• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 8
  • 6
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 40
  • 8
  • 8
  • 8
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The Hormonal Regulation of Kisspeptin and Neuropeptide Y Hypothalamic Neurons

Kim, Ginah 06 January 2011 (has links)
Kisspeptin (encoded by Kiss1) is a hypothalamic neuropeptide that is directly regulated by sex steroids and directly stimulates gonadotropin-releasing hormone (GnRH) neurons. Kisspeptin cell models were established in order to facilitate future molecular analysis of kisspeptin. mHypoA-51 and mHypoA-63 cell lines were found to express kisspeptin, estrogen receptor α and β, substance P, but not tyrosine hydroxyase. Furthermore, estrogen decreased Kiss1 expression in both cell lines. Based on these results, it was concluded that mHypoA-51 and mHypoA-63 are representative of arcuate kisspeptin neurons. Accumulating evidence also indicates that kisspeptin indirectly stimulates GnRH neurons through afferent neurons. Kisspeptin receptor expression was detected in native neuropeptide Y (NPY) neurons. Using the mHypoE-38 cell line, kisspeptin was found to directly regulate NPY mRNA expression and secretion via the ERK1/2 and p38 MAPK pathways. This is the first evidence that kisspeptin directly stimulates NPY neurons to potentially exert indirect effects on GnRH neurons.
12

The Hormonal Regulation of Kisspeptin and Neuropeptide Y Hypothalamic Neurons

Kim, Ginah 06 January 2011 (has links)
Kisspeptin (encoded by Kiss1) is a hypothalamic neuropeptide that is directly regulated by sex steroids and directly stimulates gonadotropin-releasing hormone (GnRH) neurons. Kisspeptin cell models were established in order to facilitate future molecular analysis of kisspeptin. mHypoA-51 and mHypoA-63 cell lines were found to express kisspeptin, estrogen receptor α and β, substance P, but not tyrosine hydroxyase. Furthermore, estrogen decreased Kiss1 expression in both cell lines. Based on these results, it was concluded that mHypoA-51 and mHypoA-63 are representative of arcuate kisspeptin neurons. Accumulating evidence also indicates that kisspeptin indirectly stimulates GnRH neurons through afferent neurons. Kisspeptin receptor expression was detected in native neuropeptide Y (NPY) neurons. Using the mHypoE-38 cell line, kisspeptin was found to directly regulate NPY mRNA expression and secretion via the ERK1/2 and p38 MAPK pathways. This is the first evidence that kisspeptin directly stimulates NPY neurons to potentially exert indirect effects on GnRH neurons.
13

Kisspeptin and neurokinin B in the regulation of the human hypothalamic-pituitary-gonadal axis

