• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 14
  • 9
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

What do kinetoplastids need a kinetoplast for? : life cycle progression of Trypanosoma brucei in the presence and absence of mitochondrial DNA

Dewar, Caroline E. January 2016 (has links)
The parasitic protist Trypanosoma brucei is the causative agent of human African trypanosomiasis. The parasite undergoes a complex life cycle involving stages within the mammalian bloodstream and its tsetse fly vector. The fundamental differences between energy metabolism in the procyclic insect form (PCF) and long slender bloodstream form (BSF) T. brucei involve a switch in the directionality of the F1Fo- ATPase. In PCF, the need for oxidative phosphorylation in low glucose conditions requires the enzyme to generate ATP. In the slender BSF, the enzyme uses ATP from glycolysis to drive proton pumping to maintain the essential mitochondrial membrane potential. Fo-ATPase subunit 6 (A6) is critical for proton translocation in either direction and is encoded in the mitochondrial DNA (kDNA). The parasite’s kDNA is therefore essential in the slender BSF, and also in PCF where it encodes multiple subunits of the respiratory chain complexes that constitute the oxidative phosphorylation pathway. Specific point mutations in the nuclearly encoded γ subunit of the mitochondrial F1Fo-ATPase allow survival in the absence of kDNA in the slender BSF T. brucei (Dean et al., 2013). These mutations, even in the heterozygous genotype, cause an increase in resistance to multiple drugs in vitro (Gould and Schnaufer, 2014). This thesis investigates two questions: (1) What is the molecular mechanism of compensation for kDNA loss? (2) Are kDNA and a functional FoF1-ATPase required for life cycle progression? Slender BSF T. brucei were generated expressing ATPase L262Pγ. The effects of this γ mutation and kDNA loss, respectively, on structure/function of the F1Fo- ATPase were probed. Cells expressing L262Pγ show decreased sensitivity to Fo inhibitor oligomycin compared to WT cells, suggesting that the L262Pγ mutation functionally uncouples the enzyme. The impact of the L262Pγ mutation on the structure of the enzyme was probed by high resolution clear native electrophoresis. This shows there are dramatic consequences to F1Fo structure in the presence of the L262Pγ mutation. The apparent selection for cells that no longer express intact F1Fo suggests that L262Pγ uncouples the enzyme, resulting in a lethal proton leak. Pleomorphic T. brucei with and without kDNA were also generated by expressing mutant γ in strain AnTat1.1 90:13. Differentiation studies demonstrate kDNA0 cells can differentiate to insect-transmissible stumpy forms. These cells show a decreased lifespan, suggesting a critical role for a kDNA-encoded product in the stumpy form. Tsetse fly infections show kDNA is indispensable for progression to the PCF. Unexpectedly, parasites homozygous for L262Pγ can establish a midgut infection, while they do not infect the salivary glands. Heterozygous parasites, on the other hand, can form animal-transmissible metacyclics in the salivary glands, providing a potential mechanism for spreading decreased sensitivity to multiple drugs.
2

High-throughput analysis of uridine insertion and deletion RNA editing in \kur{Perkinsela} / High-throughput analysis of uridine insertion and deletion RNA editing in \kur{Perkinsela}

DAVID, Vojtěch January 2015 (has links)
This thesis is a follow-up of my Bachelor thesis about the mitochondrial genome of kinetoplastid protist Perkinsela sp. This work introduces a novel approach in high-throughput analysis method of uridine insertion and deletion RNA editing, describes its background and proposes its further development. Its effect on the interpretation of U-indel editing, both in Perkinsela and in general, is demonstrated via attached manuscript which also introduces other biologically relevant aspects of Perkinsela mitochondrion.
3

Complexity and dynamics of kinetoplast DNA in the sleeping sickness parasite Trypanosoma brucei

