les mélanges cellulose-lignine et lignine-hémicellulose, le premier composé inhibe la dégradation du dernier tandis que, pour les mélanges cellulose-hémicellulose, cet effet se manifeste à l'inverse. Tous les modèles testés et les résultats enregistrés dans cette thèse représentent des instruments très utiles pour l'aide au dimensionnement des installations de pyrolyse à échelle laboratoire ainsi que pour des installations de gazéification à la vapeur d'eau à échelle pilote. / The pyrolysis and gasification are the most actual techniques used for valorization of organic wastes. If for pyrolysis the raw materials are both synthetic (plastics) and natural (biomass), in the case of gasification mainly the biomass is used. The experiments presented in this thesis were carried out in two type of plants: a laboratory scale plant (thermal analyses: TGA, DTA, EGA) and a pilot scale plant (so-called “Aubry” furnace). The thermal treatments implemented both the conditions of pyrolysis (nitrogen atmosphere) and gasification (water vapors). The materials tested in the experimental part were: polychloroprene, biomass constituents (hemicelluloses, lignin and cellulose), alones and in mixture, and a natural wood (the birch) with it's “model” (a mixture of it's components in different proportions). For the polychloroprene pyrolysis, two kinetic models chosen from the published literature were tested. The difference in the two models is given by their degree of complexity. The first one was a simplified empirical model. The second one was a free-radical model. For the cellulose pyrolysis was also tested a model proposed in the literature and the model showed a good accuracy in representing our experimental data. The study of gasification at pilot scale needed an appropriate modification of the experimental set-up to create a saturated atmosphere in water vapor inside the Aubry furnace. The experimental work concerning the gasification followed a specific protocol and gave excellent results for the syngas composition. A gasification mathematical model for pilot scale was proposed and tested. This model, based on the evolution of equivalent spherical particles porosity, take supplementary into account the mass transfer. The results given by the last model were in reasonable agreement with our experimental results. The last part of this thesis presents a comparative study of the thermal analyses of pure biomass components, of a wood model and also of a natural wood. The goal is to identify the interactions that could take place between these compounds during the thermal degradation of the natural wood. Our results showed that for the mixtures cellulose-lignin and lignin-hemicelluloses the first compound inhibits the second one. For the mixtures cellulose-hemicelluloses this effect is inverse. All the kinetic models tested in this thesis are useful tools for dimensioning laboratory scale pyrolysis plants and pilot scale set-up for water vapors gasification.
50

Durabilité des époxys ; application au collage structural aéronautique / Ageing of epoxys used for aeronautical bonded assemblies

Delozanne, Justine 18 December 2018 (has links)
Cette thèse porte sur l’étude multi-échelle du vieillissement d’assemblages collés à base de colle époxy employés dans le domaine aéronautique. Dans leurs conditions de service, ces matériaux sont soumis à un vieillissement humide, qui peut s’accompagner d’un vieillissement thermique essentiellement lors des phases de décollage des avions. De telles conditions rendent difficiles la prédiction de la durée de vie basée uniquement sur le suivi des propriétés mécaniques des assemblages (par des tests de cisaillement simple ou de clivage) lors d’essais de vieillissement normalisés qui prévalent, pour le moment, dans l’industrie. Notre objectif était donc une étude du vieillissement à l’échelle moléculaire afin d’en dériver, à terme, des lois cinétiques prédisant la vitesse de dégradation. Une première étape a mis en lumière les différences existantes entre le vieillissement humide (rupture adhésive) et thermique (rupture cohésive). La rupture cohésive observée en vieillissement thermique nous a conduits à étudier les mécanismes responsables de la chute de ténacité des époxys. Nous avons ainsi étudié les mécanismes de dégradation de l’adhésif, de deux de ses systèmes « représentatifs » (DGEBA-DDS et TGMDA-DDS). L’analyse des produits de dégradation dans ces réseaux et leurs composées modèles nous a conduits à élaborer un schéma cinétique intégrant la réactivité des principaux sites d’oxydation (sites au voisinage de certains hétéroatomes) qui peut décrire en partie l’oxydation des systèmes simples DGEBA-DDS et TGMDA-DDS mais devra être converti en modèle de co-oxydation (c’est-à-dire intégrant la participation simultanée de plusieurs sites) à la fois pour décrire plus complétement l’oxydation des systèmes simples mais surtout pour traiter des matériaux industriels de formulation complexe. Dans une dernière partie, nous nous sommes intéressés à la spécificité des assemblages collés lors d’un vieillissement humide. Cette dernière partie montre la nécessité de bien comprendre les phénomènes de diffusion à l’interface, et dans des matériaux oxydés, pour pouvoir prédire la durée de vie des adhésifs époxys employés pour les assemblages collés. / This thesis deals with a multi-scale study of the ageing of bonded assemblies based on epoxy adhesive used in the aeronautical field. In service conditions, these materials are subjected to humid ageing, which can be accompanied by thermal ageing essentially during the take-off phases of aircraft. Such conditions make it difficult to predict lifetime based only on the study of the mechanical properties of the assemblies (by single lap shear stress or wedge tests) in standardized ageing tests, which, for the moment, prevail in the industry. Our objective was therefore a study of ageing at the molecular scale in order to derive forward kinetic laws predicting the kinetics of degradation. A first step highlighted the differences between humid ageing (adhesive failure) and thermal aging (cohesive failure). The cohesive rupture observed in thermal ageing led us to study the mechanisms responsible for the decrease in toughness of the epoxies. We studied the mechanisms of degradation of the adhesive as well as two of its "representative" systems (DGEBA-DDS and TGMDA-DDS). The analysis of degradation products in these networks and their model compounds led us to develop a kinetic scheme introducing the reactivity of the main oxidation sites (site near certain heteroatoms) which can partly describe the oxidation of simple systems. In the future, DGEBA-DDS and TGMDA-DDS will have to be converted into a co-oxidation model (that means integrating the simultaneous participation of several sites) to describe entirely the oxidation of simple systems but especially for handled industrial materials of complex formulation. In a last part, we were interested in the specificity of bonded assemblies during humid aging. This last section displays the need to understand diffusion phenomena at the interface, and in oxidized materials, to predict the lifetime of epoxy adhesives used for bonded assemblies.

Page generated in 0.1237 seconds