Skorupskaite, Karolina January 2017 (has links)
Background: Hypothalamic kisspeptin and neurokinin B (NKB) are central regulators of GnRH and thus gonadotropin (LH and FSH) secretion. Men and women with loss-of-function mutations in NKB-kisspeptin pathway show hypogonadotropic pubertal delay with reduced GnRH/LH pulsatility. Studies in patients with defects in NKB signalling suggest that kisspeptin is functionally downstream of NKB, although there are very limited data on the relevance of the NKB pathway in normal men or women, and no hierarchical data on this. The studies described in this thesis have investigated the interaction between these neuropeptides in the control of human reproduction in conditions of varying sex-steroid environment, and in states of fast and slow LH secretion (men, menopause, various stages across the menstrual cycle). Overall hypothesis: Pharmacological blockade of NKB signalling will decrease LH secretion by modulating GnRH/LH pulsatility, indicating the involvement of the NKB pathway in normal human reproductive function. It is also hypothesised that this will not abrogate the stimulatory kisspeptin response, revealing a functional hierarchy whereby NKB signalling is upstream of kisspeptin. Research strategy: A specific neurokinin-3 receptor antagonist (NK3R antagonist, AZD4901) was administered 40 mg twice daily orally for 7 days with and without kisspeptin-10 (KP-10) challenge. Response of reproductive hormones (serum and urinary where applicable) was measured. LH was sampled every 10 minutes for 8 hours to assess LH pulsatility by blinded deconvolution. Results: Role of neurokinin B and kisspeptin in healthy men Six healthy men underwent LH pulsatility study pre-treatment and on day 7 of NK3R antagonist administration with iv KP-10 bolus (0.3 μg/kg) at 6 hours. NK3R antagonist reduced LH and testosterone secretion, whilst stimulatory LH response to KP-10 was unaffected. LH pulse frequency was unchanged by the NK3R antagonist but basal (nonpulsatile) and pulsatile LH secretion was markedly reduced. Role of neurokinin B and kisspeptin in postmenopausal women Eleven postmenopausal women underwent LH pulsatility study pre-treatment and on day 7 of NK3R antagonist administration with iv KP-10 bolus (0.3 μg/kg) at 6 hours. NK3R antagonist decreased LH secretion. Basal (nonpulsatile) LH secretion also fell and while LH pulse frequency did not change in a group as a whole, it did fall in the 8 of 11 postmenopausal womenwith hot flushes. These women reported a reduction in hot flush frequency (3.4±1.2 vs 1.0± 0.6 flushes/day with NK3Ra, p=0.008) and severity whilst on NK3R antagonist. LH response to KP-10 was minimal and unaffected by the NK3R antagonist. Role of neurokinin B across different phases of menstrual cycle The effect of NK3R antagonist on ovarian function was compared in early follicular (n=13), late follicular (n=6) and luteal phase (n=6) to no treatment control cycle. Early follicular: NK3R antagonist was commenced from cycle day 5-6. The diameter of the leading follicle was smaller than in controls at the end of treatment (9.3±0.4 vs 15.1±0.9 mm, p < 0.0001). Serum estradiol was also reduced and the endometrium was thinner. Although NK3R antagonist had no effect on LH pulse frequency, basal (nonpulsatile) LH secretion was decreased, suggesting that NKB modulates GnRH secretion. After stopping treatment, follicle development resumed and estradiol secretion increased thereby delaying the LH surge in 11/13 women (LH surge cycle day 22±1 vs 15±1, p=0.0006). The delayed LH surge and ovulation were confirmed by a similarly delayed rise in urinary progesterone and prolonged cycle length. NK3R antagonist did not affect luteal function. Late follicular: NK3R antagonist was administered from the emergence of a dominant follicle (≥12mm). Whilst there was an LH surge in all treated cycles, estrogen feedback was perturbed by the NK3R antagonist, as there was increased variation in the timing of LH surge compared to control cycle. NK3R antagonist had no effect on the growth of a dominant follicle and luteal function was unaffected. Luteal: NK3R antagonist was administered from day +2-3 of the disappearance of the dominant follicle. NK3R antagonist reduced the variation in the timing of peak estradiol secretion. Estradiol and progesterone concentrations remained unchanged, suggesting that luteal function was overall unaffected by this treatment. No difference in mean LH was observed, although LH pulsatility was not assessed. Role of neurokinin B and kisspeptin in the mid-cycle LH surge A model of follicular phase (cycle day 9-11) administration of estradiol (200μg/day) to induce LH secretion at 48 hours was used in twenty women, mimicking LH surge. In this model, KP-10 infusion (4μg/kg/hr for 7 hours) enhanced LH secretion, the response of which was directly correlated with estrogen concentration, indicating a role of kisspeptin in estrogen feedback. Pre-treatment with NK3R antagonist decreased LH pulse frequency and whilst the immediate LH response to KP-10 was unaffected, it blunted the duration of this response and abolished the relationship between estradiol and kisspeptin-induced LH secretion. Conclusions: These data indicate the role of NKB-KP pathway in regulating human reproductive function and that this is via the modulation of pulsatile GnRH secretion. Whilst NKB is predominantly proximal to kisspeptin, the hierarchy is more complex than simply linear in the control of human HPG axis. Manipulation of NKB-KP signalling has therapeutic potential in regulating GnRH/LH secretion in wide range of clinical settings, including contraception, sex-steroid dependent disorders and in the treatment of hot flushes.
14

The Effects of KNDy Neuron Peptides on Prolactin and Luteinizing Hormone in Pup-Deprived Lactating Rats