Cooper, Sinclair January 2017 (has links)
The mitochondrial genome (kinetoplast or kDNA) of Trypanosoma brucei is highly complex in terms of structure, content and function. It is composed of two types of molecules: 10-50 copies of identical ~23-kb maxicircles and 5,000-10,000 highly heterogeneous 1-kb minicircles. Maxicircles and minicircles form a concatenated network that resembles chainmail. Maxicircles are the equivalent of mitochondrial DNA in other eukaryotes, but 12 out of the 18 protein-coding genes encoded on the maxicircle require post-transcriptional RNA editing by uridylate insertion and removal before a functional mRNA can be generated. The 1-kb minicircles make up the bulk of the kDNA content and facilitate the editing of the maxicircle-encoded mRNAs by encoding short guide RNAs (gRNAs) that are complementary to blocks of edited sequence. It is estimated that there are at least hundred classes of minicircle, each class encoding a different set of gRNAs. At each cycle of cell division the contents of the kDNA genome must be faithfully copied and segregated into the daughter cells. Mathematical modelling of kDNA replication has shown that failure to segregate evenly will eventually result in loss of low copy number minicircle classes from the population. Depending on the type of minicircle that is lost this can result in immediate parasite death or, if the loss occurred in the bloodstream stage, render the cells unable to complete the canonical life-cycle in the tsetse fly vector. In order to investigate minicircle complexity and replication in T. brucei further we i) first established the true complexity of the kDNA genome using a Illumina short read sequencing and a bespoke assembly pipeline, ii) annotated the minicircles to establish the editing capacity of the cells, iii) analysed expression levels of predicted gRNA gene cassettes using small RNA data, and iv) carried out a long term time course to measure how kDNA complexity changes over time and compared this to preliminary model predictions. The structure of this thesis follows these steps. Using these approaches, 365 unique and complete minicircle sequences were assembled and annotated, representing 99% of the minicircle genome of the differentiation competent (i.e. transmission competent) T. brucei strain AnTat90.13. These minicircles encode 593 canonical gRNAs, defined as having a match in the known editing space, and a further 558 non-canonical gRNAs with unknown function. Transcriptome analysis showed that the non-canonical gRNAs, like the canonical set, have 3' U-tails and showed the same length distribution. Canonical and non-canonical sets differ, however, in their sense to anti-sense transcript ratios. In vitro culturing of bloodstream form T. brucei for ~500 generations resulted in loss of ~30 minicircle classes. After incorporating parameters for network size and minicircle diversity determined above, model fitting to longitudinal kDNA complexity data will provide estimations for the fidelity of kDNA segregation. The refined mathematical model for kDNA segregation will permit insight into time constraints for transmissibility during chronic infections due to progressive minicircle loss. It also has the potential to shed light on the selective pressures that may have led to the apparent co-evolution of the concatenated kDNA network structure and parasitism in kinetoplastids.
4

Trypanosomes kinetoplast DNA and antigenic variation.

Hoeijmakers, Jan Hendrik Jozef. January 1982 (has links)
Thesis (Doctoral)--Universiteit van Amsterdam, 1982.
5

Analysis of the Spatiotemporal Localization of Mitochondrial DNA Polymerases of <i>Trypanosoma brucei</i>

Concepcón-Acevedo, Jeniffer 01 February 2013 (has links)
The mitochondrion contains its own genome. Replication of the mitochondrial DNA (mtDNA) is an essential process that, in most organisms, occurs through the cell cycle with no known mechanism to ensure spatial or temporal constrain. Failures to maintain mtDNA copy number affects cellular functions causing several human disorders. However, it is not clear how the cells control the mtDNA copy number. The mtDNA of trypanosomes, known as kinetoplast DNA (kDNA), is a structurally complex network of topologically interlocked DNA molecules (minicircles and maxicircles). The replication mechanism of the kDNA differs greatly with all other eukaryotic systems. Key features of the kDNA replication mechanism include defined regions for main replication events, coordination of a large number of proteins to drive the replication process, and replication once per cell cycle in near synchrony with nuclear S phase. Two main regions known as the kinetoflagellar zone (KFZ) and the antipodal sites are where main kDNA replication events are known to occur (i.e, initiation, DNA synthesis and Okazaki fragment processing). So far, the localization of the proteins involved in kDNA replication is restricted to two main regions: the KFZ and the antipodal sites. Three mechanisms that directly regulate kDNA replication proteins and serve to control kDNA replication have been proposed: (1) Reduction and oxidation status of the universal minicircle sequence binding protein (UMSBP) controls its binding to the origin sequence, (2) Trans-acting factors regulate the stability of mRNA encoding mitochondrial Topoisomerase II during the cell cycle and, (3) Regulation of TbPIF2 helicase protein levels by a HslVU-like protease to control maxicircle copy number. These mechanisms seem to be protein specific and it appears that a combination rather than a single mechanism regulates kDNA replication. In this study we used Trypanosoma brucei to understand how mitochondrial DNA replication is controlled. We investigated the mechanism of how proteins transiently localize to the sites of DNA synthesis during cell cycle stages. Our data provides a comprehensive analysis of the first two examples of T. brucei kDNA replication proteins that have a cell cycle dependent localization (Ch. 2 and 3). The localization of two of the three essential mitochondrial DNA polymerases (TbPOLIC and TbPOLID) is under tight cell cycle control and not regulated by proteolysis. TbPOLIC and TbPOLID localize to the antipodal sites during kDNA S phase, however, at other cell cycle stages TbPOLIC becomes undetectable by immunofluorescent analysis and TbPOLID disperses through the mitochondrial matrix. In agreement with this data, TbPOLIC and TbPOLID replication complexes were not detected using affinity purification presumably because only a fraction of these proteins are participating in replication at a given time (Ch. 4). We propose that spatial and temporal changes in the dynamic localization of essential kDNA replication proteins provide a novel mechanism to control kDNA replication.
6

MYSTERIES OF THE TRYPANOSOMATID MAXICIRCLES: CHARACTERIZATION OF THE MAXICIRCLE GENOMES AND THE EVOLUTION OF RNA EDITING IN THE ORDER KINETOPLASTIDA

Iyengar, Preethi Ranganathan 01 January 2015 (has links)
The trypanosomatid protists belonging to Order Kinetoplastida are some of the most successful parasites ever known to mankind. Their extreme physiological diversity and adaptability to different environmental conditions and host systems make them some of the most widespread parasites, causing deadly diseases in humans and other vertebrates. This project focuses on their unique mitochondrion, called the kinetoplast, and more specifically involves the characterization of a part of their mitochondrial DNA (also called kinetoplast DNA or kDNA), the maxicircles, which are functional homologs of eukaryotic mitochondrial DNA in the kinetoplastid protists. We have sequenced and characterized the maxicircle genomes of 20 new trypanosomatids and compared them with 8 previously published maxicircle genomes of other trypanosomatids. Transcripts of ~13 of the 20 total genes in these maxicircles undergo post-transcriptional modifications involving the insertion and deletion of U residues at precise sites, to yield the final, fully-edited, translatable mRNA. We have deciphered the diverse patterns and extents of RNA editing of each edited gene in the maxicircle of each organism, and inferred the sequences of the putative fully edited mitochondrial transcripts and proteins. Using a binary value - based strategy (1/0), we quantified the RNA editing in all these trypanosomatids and estimated the evolution of RNA editing in the group. Additionally, we conducted phylogenetic analyses using a subset of unedited maxicircle genes to predict the relationships between the various trypanosomatids in this project, and compared them to the previously published nuclear gene-based phylogenies. For convenience of analysis, the 28 total trypanosomatids in this work were divided into two groups: the first group consisting of the endosymbiont-bearing and related insect trypanosomatids, which constitute the first half of the project, and the second group consisting of trypanosomatids of the Trypanosoma genus, including T. cruzi-related and unrelated parasites, constituting the latter half of the project. In summary, most of the trypanosomatid maxicircles showed a syntenic panel of 20 protein-coding genes (excluding any guide RNA genes), beginning with the mitochondrial ribosomal genes and ending with the gene encoding NADH dehydrogenase-5. Although some genes were partially or completely absent in the maxcircles of some species, the remaining genes were completely syntenic. The total number of genes edited and their editing patterns varied considerably among the first group of insect trypanosomatids, but were remarkably similar in the second group of the Trypanosoma genus. On a broad scale, the mitochondrial phylogeny reflects the nuclear phylogeny for these trypanosomatids, except within the T. cruzi population. Similarly, RNA editing appears to have evolved in parallel with the nuclear genes, although subtle differences are again noticeable within the T. cruzi family.
7