Barnard, Amanda Leann 01 August 2014 (has links)
Lactation is the final stage of reproduction in mammals and is characterized by chronically elevated prolactin and suppressed luteinizing hormone. The neuroendocrine regulation of prolactin and luteinizing hormone during lactation are not fully understood. In the hypothalamic arcuate nucleus is a population of neurons known as KNDy neurons because they co-express the neuropeptides Kisspeptin, Neurokinin B and Dynorphin. These neurons are known to project to gonadotropin-releasing hormone cell bodes in the preoptic area and nerve terminals in the median eminence, which regulate the secretion of luteinizing hormone, and to dopaminergic tuberoinfundibular neurons in the arcuate nucleus, which are known to regulate prolactin. Because KNDy neurons project to neuronal populations known to regulate both prolactin and luteinizing hormone, the general hypothesis for these studies is that neuropeptides Kisspeptin, Neurokinin B and Dynorphin play a role in regulating these hormones or are regulated by these hormones during lactation. In a model of lactating rats deprived of their pups for 24 hours, intracerebroventricular injection of an endogenous Kisspeptin receptor ligand, Kp-10, modestly increased prolactin secretion and markedly increased luteinizing hormone secretion. Neither Neurokinin B nor the Neurokinin B receptor agonist, Senktide, had a significant effect on either hormone in this rat model. Dynorphin and U-50,488, a kappa opioid receptor agonist, robustly increased prolactin although no changes were measured in luteinizing hormone levels. In this model of 24-hour pup-deprived lactating rats, prolactin was responsive to kappa opioid receptor agonists and luteinizing hormone was responsive to Kisspeptin receptor agonists. In a second set of experiments, sense and anti-sense in situ hybridization probes were developed for Kiss1, the Kisspeptin gene, and Tac2, the gene encoding Neurokinin B. It was confirmed that the cDNA sequences cloned for these mRNAs were correct and were highly homologous to published rat mRNA sequences. In situ hybridization was performed using the Kiss1 and Tac2 probes, as well as a probe for Pdyn, which encodes Dynorphin. No specific cytoplasmic signal was observed using any of the three sense probes. With the anti-sense probes, clusters of reduced silver grains representing Kiss1, Tac2 and Pdyn mRNAs were observed in the arcuate nucleus, lateral to the third ventricle and superior to the median eminence. These expression patterns were consistent with the published literature. Also, the expression patterns for all three neuropeptides were similar to each other, suggesting that many of the arcuate nucleus neurons lateral to the third ventricle and superior to the median eminence are KNDy neurons.
15

Implication du système circadien dans la fonction de reproduction chez la souris femelle / Implication of circadian system in female mice reproduction

Chassard, David 15 October 2015 (has links)
Les neurones à Kisspeptine (Kp) de l'AVPV sont essentiels pour la survenue du pic de LH. Celle-ci est conditionnée par les concentrations circulantes d'oestrogènes (E2) et le moment du jour. Nous avons étudié si les neurones à Kp de l'AVPV étaient le lieu d'intégration de deux messages chez des souris sauvages intactes : un message E2, et un message temporel. Nous voulions savoir si ces neurones hébergeaient une horloge secondaire impliquée dans la temporalité du pic de LH. Durant l'après-midi du proestrus, une baisse drastique de l'immunoréactivité (ir) de Kp apparaît 2h avant la survenue du pic de LH au moment où l'expression de l'ARNm Kiss1 est élevée. Au contraire durant le diestrus, Kpir,l'expression de l'ARNm Kiss1 et les concentrations circulantes de LH restent basses. Les neurones à Kp de l'AVPV expriment une protéine horloge PER1 avec un rythme journalier exhibant un retard de phase de 2.8 h en diestrus comparativement au proestrus. Des explants d'AVPV exprimant les Kp provenant de souris PER2::LUCIFERASE dévoilent des oscillations circadiennes soutenues avec une période de 23.2h, significativement plus courte que celle observée dans les NSC. L'incubation des explants d'AVPV en présence d'E2 (10nM) rallonge la période d'une heure. En conclusion, cette étude indique que les neurones à Kp de l'AVPV présentent un rythme journalier dépendant des E2, qui pourrait être piloté par la présence d'une horloge secondaire au sein de ces neurones. / The kisspeptin (Kp) neurons in the anteroventral periventricular nucleus (AVPV) are essential for the preovulatory LH surge, which is gated by circulating estradiol (E2) and the time of day. We investigated whether AVPV Kp neurons in intact female mice may be the site in which both E2 and daily signals are integrated and whether these neurons may host a circadian oscillator involved in the timed LH surge. In the afternoon of proestrous day, Kp immunoreactivity displayed a marked and transient decrease 2 hours before the LH surge. In contrast, Kp content was stable throughout the day of diestrus, when LH levels are constantly low. AVPV Kp neurons expressed the clock protein period1 (PER1) with a daily rhythm that is phase delayed compared with the PER1 rhythm measured in the main clock of the suprachiasmatic nuclei (SCN). PER1 rhythm in the AVPV, but not in the SCN,exhibited a significant phase delay of 2.8 hours in diestrus as compared with proestrus. Isolated Kp expressing AVPV explants from PER2::LUCIFERASE mice displayed sustained circadian oscillations of bioluminescence with a circadian period (23.2 h) significantly shorter than that of SCN explants(24.5 h). Furthermore, in AVPV explants incubated with E2 (10 nM to 1 μM), the circadian period was lengthened by 1 hour, whereas the SCN clock remained unaltered. In conclusion, these findings indicate that AVPV Kp neurons display an E2-dependent daily rhythm, which may possibly be driven by an intrinsic circadian clock acting in combination with the SCN timing signal.
16