Kinetoplastids biology, from the group phylogeny and evolution into the secrets of the mitochondrion of one representative: \kur{Trypanosoma brucei}, the model organism in which new roles of the evolutionary conserved genes can be explored / Kinetoplastids biology, from the group phylogeny and evolution into the secrets of the mitochondrion of one representative: \kur{Trypanosoma brucei}, the model organism in which new roles of the evolutionary conserved genes can be explored

TÝČ, Jiří January 2015 (has links)
This thesis is composed of two topics, for which trypanosomatids and evolution are common denominators. First part deals with phylogenetic relationships among monoxenous trypanosomatids, with emphasis on flagellates parasitizing dipteran hosts, analyzed mainly from biogeographical and evolutionary perspectives. Second part focuses on the trypanosomatid Trypanosoma brucei, causative agent of severe diseases, which serves as a model organism for functional studies of evolutionary conserved mitochondrial proteins, in particular those involved in replication, maintenance and expression of the mitochondrial genome, also termed the kinetoplast. This thesis identified the mtHsp70/mtHsp40 chaperone machinery as an essential component of replication and maintenance of the kinetoplast, and also identified numerous conditions under which mtHsp70 has a tendency to aggregate. Moreover, several conserved proteins, previously identified to be part of the mitochondrial ribosome, were shown to be important for translation of the mitochondrial transcripts.
8

Caracterização funcional da proteína LaRbp38 nos telômeros e no cinetoplasto de Leishmania spp / LaRbp38 protein functional characterization in the telomeres and kinetoplast of Leishmania spp