Functional regulation of kisspeptin receptor by calmodulin and Ca2+/calmodulin-dependent protein kinase II

Jama, Abdirahman Mohamud January 2015 (has links)
The kisspeptin receptor (KISS1R), functioning as a metastasis suppressor and gatekeeper of GnRH neurons, is a potent activator of intracellular Ca2+. The surge in cytoplasmic Ca2+ mediates the exocytosis of GnRH from GnRH neurons. However, the regulatory processes which enable KISS1R to sense increasing intracellular Ca2+ and avoid Ca2+ excitotoxicity via a signalling off-switch mechanism remain unclear. This thesis provides evidence for the interaction between KISS1R and the Ca2+ regulated proteins of calmodulin (CaM), and αCa2+/CaM-dependent-protein kinase II (α-CaMKII). Binding of CaM to KISS1R was shown with three independent approaches. Firstly, cell-free spectrofluorimeter assays showed that CaM selectively binds to intracellular loop (IL) 2 and IL3 of the KISS1R. Secondly, KISS1R co-immunoprecipitation experiments identified ligand/Ca2+-dependent binding of KISS1R to HEK-293 endogenous CaM. Thirdly, confocal experiments showed CFPCaM co-localises with YFP-KISS1R. The functional relevance of CaM binding was examined with alanine substitution of critical residues of the CaM binding motifs in IL2 and IL3 of KISS1R. This approach revealed that the receptor activity (relative maximum responsiveness) was increased in the mutated residues of the juxtamembrane regions of IL3 and the N-terminus of IL2 relative to wild-type KISS1R. The Ca2+/CaM regulated αCaMKII was also found to interact with KISS1R by selectively phosphorylating T77 of IL1. Phosphomimetic mutations of T77 into E or D created a receptor that was unable to elicit inositol phosphate production upon ligand stimulation. Finally, in vivo studies using ovariectomised rats that were intracerebroventricularly administered with a cell-permeable αCaMKII inhibitor augmented the effects of kisspeptin ligand stimulation of plasma luteinizing hormone levels. Taken together, this thesis demonstrates that the KISS1R-G protein coupling is regulated by Ca2+-dependent CaM binding and αCaMKII-mediated KISS1R phosphorylation.
17

Effects of clomiphene citrate on the expression of kisspeptin dynorphin A and neurokinin B in female Sprague-Dawley rats

Fourie, Christle January 2016 (has links)
Clomiphene citrate (CC) is the leading treatment for women with anovulatory infertility. The precise mechanism of action of the drug on the hypothalamic-pituitary-gonadal (HPG) axis has yet to be determined. Neurons expressing kisspeptin, neurokinin B (NKB) and dynorphin A (Dyn), collectively called KNDy neurons, in the arcuate nucleus (ARC) of the hypothalamus have been shown to play an integral role in the estradiol (E2) feedback pathways of the reproductive system in mammals. KNDy neurons are found in the ARC and the anteroventral periventricular nucleus (AVPV) in humans but have been predominantly reported to not express NKB and Dyn in rodents. The axons of these neurons project to the medial eminence (ME) in the region where the gonadotropin-releasing hormone (GnRH) terminals and fibres are located. It was hypothesised that CC upregulates the gene expression of kisspeptin and neurokinin B while down-regulating the gene expression of dynorphin A which results in a leutenizing hormone surge and an increase in oestradiol which causes ovulation. This was a randomized experiment which included 18 female Sprague-Dawley rats in which the aim was to analyse the expression of kisspeptin, NKB and Dyn in the ARC and the AVPV as well as blood plasma levels of oestradiol and leutinizing hormone (LH) in female rats after CC administration. Six of the rats constituted the control group that received a vehicle solution. The second group of 6 rats received the intervention in the form of CC and the third group of six rats received CC as well as p234-penetratin, a kisspeptin antagonist (KpA). The mRNA expression of the KNDy genes were analysed using real-time quantitative polymerase chain reaction (qPCR) and the plasma levels of E2 and LH were analysed by enzyme-linked immunosorbant assays (ELISA). ELISA results show that the E2 concentration in the group that received CC plus KpA was found to be marginally lower than that of the control group but there was no significant difference between the E2 concentrations of the control group and the group that received only CC. The LH concentration in the group that received CC plus KpA was significantly higher than both other groups but again, there was no significant difference between the LH concentration control group and the group that only received CC. The qPCR showed that in the AVPV, the kisspeptin expression of the CC group and the CC plus KpA groups are marginally higher than that of the control group. Conversely, the Dyn expression of the CC group and the CC plus KpA groups are marginally lower than that of the control group in the AVPV. There were no significant differences in NKB expression across the three groups. In the ARC, there were no significant differences in kisspeptin or Dyn expression across the groups. The NKB expression of the CC group was marginally lower than that of the control and there was no significant difference between the CC plus KpA group and the control group. In summary, CC appears to have a marginal effect on the kisspeptin and Dyn mRNA via the positive feedback systems in the rat AVPV as well as a significant decrease of NKB mRNA via the negative feedback systems in the ARC. To increase the validity of similar future studies, higher sample sizes, different drug administration doses, possibly more precise surgical techniques and more accurate age determination methods or ovariectomised rats could be used. / Dissertation (MSc)--University of Pretoria, 2016. / Physiology / MSc / Unrestricted
18

Einfluss von Kisspeptin-10 auf die knochengerichtete Migration und Invasion von Mammakarzinomzellen / Influence of kisspeptin-10 on the bone-directed migration and invasion of breast cancer cells

Olbrich, Teresa 15 June 2011 (has links)
No description available.
19

Controle neuroendócrino da reprodução: fatores que modulam a atividade de neurônios GNRH e kisspetina. / Neural control of reproduction: neuromodulators of GnRH and kisspeptin neurons activity.

Silveira, Marina Augusto 30 May 2017 (has links)
Neurônios GnRH e kisspeptina representam as populações neuronais de maior importância no controle da reprodução. Estradiol liga-se ao seu receptor expresso pelos neurônios kisspeptina para regular a libertação de GnRH. No modelo animal OVX+E a atividade do neurônio GnRH e pico de LH é depende do estradiol e hora do dia. Nesse estudo, embora a taxa de disparo dos neurônios GnRH seja similar entre os grupos, o padrão dos potenciais revelou uma mudança para maior duração do estouro em camundongos no proestrous, além do fato de uma maior resposta da hipófise. A prolactina tem grande impacto na modulação do eixo HPG e kisspeptina são mediadores dos efeitos da prolactina sobre a reprodução. Uma pequena porcentagem de neurônios de kisspeptina do AVPV foi indiretamente despolarizada pela prolactina. Este efeito requeria a via de sinalização PI3K. Camundongos portadores de inativação de Stat5a/b em células kisspeptina exibiram um início precoce de ciclicidade estro, indicando que os fatores de transcrição STAT5 exercem um efeito inibitório sobre o momento da puberdade. / GnRH and kisspeptina neurons represent the most important neuronal populations in the control of reproduction. Estradiol binds to its receptor expressed by the kisspeptina neurons to regulate the release of GnRH. In the animal model OVX+E the activity of the GnRH neuron and LH surge is dependent of estradiol and time of day. In this study, although the firing rate of GnRH neurons was similar between groups, the pattern of potentials revealed a change to longer burst duration in mice in proestrous, and the pituitary response was greater in this group. Prolactin has impact on HPG axis modulation and kisspeptin is a mediator of the effects of prolactin on reproduction. A small percentage of AVPV kisspeptin neurons were indirectly depolarized by prolactin. This effect required the PI3K signaling pathway. Mice bearing Stat5a/b inactivation on kisspeptin cells exhibited an early onset of estrus cyclicity, indicating that STAT5 transcription factors exert an inhibitory effect on the time of puberty.
20