Perez, Arina Marina, 1982- 23 August 2018 (has links)
Orientador: Maria Isabel Nogueira Cano / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-23T08:15:57Z (GMT). No. of bitstreams: 1 Perez_ArinaMarina_D.pdf: 16850057 bytes, checksum: c8339559e1407d1727e423826290d6c8 (MD5) Previous issue date: 2013 / Resumo: LaRbp38 e uma proteína exclusiva de protozoários tripanosomatideos, entre os quais está os agentes etiológicos da leishmaniose, uma doença endêmica presente em diversas regiões do Brasil. LaRbp38 e codificada por um gene nuclear, que parece exercer diferentes funções nas maquinarias de replicação nuclear e mitocondrial. Foi primeiramente descrita como proteína estabilizadora de RNA mitocondrial e parece estar envolvida com a replicação de DNA mitocondrial. Em Leishmania, LaRbp38 também interage in vivo com DNA mitocondrial, com sequencias ricas em GT e com DNA telomerico simples e dupla fita. Nesta tese mostramos estudos que nos levaram a caracterizar novas propriedades estruturais e biológicas desta proteína. Na primeira parte da tese mostramos, que a LaRbp38 inteira e mutantes truncados da proteína são capazes de interagir com diferentes tipos de DNAs: DNA simples e dupla fitas telomericos e kDNA, porem com diferentes afinidades. Desta forma, foi possível mapear a vizinhança de um domínio de interação desta proteína aos diferentes tipos de DNA (DBD). Como este domínio não compartilha similaridade estrutural com nenhum domínio descrito em outras proteínas, isto sugere que este pode ser um novo domínio presente exclusivamente em tripanosomatideos. Estes resultados estão compilados no artigo entitulado: "Mapping the boundaries of the DNA-binding domain of Leishmania amzonensis Rbp38 (LaRbp38)". Na segunda parte da tese, mostramos a localização subcelular da proteína e como ela e capaz de translocar por diferentes compartimentos celulares utilizando um sinal de localização mitocondrial presente no N-terminal e um sinal de localização nuclear, presente no Cterminal da proteína. Embora a proteína esteja presente de forma mais abundante no cinetoplasto, e possível visualizá-la no núcleo quando o ciclo celular do parasita e sincronizado ou quando este e submetido a um estresse genotoxico. Baseado nesses achados também foram realizados ensaios de interação proteina-proteina, onde foi possível determinar a interação entre LaRbp38 e a proteína importina ?, uma proteína que esta diretamente ligada ao transporte de proteínas ao núcleo via NLS. Estes resultados também foram compilados em um artigo, que esta em fase de preparação, entitulado: "The protein LaRbp38 translocates between the nucleus and the kinetoplast in Leishmania (L.) amazonensis promastigotes". Outro estudo que realizamos para compreender a função da LaRbp38, o qual também esta na forma de um artigo: "LaRbp38 can form part of a shelterin-like complex in L.amazonensis telomeres", mostramos evidencias sobre a interação entre as proteínas LaRbp38 e a LaTRF de L.amazonensis. Aqui, uma analise in silico pela busca de motivos conservados em LaRbp38, nos levou a descobrir que esta proteína contem um motivo do tipo TRFH docking encontrado em proteínas telomericas que interagem com as proteínas da família das TRFs no complexo shelterina de vertebrados e mamíferos (ex: TIN2, PINX1 e APOLLO). Juntas, as TRFs e suas interatoras tem a função na manutenção dos telomeros. Sendo assim, utilizando ensaios de interação proteina-proteina, conseguimos mostrar que LaRbp38 interage fisicamente com a LaTRF, usando um motivo TRFH docking diferente daquele que foi primeiramente encontrado in silico. Nossos resultados mostram que a LaRbp38 interage com a LaTRF usando o motivo ALKTL, que compartilha similaridade de sequencia, com motivos descritos em proteínas interatoras de TRFs e bastante conservado entre as Rbp38 de tripanosomatideos. Estes resultados podem indicar que a LaRbp38 cumpre função análoga a uma das proteínas de vertebrados descritas como interatoras de TRFs, a proteína TIN2, que a exemplo de LaRbp38, também tem função nas mitocôndrias / Abstract: LaRbp38 is a trypanosomatid protein found exclusively in these protozoa, among which are the etiological agents of leishmaniasis, an endemic disease present in several regions of Brazil. LaRbp38 is a protein encoded by a nuclear gene, which probably plays different roles in both mitochondrial and nuclear replication machineries. It was first described as a mitochondrial RNA stabilizing protein involved in the replication of mitochondrial DNA. In Leishmania, LaRbp38 also interacts in vivo with mitochondrial DNA, GT-rich sequences and single- and double-stranded telomeric DNA. Here we show the results that led us to characterize some new biological and structural features of this protein. In the first part of the thesis we show that the entire LaRbp38 and its truncated mutants are able to interacts with different GT-rich DNAs and were possible to map the boundearies of a DNA-binding domain (DBD). This domain doesn't share any sequence or structural similarities with the domains described in other proteins suggesting that it could be a new domain present exclusively in trypanosomatids. These results are compiled in the article entitled: "Mapping the boundaries of the DNA-binding domain of Leishmania amzonensis Rbp38 (LaRbp38)." The second part of the thesis shows the subcellular localization of the protein and how it is able to translocate to different cellular compartments using an N-terminal mitochondrial localization signal (MLS) and a nuclear localization signal (NLS) present in the C-terminus of the protein. Although the protein is seem more abundantly in the mitochondria associated with kinetoplast DNA, its nuclear localization seems to be cell cycle dependent and enhanced at the end of S phase or when parasites are subjected to genotoxic stress. In order to confirm that the protein is able to translocate to the nucleus, we used different in silico approaches. The results strongly suggest the existence of a non-classical and also non-bipartite NLS at the C-terminus of LaRbp38. Based on these findings we did protein-protein interaction assays and verified that LaRbp38 can associate in vitro with importin ?, which is directly linked to protein transport to the nucleus via a NLS. These results were also compiled in an article, which is in preparation, entitled: The LaRbp38 protein translocates between the nucleus and the kinetoplast in Leishmania amazonensis promastigotes. Another study that was carried out and present in the third part of the thesis shows evidence about the interaction between LaRbp38 and the telomeric L.amazonensis LaTRF protein. These results are presented as an article entitled: "LaRbp38 can form part of a shelterina-like complex in L.amazonensis telomeres," Here, an in silico analysis search for conserved motifs in LaRbp38, showed that this protein contains a motif, the TRFH-docking-like typically found in proteins that associate with the TRF paralogue proteins (TRF1 and TRF2) in the shelterin complex of vertebrates and mammallian telomeres (eg.TIN2, PINX1 and APOLLO). TRFs and their interactors work together to regulate the dynamics of telomeric chromatin and telomere length maintenance. By using protein-protein interaction assays we show that LaRbp38 physically interacts with LaTRF. This interaction, however, seems to occurs via a new TRFH docking motif, which is different from the conserved core motif [FY]xLxP. This new TRFH-docking-like motif (ALKTL) aligns and share similarities with the TRH-docking motif described in the shelterin protein TIN2. This motif is also very conserved among the Rbp38 orthologues of other trypanosomatids. Curiously, TIN2 is a telomeric protein that shows nuclear and mitochondrial localization / Doutorado / Genetica de Microorganismos / Doutora em Genética e Biologia Molecular
9

Mitochondrial DNA Polymerase IB: Functional Characterization of a Putative Drug Target for African Sleeping Sickness

Bruhn, David F 13 May 2011 (has links)
Trypanosoma brucei and related parasites are causative agents of severe diseases that affect global health and economy. T. brucei is responsible for sleeping sickness in humans (African trypanosomiasis) and a wasting disease in livestock. More than 100 years after T. brucei was identified as the etiological agent for sleeping sickness, available treatments remain inadequate, complicated by toxicity, lengthy and expensive administration regiments, and drug-resistance. There is clear need for the development of a new antitrypanosomal drugs. Due to the unique evolutionary position of these early diverging eukaryotes, trypanosomes posses a number of biological properties unparalleled in other organisms, including humans, which could prove valuable for new drug targets. One of the most distinctive properties of trypanosomes is their mitochondrial DNA, called kinetoplast DNA (kDNA). kDNA is composed of over five thousand circular DNA molecules (minicircles and maxicircles) catenated into a topologically complex network. Replication of kDNA requires an elaborate topoisomerase-mediated release and reattachment mechanism for minicircle theta structure replication and at least five DNA polymerases. Three of these (POLIB, POLIC, and POLID) are related to bacterial DNA polymerase I and are required for kDNA maintenance and growth. Each polymerase appears to make a specialized contribution to kDNA replication. The research described in this dissertation is a significant contribution to the field of kDNA replication and the advancement of kDNA replication proteins as putative drug targets for sleeping sickness. Functional characterization of POLIB indicated that it participates in minicircle replication but is likely not the only polymerase contributing to this process. Gene silencing of POLIB partially blocked minicircle replication and led to the production of a previously unidentified free minicircle species, fraction U. Characterization of fraction U confirmed its identity as a population of dimeric minicircles with non-uniform linking numbers. Fraction U was not produced in response to silencing numerous other previously studied kDNA replication proteins but, as we demonstrated here, is also produced in response to POLID silencing. This common phenotype led us to hypothesize that POLIB and POLID both participate in minicircle replication. Simultaneously silencing both polymerases completely blocked minicircle replication, supporting a model of minicircle replication requiring both POLIB and POLID. Finally, we demonstrate that disease-causing trypanosomes require kDNA and the kDNA replication proteins POLIB, POLIC, and POLID. These data provide novel insights into the fascinating mechanism of kDNA replication and support the pursuit of kDNA replication proteins as novel drug targets for combating African trypanosomiasis.
10