Photic Entrainment and onset of puberty in Nile tilapia Oreochromis niloticus niloticus

Martinez Chavez, Carlos Cristian January 2008 (has links)
Despite teleosts being the largest and most diverse group of vertebrates, fish models currently used to study photoperiodic effects on fish physiology have been limited to a few species, most of which are temperate seasonal breeders. The overall aim of this work was to expand our knowledge on circadian biology and environmental physiological effects in Nile tilapia (Oreochromis niloticus niloticus), a continuous breeding species of tropical-subtropical origin. The circadian light axis of Nile tilapia is described with regards to melatonin production. Circadian melatonin profiles of fish under 12L:12D photoperiods were observed to be low at day and high at night, suggesting melatonin to be an entraining signal as observed in all other vertebrates. When constant light (LL) was used, such day and night fluctuations where abolished. However when fish where exposed to constant darkness (DD) a strong robust endogenous melatonin rhythm was found, suggesting the presence of circadian oscillators in this species. Importantly, this endogenous rhythm was observed to be maintained for at least three weeks under darkness and proved to be circadian in nature. Moreover, although the melatonin system was able to produce day and night melatonin rhythms when exposed to a different (6L:6D) photocycle, the oscillator appeared to not be entrainable to such a short photo cycle when exposed to DD, as melatonin levels remained high. When comparing the circadian organization of different teleost species including Nile tilapia, preliminary studies showed at least three divergent circadian light organizations in teleosts. Nile tilapia was characterised by a pineal gland far less sensitive than in other fish species as demonstrated through in vitro studies. Furthermore, pineal melatonin production was clearly dependent on the light perceived by the eyes as ophthalmectomy resulted in basal plasma melatonin levels during the dark period. These findings are the first to be reported in a teleost and could be comparable to the circadian light organization of higher vertebrates such as mammals. The onset of puberty of Nile tilapia was studied with regards to the newly discovered Kiss1/GPR54 system. Such a system has recently been discovered in mammals and found to be the primary switch of the brain-pituitary-gonadal (BPG) axis. The results of this study not only suggest a link between the Kiss1/GPR54 system and the onset of III puberty in this tropical batch spawning teleost, that would be a highly conserved feature across vertebrates, but also that the transcriptional mechanisms regulating GPR54 expression could be directly or indirectly influenced by light. Finally, a study was conducted on the effects of different intensities of continuous light (LL) on the growth and sexual development of Nile tilapia up to first maturation. The results showed a significant growth response of fish in all LL treatments compared to control fish. Importantly, this confirmed that LL enhances growth in this species and suggests that it is the light regime more than the intensity which is having an effect. This work thus provides important basic knowledge of the light entrainment pathway and circadian melatonin rhythms in Nile tilapia. Of special importance is the discovery of a strong endogenous melatonin oscillator and a novel circadian organization in fish which would seem to be homologous to that observed in higher vertebrates. Moreover, this work provides evidence that the newly discovered Kiss1/GPR54 system has a similar role in fish as has been found in mammals and that such a system could be directly or indirectly regulated by light. If so, Nile tilapia and other fish species could become important models in the chronobiology and reproduction fields. Finally, this work not only increases our basic and applied knowledge of this species, but also broadens our understanding of the circadian light axis in teleosts and its mediatory effects on reproduction.

Page generated in 0.058 seconds