Structure-Function Studies of the Trypanosome Mitochondrial Replication Protein POLIB

Armstrong, Raveen 20 October 2021 (has links) (PDF)
Trypanosoma brucei and related protists are distinguished from all other eukaryotes by an unusual mitochondrial genome known as kinetoplast DNA (kDNA) that is a catenated network composed of minicircles and maxicircles. Replication of this single nucleoid involves a release, replicate, and reattach mechanism for the thousands of catenated minicircles and requires at least three DNA polymerase (POLIB, POLIC and POLID) with similarity to E. coli DNA polymerase I. Like other proofreading replicative DNA polymerases, POLIB has both an annotated polymerase domain and an exonuclease domain. Predictive modelling of POLIB indicates that it has the canonical right hand polymerase structure with a unique and large 369 amino acid insertion within the polymerase domain (thumb region) homologous to E. coli RNase T. The goal of this study was to evaluate whether the polymerase domain is necessary for the essential replicative role of POLIB. To study the structure-function relationship, an RNAi-complementation system was designed to ectopically express POLIB variants in T. brucei that has endogenous POLIB silenced by RNAi.Control experiments expressing an ectopic copy of POLIB wildtype (IBWTPTP) or polymerase domain mutant (IBPol-PTP) in the absence of RNAi did not impact fitness in procyclic cells despite protein levels being 5 - 8.5 fold higher than endogenous POLIB levels. Immunofluorescence detection of the tagged variants indicated homogenous expression of the variants in a population of cells and negligible changes in kDNA morphology. Lastly, Southern blot analyses of cells expressing the IBWTPTP or IBPol-PTP variants indicated no changes in free minicircle species. A dually inducible RNAi complementation system was designed and tested with the IBWTPTP and IBPol-PTP variants. Inductions of POLIB RNAi accompanied by ectopic expression of either variant using the standard 1 mg/ml tetracycline resulted in low protein levels of both variants while knockdown of the endogenous POLIB mRNA was greater than 85%. Increasing the tetracycline concentration to 4 mg/ml improved expression levels of both variants. However, levels of the ectopically expressed variants never exceeded that of endogenous POLIB. Using the 4 mg/ml induction conditions, complementation with IBWTPTP resulted in a partial rescue of the POLIB RNAi phenotype based on fitness curves, quantification of kDNA content and Southern blot analysis of free minicircles. IBWTPTP complementation resulted in gradual increase of IBWTPTP protein levels over the 10 day induction, and a small kDNA phenotype instead of the progressive loss of kDNA normally associated with POLIB RNAi. Additionally, the loss of free minicircles was delayed. Complementation with the IBPol-PTP variant produced more consistent levels of IBPol-PTP protein although still below endogenous POLIB levels. Loss of fitness was similar to POLIB RNAi alone. However, a small kDNA phenotype emerged early after just four days of complementation and persisted for the remainder of the induction. The majority of the IBRNAi + IBPol-PTP population (70%) contained small kDNA compared to the parental POLIB RNAi or IBWTPTP complementation that had only 45% and 50% small kDNA, respectively. Lastly, the pattern of free minicircle loss closely resembled POLIB RNAi alone. Together, these data suggest that the dually inducible system results in a partial rescue with the IBWTPTP variant. Rescue with IBPol-PTP variant results in a noticeably different phenotype from either POLIB RNAi alone or IBWTPTP complementation indicating that the POLIB polymerase domain is likely essential for the in vivo role of POLIB during kDNA replication.

Page generated in 0.0405 seconds